
FILE S6: AN ALTERNATIVE APPROACH TO NEUTRAL DIVERSITY

Instead of calculating the distribution of neutral heterozygosity by first computing the distribution of real

times, we could alternatively incorporate neutral mutations directly into the sum of ancestral paths frame-

work. This completely bypasses the correspondence with real coalescence times. To do this, we characterize

ancestral paths not only by the ordering of deleterious mutation and coalescence events, but also by the

ordering of neutral mutations. This means that if we sample two individuals A and B, there are five types

of events that can happen in their ancestral paths: a deleterious mutation (DM) in A or in B, a neutral

mutation (NM) in either A or in B, and or a coalescence (C) event (if A and B are currently in the same

class).

We now imagine that we sample two individuals from classes k and k′, and that they coalesce in class

k − ℓ. Our goal is to calculate the probability distribution of πn given k, k′, and ℓ, ρ(πn|k, k′, ℓ). We will

find it helpful to divide the five types of events that can occur into two classes: neutral mutations on the one

hand, and deleterious mutations or coalescence (which we call “steps”) on the other. We begin by computing

the probability that a given number of NMs occur before the next DM or C events (i.e. the number of neutral

mutations that occur at this “step”). We have

P (a NMs, then DM in k′ or k′|k′, k) =

(
2Un

s

k′ + k + 2Un

s

)a
k + k′

k′ + k + 2Un

s

, (S.74)

where we have made our usual assumption that Nhksk ≫ 1, allowing us to neglect the rates of coalescence

events (when k = k′) in writing this expression.

This probability only depends on the sum of the current classes the individulas are in. At each subsequent

step, regardless of the path taken, this sum of the classes will decrease by one. Therefore, the probability

that ai neutral mutations occur at step i is independent of the path taken. This observation allows us to

calculate the probability that a given total number of neutral mutations have occurred since coalescence.

We first calculate the probability that a given number of neutral mutations have occurred since the first

deleterious mutation out of the k− ℓ class. We will add in the additional neutral mutations once in the k− ℓ

class at the end.

In order for πn neutral mutations to have occurred since the first deleterious mutation out of class k− ℓ,

we require that a0 mutations occurred at the first step, a1 mutations occurred at the second step, and so

on, such that a0 + a1 + . . .+ ak′−k+2ℓ−1 = πn. This gives

ρ(πn = X|k′, k, ℓ) =
(k′+k)!
(2k−2ℓ)!

( 2Un
s +k′+k)!

( 2Un
s +2k−2ℓ)!

∑
|⃗a|=X

(
2Un/s

2Un/s+ k + k′

)a0

. . .

(
2Un/s

2Un/s+ 2k − 2l + 1

)ak′−k+2l−1

. (S.75)
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We can define x ≡ 2Un/s+ k + k′, recognize πd = k′ − k + 2ℓ, and relabel the ai as

a0 → X − b0, a1 → b0 − b1, . . . aπd−2 → bπd−3 − bπd−2, aπd−1 → bπd−2. (S.76)

This gives

ρ(πn = X|k′, k, ℓ) =

(
k′+k
πd

)( 2Un
s +k′+k

πd

) (2Un

s

)X (
1

x

)X X∑
b0=0

(
x

x− 1

)b0

(S.77)

b0∑
b1=0

(
x− 1

x− 2

)b1

. . .

bπd−3∑
bπd−2=0

(
x− πd + 2

x− πd + 1

)bπd−2

.

To simnplify this expression, it is helpful to define a function f such that:

f (A,B) ≡
(
1

x

)X X∑
b0=0

(
x

x− 1

)b0

(S.78)

b0∑
b1=0

(
x− 1

x− 2

)b1

. . .
X∑
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(
x−A+ 1

x−A

)b0 bA−1∑
bA=0

(
x−A

x−B

)bA

In other words, f (A,B) is a set of A nested sums, each of the same form, except for the final sum, which

can have a different denominator. Using this definition, we have

P (πn = X|k′, k, ℓ) =
(
k′+k
πd

)( 2Un
s +k′+k

πd

) (2Un

s

)X

f (πd − 2, πd − 1) . (S.79)

The virtue of this definition is that this sum can be solved recursively. We have

bA−1∑
bA=0

(
x−A

x−B

)bA

=
x−B

A−B
− x−A

A−B

(
x−A

x−B

)bA−1

. (S.80)

Therefore we have

f (A,B) =
x−A

B −A
f (A− 1, B)− x−B

B −A
f (A− 1, A) . (S.81)

Repeatedly inserting this result yields:

f (A,A+ 1) → (x−A)(x−A− 1)

1

(
f (A− 1, A+ 1)

x−A− 1
− f (A− 1, A)

x−A

)
f (A,A+ 1) → (x−A+ 1)(x−A)(x−A− 1)

2

[
f (A− 2, A+ 1)

x−A− 1
− 2f (A− 2, A)

x−A
+

f (A− 2, A− 1)

x−A+ 1

]
...

f (A,A+ 1) → (m+ 1)

(
x−A− 1 +m

m+ 1

) m∑
i=0

(−1)i+m

x−A− 1 + i

(
m

i

)
f (A−m,A+ 1− i) . (S.82)
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Note that f(−1, B) = 1/BX , since there are no more sums to compute. Thus, for m = A+ 1 we have

f (A,A+ 1) = (A+ 2)

(
x

A+ 2

)A+1∑
i=0

(−1)i+A+1

(x−A− 1 + i)X+1

(
A+ 1

i

)
. (S.83)

Relabeling the sum and taking A = πd − 2, we have

f (πd − 2, πd − 1) = πd

(
x

πd

) πd−1∑
i=0

(−1)i

(x− i)X+1

(
πd − 1

i

)
. (S.84)

We can now substitute these results into our expression for πn, to find

ρ1(πn = X|k′, k, ℓ) = πd

(
k′ + k

πd

)(
2Un

s

)X πd−1∑
i=0

(−1)i

(2Un/s+ k + k′ − i)X+1

(
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i

)
(S.85)

Note, however, that this is only the distribution of neutral mutations since the first deleterious mutation out

of class k− l. It is also possible for neutral mutations to occur prior to the coalescence event. Adding in this

factor, we find

ρ(πn = X|k′, k, ℓ) = πd

(
k′ + k

πd

) πd−1∑
i=0

(−1)i
(
πd − 1

i

)
(S.86)

×
πn∑

X=0

(2Un/s)
X
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.

Rearranging this expression gives

ρ(πn|k′, k, ℓ) =
πd−1∑
i=0

πd(−1)πd−i−1

(
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i

)(
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)
B
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)
, (S.87)

where we have defind

A = k′ + k − i, B = 2 (k − ℓ) +
1

Nshk−l
, (S.88)

identical to our earlier result.
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