
FILE S4: COMPUTING SUMS OF ANCESTRAL PATHS

In this Supplementary File, we describe the calculation of ϕk
′

k (ℓ) using the sum of ancestral paths approach.

Calculation of ϕkk(3): We begin by considering a simpler specific case, where k = k′ and ℓ = 3. There

are a total of
(
6
3

)
= 20 possible ancestral paths by which two individuals sampled from class k can coalesce

in class k− 3. These can be separated into four types, according to whether the two ancestral lineages were

ever together in classes k − 1 or k − 2. We can list all paths of each type, using the notation that A is a

mutation event in the first lineage, and B is a mutation event in the second lineage. We have
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The probabilities of all paths of a particular type are identical. We can calculate the probability of each

of the four types of paths using the same logic as outlined in the main text. We find

P (AAABBBc) = Ik−3
x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

)
, (S.45)
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Summing over all the possible paths, we find

ϕkk(3) = Ik−3

(
k
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k
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We now pause to consider the form of the probabilities of each type of ancestral path. These probabilities

differ only by factors of (1− Ik−i
x ). One such factor arises each time the two ancestral lineages are together

in class k− i. In other words, we can rewrite the probability of each path as the probability of an undistorted

path (defined to be a path in which the contributions due to the possibility of coalescence in previous classes
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are neglected), times a correction for each class in which the two lineages are together:

P (AAABBBc) = P (Undistorted Path)
(
1− Ikx

)
(S.50)

P (AABBABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1

x

)
(S.51)

P (ABAABBc) = P (Undistorted Path)
(
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) (
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x

)
(S.52)

P (ABABABc) = P (Undistorted Path)
(
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) (
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x
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x

)
. (S.53)

By definition, the “undistorted path” probability is the probability neglecting the contributions due to the

possibility of coalescence in previous steps, and is therefore the same for all paths. We have

P (Undistorted Path) =
k(k − 1)(k − 2)k(k − 1)(k − 2)

2k(2k − 1)(2k − 2)(2k − 3)(2k − 4)(2k − 5)
Ik−ℓ
x (S.54)

=

k!
(k−3)!

k!
(k−3)!

2k!
(2k−6)!

Ik−ℓ
x . (S.55)

Using these results, we can write ϕkk(3) as

ϕkk(3) = [# of Paths]P (Undistorted Path)
[
Fk(1− Ikx) + Fk,k−1(1− Ikx)(1− Ik−1

x )

+Fk,k−2(1− Ikx )(1− Ik−2
x ) + Fk,k−1,k−2(1− Ikx)(1− Ik−1

x )(1− Ik−2
x )

]
, (S.56)

where we have defined F{a} to be the fraction of paths that are together in the set of classes {a} (and are

not together in any other class).

Calculation of ϕkk′(ℓ): We now use this approach to calculate the coalescence probability in the general

case. The probability of any particular ancestral path from k and k′ to k− ℓ is the product of the individual

probabilities of each mutational step that makes up this path. Each such individual probability consists

of three parts: a numerator, which depends only on the current class of the lineage that mutates, divided

by a denominator, which depends only on the sum of the current set of classes for both lineages, times a

correction factor of (1− Ik−i
x ) if the two lineages are in the same class at that step.

Although in each ancestral path the mutations will occur in a different order, all paths will ultimately

consist of the same set of mutations (k′ → k′ − 1 → . . . → k − ℓ and k → k − 1 → . . . → k − ℓ). Therefore,

regardless of the path taken, the product of the numerators from each step will be identical. Similarly, the

sum of the current set of classes will begin at k′+ k, and decrement by one each time a deleterious mutation

occurs, until both lineages are in the final class (k′ + k → k′ + k− 1 → . . .→ 2k− 2ℓ). Therefore, regardless

of the path taken, the product of the denominators from each step will also be identical. Therefore, the

paths will differ only by the correction factor (1 − Ik−i
x ) for each class in which the two ancestral lineages

are together. This means that, analogous to the case of ϕkk(3) we described above, the probability of each
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path is the probability of an “undistorted path” times the appropriate correction factor. The probability of

the undistorted path is

P (Undistorted Path) =
k′(k′ − 1) . . . (k − ℓ+ 1)k(k − 1) . . . (k − ℓ+ 1)

(k′ + k)(k′ + k − 1) . . . (2k − 2ℓ+ 1)
Ik−ℓ
x . (S.57)

We can now sum up all possible paths to obtain

ϕkk′(ℓ) = [# of Paths]P (Undistorted Path)

[
F∅ +

ℓ∑
i=0

Fk−i(1− Ik−i
x )

+

ℓ−1∑
i=0

ℓ∑
j>i

Fk−i,k−j(1− Ik−i
x )(1− Ik−j

x ) (S.58)

+
ℓ−2∑
i=0

ℓ−1∑
j>i

ℓ∑
m>j

Fk−i,k−j,k−m(1− Ik−i
x )(1− Ik−j

x )(1− Ik−m
x ) + . . .

 ,
where as before F{a} is the fraction of paths that are together in the set of classes {a} (and are not together

in any other class). Note that there are a total of ℓ + 1 terms in this equation, representing the possibility

that the two lineages can be together in anywhere from 0 to ℓ of the classes. We can rearrange these terms

to write

ϕkk′(ℓ) = [# of Paths]P (Undistorted Path)

[
1−

ℓ∑
i=0

Gk−iI
k−i
x

+
ℓ−1∑
i=0

ℓ∑
j>i

Gk−i,k−jI
k−i
x Ik−j

x (S.59)

−
ℓ−2∑
i=0

ℓ−1∑
j>i

ℓ∑
m>j

Gk−i,k−j,k−mI
k−i
x Ik−j

x Ik−m
x + . . .

 ,
where we have defined G{a} to be the fraction of paths that are together in at least the set of classes {a}.

We can evaluate each of these factors of G. For example, the fraction of paths that are together in class

k− i equals the number of ways for the two lineages to descend from classes k′ and k to be together in class

k− i,
(
k′−k+2i

i

)
, times the number of ways for the two lineages to descend from class k− i to be together in

class k − ℓ,
(
2i−2ℓ
i−ℓ

)
, divided by the total number of ways for the two lineages to descend from classes k′ and

k to be together in k − ℓ,
(
k′−k+2ℓ

ℓ

)
. Using this logic, we find

ϕkk′(ℓ) = [# of Paths]P (Undistorted Path) (S.60)

×

1− ℓ−1∑
i=0

(
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i

)(
2ℓ−2i
ℓ−i

)(
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ℓ
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x +

ℓ−2∑
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ℓ−1∑
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(
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i

)(
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j−i
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ℓ−j
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ℓ
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x Ik−j

x . . .

 .
The total number of paths is

(
k′−k+2ℓ

ℓ

)
, so we finally find that the full probability of coalescence in class
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k − ℓ is

ϕk
′

k (ℓ) = Ik−ℓ
x

(
k′

k−ℓ

)(
k

k−ℓ

)(
k′+k

k′−k+2ℓ

) [1− ℓ−1∑
i=0

(
k′−k+2i

i

)(
2ℓ−2i
ℓ−i

)(
k′−k+2ℓ

ℓ

) Ik−i
x +

ℓ−2∑
i=0

ℓ−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2ℓ−2j
ℓ−j

)(
k′−k+2ℓ

ℓ

) Ik−i
x Ik−j

x − . . .

 . (S.61)

This is Eq. (56) from the main text. Note that it equals our non-conditional result for P k,k′→ℓ
c times a

correction factor. There are a total of ℓ+1 terms in this correction factor. This full correction factor can be

arbitrarily complex for large ℓ, so we do not write out a general form here. However, it is straightforward to

calculate for any values of k, k′, and ℓ; a Mathematica script to do so is available on request.
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