FILE S4: COMPUTING SUMS OF ANCESTRAL PATHS

In this Supplementary File, we describe the calculation of $\phi_{k}^{k^{\prime}}(\ell)$ using the sum of ancestral paths approach.
Calculation of $\phi_{k}^{k}(3)$: We begin by considering a simpler specific case, where $k=k^{\prime}$ and $\ell=3$. There are a total of $\binom{6}{3}=20$ possible ancestral paths by which two individuals sampled from class k can coalesce in class $k-3$. These can be separated into four types, according to whether the two ancestral lineages were ever together in classes $k-1$ or $k-2$. We can list all paths of each type, using the notation that A is a mutation event in the first lineage, and B is a mutation event in the second lineage. We have

The probabilities of all paths of a particular type are identical. We can calculate the probability of each of the four types of paths using the same logic as outlined in the main text. We find

$$
\begin{align*}
P(A A A B B B c) & =I_{x}^{k-3} \frac{k(k-1)(k-2)}{8(2 k-1)(2 k-3)(2 k-5)}\left(1-I_{x}^{k}\right) \tag{S.45}\\
P(A A B B A B c) & =I_{x}^{k-3} \frac{k(k-1)(k-2)}{8(2 k-1)(2 k-3)(2 k-5)}\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-1}\right), \tag{S.46}\\
P(A B A A B B c) & =I_{x}^{k-3} \frac{k(k-1)(k-2)}{8(2 k-1)(2 k-3)(2 k-5)}\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-2}\right), \tag{S.47}\\
P(A B A B A B c) & =I_{x}^{k-3} \frac{k(k-1)(k-2)}{8(2 k-1)(2 k-3)(2 k-5)}\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-1}\right)\left(1-I_{x}^{k-2}\right) . \tag{S.48}
\end{align*}
$$

Summing over all the possible paths, we find

$$
\begin{equation*}
\phi_{k}^{k}(3)=I_{k-3} \frac{\binom{k}{k-3}\binom{k}{k-3}}{\binom{2 k}{6}}\left[1-\frac{\binom{2}{1}\binom{4}{2}}{\binom{6}{3}} I_{k-1}-\frac{\binom{2}{1}\binom{4}{2}}{\binom{6}{3}} I_{k-2}+\frac{\binom{2}{1}\binom{2}{1}\binom{2}{1}}{\binom{6}{3}} I_{k-1} I_{k-2}\right] . \tag{S.49}
\end{equation*}
$$

We now pause to consider the form of the probabilities of each type of ancestral path. These probabilities differ only by factors of $\left(1-I_{x}^{k-i}\right)$. One such factor arises each time the two ancestral lineages are together in class $k-i$. In other words, we can rewrite the probability of each path as the probability of an undistorted path (defined to be a path in which the contributions due to the possibility of coalescence in previous classes
are neglected), times a correction for each class in which the two lineages are together:

$$
\begin{align*}
& P(A A A B B B c)=P(\text { Undistorted Path })\left(1-I_{x}^{k}\right) \tag{S.50}\\
& P(A A B B A B c)=P(\text { Undistorted Path })\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-1}\right) \tag{S.51}\\
& P(A B A A B B c)=P(\text { Undistorted Path })\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-2}\right) \tag{S.52}\\
& P(A B A B A B c)=P(\text { Undistorted Path })\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-1}\right)\left(1-I_{x}^{k-2}\right) . \tag{S.53}
\end{align*}
$$

By definition, the "undistorted path" probability is the probability neglecting the contributions due to the possibility of coalescence in previous steps, and is therefore the same for all paths. We have

$$
\begin{align*}
P(\text { Undistorted Path }) & =\frac{k(k-1)(k-2) k(k-1)(k-2)}{2 k(2 k-1)(2 k-2)(2 k-3)(2 k-4)(2 k-5)} I_{x}^{k-\ell} \tag{S.54}\\
& =\frac{\frac{k!}{(k-3)!} \frac{k!}{\frac{2 k-3)!}{(2 k-6)!}} I_{x}^{k-\ell} .}{} . \tag{S.55}
\end{align*}
$$

Using these results, we can write $\phi_{k}^{k}(3)$ as

$$
\begin{align*}
\phi_{k}^{k}(3)= & {[\# \text { of Paths }] P(\text { Undistorted Path })\left[F_{k}\left(1-I_{x}^{k}\right)+F_{k, k-1}\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-1}\right)\right.} \\
& \left.+F_{k, k-2}\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-2}\right)+F_{k, k-1, k-2}\left(1-I_{x}^{k}\right)\left(1-I_{x}^{k-1}\right)\left(1-I_{x}^{k-2}\right)\right] \tag{S.56}
\end{align*}
$$

where we have defined $F_{\{a\}}$ to be the fraction of paths that are together in the set of classes $\{a\}$ (and are not together in any other class).

Calculation of $\phi_{k^{\prime}}^{k}(\ell)$: We now use this approach to calculate the coalescence probability in the general case. The probability of any particular ancestral path from k and k^{\prime} to $k-\ell$ is the product of the individual probabilities of each mutational step that makes up this path. Each such individual probability consists of three parts: a numerator, which depends only on the current class of the lineage that mutates, divided by a denominator, which depends only on the sum of the current set of classes for both lineages, times a correction factor of $\left(1-I_{x}^{k-i}\right)$ if the two lineages are in the same class at that step.

Although in each ancestral path the mutations will occur in a different order, all paths will ultimately consist of the same set of mutations $\left(k^{\prime} \rightarrow k^{\prime}-1 \rightarrow \ldots \rightarrow k-\ell\right.$ and $\left.k \rightarrow k-1 \rightarrow \ldots \rightarrow k-\ell\right)$. Therefore, regardless of the path taken, the product of the numerators from each step will be identical. Similarly, the sum of the current set of classes will begin at $k^{\prime}+k$, and decrement by one each time a deleterious mutation occurs, until both lineages are in the final class $\left(k^{\prime}+k \rightarrow k^{\prime}+k-1 \rightarrow \ldots \rightarrow 2 k-2 \ell\right)$. Therefore, regardless of the path taken, the product of the denominators from each step will also be identical. Therefore, the paths will differ only by the correction factor $\left(1-I_{x}^{k-i}\right)$ for each class in which the two ancestral lineages are together. This means that, analogous to the case of $\phi_{k}^{k}(3)$ we described above, the probability of each
path is the probability of an "undistorted path" times the appropriate correction factor. The probability of the undistorted path is

$$
\begin{equation*}
P(\text { Undistorted Path })=\frac{k^{\prime}\left(k^{\prime}-1\right) \ldots(k-\ell+1) k(k-1) \ldots(k-\ell+1)}{\left(k^{\prime}+k\right)\left(k^{\prime}+k-1\right) \ldots(2 k-2 \ell+1)} I_{x}^{k-\ell} \tag{S.57}
\end{equation*}
$$

We can now sum up all possible paths to obtain

$$
\begin{align*}
\phi_{k^{\prime}}^{k}(\ell)= & {[\# \text { of Paths }] P(\text { Undistorted Path })\left[F_{\emptyset}+\sum_{i=0}^{\ell} F_{k-i}\left(1-I_{x}^{k-i}\right)\right.} \\
& +\sum_{i=0}^{\ell-1} \sum_{j>i}^{\ell} F_{k-i, k-j}\left(1-I_{x}^{k-i}\right)\left(1-I_{x}^{k-j}\right) \tag{S.58}\\
& \left.+\sum_{i=0}^{\ell-2} \sum_{j>i}^{\ell-1} \sum_{m>j}^{\ell} F_{k-i, k-j, k-m}\left(1-I_{x}^{k-i}\right)\left(1-I_{x}^{k-j}\right)\left(1-I_{x}^{k-m}\right)+\ldots\right],
\end{align*}
$$

where as before $F_{\{a\}}$ is the fraction of paths that are together in the set of classes $\{a\}$ (and are not together in any other class). Note that there are a total of $\ell+1$ terms in this equation, representing the possibility that the two lineages can be together in anywhere from 0 to ℓ of the classes. We can rearrange these terms to write

$$
\begin{align*}
\phi_{k^{\prime}}^{k}(\ell)= & {[\# \text { of Paths }] P(\text { Undistorted Path })\left[1-\sum_{i=0}^{\ell} G_{k-i} I_{x}^{k-i}\right.} \\
& +\sum_{i=0}^{\ell-1} \sum_{j>i}^{\ell} G_{k-i, k-j} I_{x}^{k-i} I_{x}^{k-j} \tag{S.59}\\
& \left.-\sum_{i=0}^{\ell-2} \sum_{j>i}^{\ell-1} \sum_{m>j}^{\ell} G_{k-i, k-j, k-m} I_{x}^{k-i} I_{x}^{k-j} I_{x}^{k-m}+\ldots\right]
\end{align*}
$$

where we have defined $G_{\{a\}}$ to be the fraction of paths that are together in at least the set of classes $\{a\}$.

We can evaluate each of these factors of G. For example, the fraction of paths that are together in class $k-i$ equals the number of ways for the two lineages to descend from classes k^{\prime} and k to be together in class $k-i,\binom{k^{\prime}-k+2 i}{i}$, times the number of ways for the two lineages to descend from class $k-i$ to be together in class $k-\ell,\binom{2 i-2 \ell}{i-\ell}$, divided by the total number of ways for the two lineages to descend from classes k^{\prime} and k to be together in $k-\ell,\binom{k^{\prime}-k+2 \ell}{\ell}$. Using this logic, we find

$$
\begin{align*}
\phi_{k^{\prime}}^{k}(\ell)= & {[\# \text { of Paths }] P \text { (Undistorted Path) } } \tag{S.60}\\
& \times\left[1-\sum_{i=0}^{\ell-1} \frac{\binom{k^{\prime}-k+2 i}{i}\binom{2 \ell-2 i}{\ell-i}}{\binom{k^{\prime}-k+2 \ell}{\ell}} I_{x}^{k-i}+\sum_{i=0}^{\ell-2} \sum_{j>i}^{\ell-1} \frac{\binom{k^{\prime}-k+2 i}{i}\binom{2 j-2 i}{j-i}\binom{2 \ell-2 j}{\ell-j}}{\binom{k^{\prime}-k+2 \ell}{\ell}} I_{x}^{k-i} I_{x}^{k-j} \cdots\right] .
\end{align*}
$$

The total number of paths is $\binom{k^{\prime}-k+2 \ell}{\ell}$, so we finally find that the full probability of coalescence in class
$k-\ell$ is

$$
\begin{align*}
\phi_{k}^{k^{\prime}}(\ell)= & I_{x}^{k-\ell} \frac{\binom{k^{\prime}}{k-\ell}\binom{k}{k-\ell}}{\binom{k^{\prime}+k}{k^{\prime}-k+2 \ell}}\left[1-\sum_{i=0}^{\ell-1} \frac{\binom{k^{\prime}-k+2 i}{i}\binom{2 \ell-2 i}{\ell-i}}{\binom{k^{\prime}-k+2 \ell}{\ell}} I_{x}^{k-i}+\right. \\
& \left.\sum_{i=0}^{\ell-2} \sum_{j>i}^{\ell-1} \frac{\binom{k^{\prime}-k+2 i}{i}\binom{2 j-2 i}{j-i}\binom{2 \ell-2 j}{\ell-j}}{\binom{k^{\prime}-k+2 \ell}{\ell}} I_{x}^{k-i} I_{x}^{k-j}-\ldots\right] . \tag{S.61}
\end{align*}
$$

This is Eq. (56) from the main text. Note that it equals our non-conditional result for $P_{c}^{k, k^{\prime} \rightarrow \ell}$ times a correction factor. There are a total of $\ell+1$ terms in this correction factor. This full correction factor can be arbitrarily complex for large ℓ, so we do not write out a general form here. However, it is straightforward to calculate for any values of k, k^{\prime}, and ℓ; a Mathematica script to do so is available on request.

