
FILE S1: THE FULL CONDITIONAL CALCULATION

In the main text, we focused primarily on the non-conditional approximation to the coalescence probabilities,

which led to our simple expression for the coalescence probabilities, Eq. (15). In this Supplementary File,

we show how this approximation can be relaxed in our lineage-structure framework by carrying out the full

conditional calculation for some of the simplest possible cases. We use this to understand the structure

of the conditional results and discuss the validity of the non-conditional approximation. We note that the

full conditional result can also be obtained from the sum of ancestral paths approach by keeping the higher

order terms in Eq. (56) of Appendix A, as described in File S4, and the validity of the non-conditional

approximation can be directly assessed with that approach.

We begin by considering the full conditional result for the probability that two individuals both sampled

from class k coalesce in class k − 2. From Appendix A of the main text, we have

P k,k→k−2
c = Ik−2

x

∫
Qk−2

k,k (t1, t2) exp [−s(k − 2)|t1 − t2|] dt1dt2. (S.1)

In order to evaluate this integral, we need to determine the probability distribution of mutant timings

Qk−2
k,k (t1, t2). The time t1 is the sum of the time for one individual to have mutated from class k− 2 to class

k−1 plus the time for it to have mutated from class k−1 to class k, and analogously for t2. However, in order

for the two lineages to coalesce in class k − 2, they must not have coalesced in class k − 1. To illustrate the

main point, we neglect the distortion in the mutant timings due to the fact that individuals did not coalesce

in class k and focus only on the distortions due to the fact that coalescence did not occur in class k − 1;

if desired, the former distortion can also be included using analogous methods. We refer to the probability

distribution of the times when these individuals mutated from class k− 1 to class k conditional on them not

having coalesced in class k− 1 as Qk−1
k,k (t1, t2|nc). The distribution of the times for these individuals to then

have mutated from class k − 2 to class k − 1 is then given by

Qk−2
1step(t1, t2) = [s(k − 1)]2e−s(k−1)(t1+t2). (S.2)

Thus the distribution of t1 and t2 is given by

Qk−2
k,k (t1, t2) = Qk−1

k,k (t1, t2|nc) ⋆ Qk−2
1step(t1, t2), (S.3)

where ⋆ indicates a convolution. Note that much of the time when the individuals did coalesce in class k−1,

they did so because t1 happened to be close to t2 (since this increases the chance the two individuals mutated

from the same lineage). Thus in Qk−1
k,k (t1, t2|nc), t1 and t2 are on average further apart than in Qk−1

k,k (t1, t2),

and t1 and t2 are no longer independent random variables.
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We now need to calculate Qk−1
k,k (t1, t2|nc). We have

Qk−1
k,k (t1, t2|nc) =

Qk−1
k,k (t1, t2)−Qk−1

k,k (t1, t2|c)P k,k→k−1
c

1− P k,k→k−1
c

, (S.4)

where Qk−1
k,k (t1, t2|c) is the distribution of timings of mutations from class k − 1 to k given that the lineages

do coalesce in class k − 1. Applying the general probability identity P (t1, t2|c) = 1
P (c)P (c|t1, t2)P (t1, t2),

and reading off the coalescence probability given t1 and t2 from Eq. (13), we find that

Qk−1
k,k (t1, t2|c) =

Ik−1
x

P k,k→k−1
c

Qk−1
k,k (t1, t2)e

−s(k−1)|t1−t2|. (S.5)

We therefore find

Qk−1
k,k (t1, t2|nc) =

1

1− P k,k→k−1
c

[
(sk)2e−sk(t1+t2) − Ik−1

x (sk)2e−2k(t1+t2)e−s(k−1)|t1−t2|
]
. (S.6)

Plugging this into our convolution formula for Qk−2
k,k (t1, t2) and evaluating the integrals by separating out

the possible time orderings, we find

Qk−2
k,k (t1, t2) =

k2 [s(k − 1)]
2

1− P k,k→k−1
c

e−s(k−1)(t1+t2)

[(
1− e−st1

) (
1− e−2t2

)
− Ik−1

x

k − 2
B

]
, (S.7)

where we have defined

B =
1

(k − 2)

[
1− e−2smin(t1,t2) − 2

k

(
1− e−skmin(t1,t2)

)
+
1

k

(
1− e−2k|t1−t2|

)(
e−2smin(t1,t2) − e−skmin(t1,t2)

)]
. (S.8)

We can now use this expression in Eq. (S.1) to calculate the coalescence probability P k,k→k−2
c . Since the

result is tedious and does not further illuminate the structure of the full conditional calculation, we do not

do so explicitly here, but the integrals are straightforward to evaluate with the methods we have used above.

To motivate the validity of the non-conditional approximation, we need to consider the full calculation

going back one additional step. Thus we consider the probability that two individuals both sampled from

class k coalesce in class k − 3, P k,k→k−3
c . This will be given by

P k,k→k−3
c =

∫
Qk−3

k,k (t1, t2)
x2

h2k−3

fk−3(x)e
−s(k−3)|t1−t2|dt1dt2dx, (S.9)

where here Qk−3
k,k (t1, t2) is the distribution of the time at which the ancestors of the two sampled individuals

originally mutated from class k−3 to class k−2, conditional on them not coalescing in classes k−2 or k−1.

We can calculate Qk−3
k,k (t1, t2) in the same way we calculated Qk−2

k,k (t1, t2). Explicitly,

Qk−3
k,k (t1, t2) = Qk−2

k,k (t1, t2|nc) ⋆ Qk−3
1step(t1, t2), (S.10)
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where analogously to the expression in the previous step

Qk−2
k,k (t1, t2|nc) =

1

1− P k,k→k−2
c

[
Qk−2

k,k (t1, t2)−Qk−2
k,k (t1, t2|c)P k,k→k−2

c

]
. (S.11)

We note that Qk−2
k,k (t1, t2) is the expression in Eq. (S.7) we calculated above. As before, we have

Qk−2
k,k (t1, t2|c)P k,k→k−2

c = Ik−2
x Qk−2

k,k (t1, t2)e
−s(k−2)|t1−t2|, (S.12)

hence we can write

Qk−2
k,k (t1, t2|nc) =

Qk−2
k,k (t1, t2)

1− P k,k→k−2
c

[
1− Ik−2

x e−s(k−2)|t1−t2|
]
. (S.13)

Plugging the above expression back into Eq. (S.10), we obtain

Qk−3
k,k (t1, t2) =

s2(k − 1)2k2s2(k − 2)2

(1− P k,k→k−1
c )(1− P k,k→k−2

c )
e−s(k−2)(t1+t2)

∫ t2

0

∫ t1

0

es(k−2)(y+z)es(k−1)(y+z)

×
[
1− Ik−2

x e−s(k−z)|y−z|
] [

(1− e−sy)(1− e−sz)− Ik−1
x

k − 2
B

]
. (S.14)

We could evaluate the integrals in the above expression for Qk−3
k,k (t1, t2) in the same way that we did

in our calculation for Qk−2
k,k (t1, t2). We would then substitute this result for Qk−3

k,k (t1, t2) into an analogous

calculation of Qk−4
k,k (t1, t2), and so on. In this way we can build up the full conditional results. The most

useful way to go about this is to separate the results into powers of Ix, which is a small parameter related to

the coalescent probability in each step. We see from the expression for Qk−3
k,k (t1, t2) that there is a term in

(Ix)
0, which is exactly the non-conditional approximation. There are two terms involving (Ix)

1, and a single

term involving (Ix)
2. In general, in the expression for Qk−ℓ

k,k (t1, t2), we will have one (Ix)
0 term (which equals

the result in the non-conditional approximation) plus ℓ terms proportional to Ix,
(
2
ℓ

)
terms proportional to

(Ix)
2, and so on. Fortunately, the dependence on the population parameters is entirely contained within

these powers of Ix. That is, the coefficients of these various powers of Ix depend only on k and ℓ, and not

at all on the population parameters N , s, and Ud. Thus we could simply calculate a table of coefficients

once, and then would be able to understand all the distributions of mutant timings (and from this all the

coalescent probabilities).

In practice, it is easier to make these full conditional calculations within the sum of ancestral paths

approach. As we show in File S4, that approach leads naturally to a power series in Ix of exactly the form

described above, in which the leading order term is the non-conditional approximation and the additional

terms represent the conditional corrections. This calculation shows that provided Ix ≪ 1, which is true

provided our usual condition that Nhksk ≫ 1 holds, these higher order terms are all small, and our non-

conditional approximation is valid.

These full conditional results are, however, very complex and unilluminating. Therefore we focus here on
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understanding the general structure of these results, and on showing why the non-conditional approximation

is good description of the distribution of mutation timings. We can see that at each step back through the

fitness distribution, the probability distribution of times shifts from the non-conditional results by a factor

which is roughly proportional to the coalescence probability at that step. That is, in general we have

Qk−ℓ
k,k (t1, t2) =

1

1− P k,k→k−ℓ
c

[
Qk−ℓ

k,k (t1, t2)− P k,k→k−ℓ
c Qk−2

k,k (t1, t2|c)
]
. (S.15)

The first term in square brackets reflects the fact that the probability distribution at a given step conditional

on non-coalescence at that step is almost equal to the unconditional probability distribution at that step.

The second term represents the correction: note that it is proportional to the coalescence probability in that

step, P k,k→k−ℓ
c . The nature of the correction can be seen by plugging in the distribution of times conditional

on coalescence, giving

Qk−ℓ
k,k (t1, t2) =

Qk−ℓ
k,k (t1, t2)

1− P k,k→k−ℓ
c

[
1− Ik−ℓ

x e−s(k−ℓ)|t1−t2|
]
. (S.16)

We see that the correction acts to reduce the probability that |t1 − t2| is small — that is, it makes it more

likely that t1 and t2 are further apart, because this is more likely to be the case given that coalescence did

not occur.

Since at each step the shift in the distribution of mutant timings is proportional to the coalescence

probability, and the coalescence probability at each step is small, it seems clear that the non-conditional

approximation where we simply ignore this shift in mutant timings is reasonable. However there is one

potential caveat we must consider: although the shift in the distribution of mutation timings due to condi-

tioning on non-coalescence is small in each step, we typically take many steps before the lineages coalesce.

In fact, since the shift in mutation timings is proportional to the coalescence probability, and we typically

go back a number of steps of order one over the coalescence probability, in principle the shifts in mutation

timings could add up to a substantial shift.

Fortunately, there are three factors which prevent this from happening. First, the shift in mutation

timings at each step is always to reduce the probability of times t1 and t2 where |t1 − t2| . 1
(k−ℓ)s . Since

at each step ℓ is increasing, and the range of separations between mutation timings at which coalescence

can happen is also increasing, the shifts in mutation timings from many steps ago are not a huge factor in

determining coalescence probabilities in a particular step. That is, though the shifts in mutation timings add

up over many steps, the shifts most relevant to the coalescent probability in a given step do not. Second,

the coalescence probabilities at each step are different. This reduces the chance that we take enough steps

to shift the overall mutation timings substantially by the time we coalesce. Finally, and most importantly,

we will see that the there is a substantial probability that the ancestors of the two individuals sampled do
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not coalesce until they are in the most-fit class. This means that the total sum of coalescence probabilities

(and hence the total possible weight in the shift of mutation timings) remains small even in the worst case

where the two lineages do not coalesce for the maximum possible number of steps. The non-conditional

approximation will always be good in the regime where this is true. All of these heuristic conclusions are

reflected in the fact that the full conditional result we calculate in the sum of ancestral paths approach is

equal to the non-conditional result plus corrections that are small provided Ix ≫ 1.
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