FILE S3: GENERAL COALESCENCE PROBABILITIES IN THE NON-CONDITIONAL
APPROXIMATION

The probability of coalescence for two individuals originally in two different classes k and k', as defined in

Eq. (48) can be rewritten as

!’ i 1
phk =k =t I+ I S.27
e T 2N s =) b (8.27)

where we have defined
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Note that both I; and I involve integrals of the form
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Plugging in the results for the non-conditional distributions of mutant timings, Eq. (S.26), and making use

of the binomial expansion formula for (1 + )™ noted in File S2, we find this integral becomes
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We now substitute this result for I, into our expressions for I; and Is. We note that both have terms of

the form
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Using similar manipulations to those above, we find
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Using the partial fraction decomposition
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we find
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We can now use this result for I, to determine I; and I, and hence compute Pf’klﬁk"z . We find
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As we noted in the main text, this is just
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with A?’k, as defined in Eq. (16). Note that when k = k', this result simplifies to P**~*~¢ as defined in

the main text, as expected.
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