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Figure S 1 Network models and their collapsed versions. The collapsed networks

(bottom panels) represent simplified versions of the true networks (top panels), where

nodes other than Q, Y1 and Y2 are ignored, even though they still represent the correct

causal flow among these three nodes in the true network. Consider, for example,

network c and its collapsed version c′. The path Q → Y3 → Y1 in c is collapsed to

Q → Y1 in c′. The paths Y1 → Y5 → Y2 and Y1 → Y6 → Y2 in c are collapsed to Y1 → Y2

in c′. The path Q → Y3 → Y4 → Y7 → Y2 in c is collapsed to Q → Y2 in c′.
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Figure S2 Model selection via log-likelihood ratio versus Vuong’s test.

Figure S2 illustrates how Vuong’s test works. We generated 1,000 data-sets from the

model X → Y1 → Y2 and applied Vuong’s test to the comparison of models M1 : X →

Y1 → Y2 against M2 : X → Y2 → Y1. The top panels present 3D scatter plots of the test

statistics Z12 against the R2 values of the regression of Y1 on X, R2(Y1, X), and the R2

values of the regression of Y2 on X, R2(Y2, X). The data points are color coded as blue,

red and grey, representing, respectively, M1, M2 and “no calls”. Note that because model

M1 corresponds to the true model, we have that the a M1 call is always correct, whereas
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a M2 call is always incorrect in this example. Therefore, blue and red points represent,

respectively, correct and incorrect calls. The bottom panels follow the same color coding

and show the projections of the 3D scatter plots into the R2(Y1, X) by R2(Y2, X) plane.

The left panels of Figure S2 show the model selection results based on the log-likelihood

ratio (LR) criterium, where positive LR̂12 values support M1 and negative LR̂12 values

support M2 (note that we actually use the Z12 test statistics, instead of LR̂12 statistics,

but the results are equivalent). Because we generate the data from model X → Y1 → Y2,

it will usually be the case that X explains a greater proportion of the variability of Y1

than of Y2. In other words, R2(Y1, X) will tend to be higher than R2(Y2, X). However,

some of the data-sets show the opposite trend due to random noise on the data. The

bottom left panel shows that the log-likelihood criterium tends to make incorrect calls

when R2(Y1, X) < R2(Y2, X).

The right panels of Figure S2 show the model selection results derived from Vuong’s

test. Now we see that most of the incorrect calls made by the log-likelihood criterium

(red points) are not significant (grey points) according to Vuong’s test, that requires that

Z12 ≤ −1.64 or Z12 ≥ 1.64 for statistical significance at a 5% level. The drawback is the

reduction in power to detect the correct calls, since not only red dots are replaced by grey

dots, but many of the blue dots are turned into grey, as well. These figures illustrate how

Vuong’s test trade an increase in precision for a reduction in statistical power to detect

true positives.
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File S1

A technical note on Vuong’s test

Vuong (1989) fully characterized the asymptotic distribution of the log-likelihood ratio

statistic under the most general conditions. He showed that the form of the asymptotic

distribution of the log-likelihood ratio depends on whether the models are observationally

identical or not. Two models are observationally identical if their probability densities

are the same, when evaluated at the respective pseudo-true parameter values, i.e., f1(y |

x ; θ1∗) = f2(y | x ; θ2∗) for almost all (y,x), where the pseudo-true parameter values,

θk∗, corresponds to the parameter value that minimizes the Kullback-Leibler distance

from the true model (Sawa 1978).

Explicitly, Vuong showed (Theorem 3.3 on page 313) that under very general condi-

tions:

1. If f1(y | x ; θ1∗) = f2(y | x ; θ2∗), then 2LR12(θ̂1, θ̂2) converges in distribution to a

weighted sum of chi-square distributions.

2. If f1(y | x ; θ1∗) ̸= f2(y | x ; θ2∗), then

1√
n

(
LR12(θ̂1, θ̂2)− E0

[
log

f1(y | x ; θ1∗)

f2(y | x ; θ2∗)

])
→d N(0, σ12.12)

Because of this interesting asymptotic behavior Vuong had to proposed 3 distinct

model selection tests: one for strictly non-nested models, that are always not observation-

ally identical; another for overlapping models that might or might not be observationally

identical; and a third for nested models, that are always observationally identical. (Nested

models are always observationally identical because the nested model cannot be better
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than the full model and both models are equally close to the true model if and only if

they are the same.)

In our applications, models M1, M2 and M3 are not nested on each other, but are

nested on models Ma
4 , M

c
4 and M b

4 , respectively (Figure 1 in the main text). Hence, our

model selection tests consider pairs of models that are either non-nested or nested. In

the Methods section we presented Vuong’s test for not observationally identical models,

that is suitable for the comparison of strictly non-nested models (M1×M2, M1×M3 and

M2 ×M3).

We point out, however, that even though we perform model selection tests between

nested models (M1 ×M4, M2 ×M4 and M3 ×M4) we don’t need to use Vuong’s test for

nested models because our test statistics are based on penalized log-likelihoods instead

of log-likelihoods, and our penalized models are not observationally identical for nested

models too. In other words, even though f1(y | x ; θ1∗) = f4(y | x ; θ4∗) when model 1 is

nested in model 4, we have that f1(y | x ; θ1∗)−p1 ̸= f4(y | x ; θ4∗)−p4 since the penalty

p1 is smaller than p4. Therefore, we can simply use Vuong’s test for not observationally

identical models in this case too.

On a technical note, we point out that Vuong’s Theorem 3.3 still holds when we replace

the log-likelihood ratio by the penalized log-likelihood ratio. The demonstration mimics

Vuong’s original proof presented on page 327. We just need to replace the log-likelihoods

by penalized log-likelihoods in the Taylor expansion of the log-likelihoods around the

maximum likelihood estimates.
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File S2

Simulation studies

Here we provide further details on the simulation studies presented in the main text.

File S3

Pilot simulation study

We conducted a total of 10 simulation studies, generating data from the five models

described in Figure 2 in the main text using sample sizes 112 and 1,000 (the choice 112

was motivated by the sample size in our real data example). For each model, we sim-

ulated 1,000 backcrosses composed with 3 chromosomes of length 100cM containing 101

unequally spaced markers per chromosome. For each one of the simulated backcrosses, the

additive and dominance genetic effects were sampled, respectively, from the U [−0.75, 0.75]

and U [0, 0.75] distributions, where U [a, b] represents the uniform distribution on the in-

terval [a, b]. Residual error rates were sampled from U [0.5, 1.5], and the phenotype to

phenotype regression coefficients in Figures 2 A, B and C were sampled from U [−1, 1].

The hidden-variable to phenotype regression coefficients on Figures 2 B and E were sam-

pled from U [−1, 1] and U [0.5, 1], respectively. This choice of parameters ensured that

approximately 99% of the R2 coefficients between phenotypes and QTL ranged between

0.08 and 0.32 for the simulations based on sample size of 112 subjects (see Figure SI.2a,

and the axis scales on Figures S3-S7) and between 0.01 to 0.20 for the simulations based

on 1,000 subjects (see Figure SI.2b, and the axis scales on Figures S8-S12).

The backcross simulations and the QTL mapping analyses were performed using the

R/qtl software (Broman et al. 2003). We performed Haley-Knott regression (Haley and

Knott 1992) and adopted Haldane’s map function, genotype error rate of 0.0001, and set
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the maximum distance between positions at which genotype probabilities were calculated

to 2cM. We used a permutation LOD threshold (Churchill and Doerge 1994) of 2.24 for the

QTL mapping analysis, aiming to control the genome wide error rate of falsely detecting

a QTL at a 5% rate.

Often times the phenotypes map to nearby but not precisely the same QTL, and

we need to decide which QTL to use as the causal anchor. When testing expression

traits against clinical traits, Millstein et al. (2009) and Schadt et al. (2005) suggest

using the clinical trait QTL as the anchor. We adopt a different approach. When the

phenotypes map to distinct regions that are less than 2cM apart we determine the QTL

position using both phenotypes, jointly, as follows. For each pair of phenotypes (Y1,Y2) we

perform unconditional mapping analysis for Y1 and Y2 and conditional mapping analysis

for Y2 given Y1. Let LOD1 represent a LOD score for the mapping analysis of Y1, and

LOD2|1 for the mapping analysis of Y2 given Y1. Since

log10

{
f(y1, y2 | q)
f(y1, y2)

}
= log10

{
f(y1 | q)
f(y1)

}
+ log10

{
f(y2 | y1, q)
f(y2 | y1)

}
, (1)

we compute the joint LOD score of (Y1,Y2) as LOD1,2 = LOD1+LOD2|1 (or equivalently

as LOD1,2 = LOD2 + LOD1|2). We determine the peak QTL position, λ, using the

LOD1,2 scores profile and assign the QTL to Y1 and Y2 if LOD1 and LOD2 are greater

than the mapping threshold at the λ position. Figure SI1 illustrates our approach. When

both phenotypes co-map to more than one QTL we select the QTL with the highest joint

mapping peak.
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Figure SI.1 We simulated data from a model Q → Y1 → Y2, with a QTL, Q, at 50cM.

The blue and red curves show the (unconditional) LOD profiles of phenotypes Y1 and

Y2, respectively. The black curve depicts the joint LOD curve, and the peak QTL

position λ is given by the black vertical line. Instead of having to perform an arbitrary

choice between the QTLs given by the red and blue vertical lines we use the QTL given

by the black line. The dashed line shows the QTL mapping threshold.
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Large scale simulation study

We performed two separate simulation studies generating data from the models in

Figure 5 in the main text. In model F , Y1 plays the role of a master regulator cis trait,

and all other traits map in trans to QTL hotspot QTL Q because of the causal effect of

Y1. In model G, Y1 plays the role of a cis trait mapping to a QTL closely linked to Q,

and, therefore, causally independent of the trans traits in the hotspot.

In each simulation study we generated 1,000 distinct backcrosses with genetic data

composed of 3 chromosomes of length 100cM containing 101 markers per chromosome,

and phenotypic data on 5,001 traits on 112 individuals. We simulated unequally spaced

markers for model F , but equally spaced markers forG, withQ1 andQ set 1cM apart. The

additive and dominance genetic effects of Q on Y1 were sampled, respectively, from the

U [0.5, 1] and U [0, 0.5] distributions. Residual error rates were sampled from U [0.5, 1.5],

and the coefficients of the regressions of Yk on Y1 were sampled from U [0.5, 1]. Figure SI.3

shows the overall R2 distributions. QTL mapping was performed as in the pilot study,

but here we used the QTL for trait Y1 as a causal anchor.

For each simulated data set we tested Y1 against all other phenotypes Yk, k =

2, . . . , 5001, that share the QTL with Y1, so that the number of hypothesis tests var-

ied from simulation to simulation. Figure SI.4 shows the distribution of the number of

tests per simulation study. In total we performed 1,656,261 tests for the simulations with

model F , and 1,286,243 tests for the simulations with model G.

The empirical FDR (that corresponds to one minus the precision) was computed as

the ratio of the number of FPs by the sum of the number of FPs and TPs across all

tests. The empirical power was computed as before. For model F , a FP is defined as any
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statistically significant M2, M3, or M4 call, and a TP is given by a significant M1 call. For

model G, on the other hand, a FP corresponds to any statistically significant M1, M2, or

M4 call, and a TP is given by a significant M3 call. For the evaluations without multiple

testing correction, a call Mk was statistically significant if the respective p-value, pk, was

smaller than a fixed significance level α.

Multiple testing correction procedures based on the control of family wise error rates

tend to be very conservative, and are not generally advisable (Benjamini and Hochberg

1995). Here, we investigate the performances of the Benjamini and Hochberg (1995) and

Benjamini and Yekutieli (2001) FDR control procedures (denoted, respectively, by BH

and BY for now on). The BH and BY adjusted p-values were computed based on the p-

values across all simulations pooled together, separately by model call (e.g., for the model

F simulations, we pool together all 1,656,261 M1 p-values and apply the BH adjusted for

this set of p-values, and similarly for the M2, M3 and M4 p-values), and then compute

the FDR and power empirical estimates using the adjusted p-values.
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Figure SI.2 Overall distribution of the R2 statistics across all simulated models in

Figure 2. Panels a and b present the R2 statistics for sample sizes 112 and 1,000,

respectively.
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Figure S3 Simulation results for Model A in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S4 Simulation results for Model B in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S5 Simulation results for Model C in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots

represent true positives, and blue, red and green dots represent false positives. For the

CIT test, yellow dots represent true positives and blue and red dots show false positives.
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Figure S6 Simulation results for Model D in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, green dots

represent true positives, and blue, red and black dots represent false positives. For the

CIT test, yellow dots represent true positives and blue and red dots show false positives.
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Figure S7 Simulation results for Model E in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots

represent true positives, and blue, red and green dots represent false positives. For the

CIT test, yellow dots represent true positives and blue and red dots show false positives.
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Figure S8 Simulation results for Model A in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S9 Simulation results for Model B in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S10 Simulation results for Model C in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For the AIC, BIC and CMST methods, black

dots represent true positives, and blue, red and green dots represent false positives. For

the CIT test, yellow dots represent true positives and blue and red dots show false

positives.
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Figure S11 Simulation results for Model D in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For the AIC, BIC and CMST methods, green

dots represent true positives, and blue, red and black dots represent false positives. For

the CIT test, yellow dots represent true positives and blue and red dots show false

positives.
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Figure S12 Simulation results for Model E in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For the AIC, BIC and CMST methods, black

dots represent true positives, and blue, red and green dots represent false positives. For

the CIT test, yellow dots represent true positives and blue and red dots show false

positives.
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Figure S13 Observed FDR and power for the simulations based on model F . The

x-axis represents the p-value cutoffs used for computing the results. Dashed and full

curves represent, respectively, AIC- and BIC-based methods. Green: parametric CMST.

Red: non-parametric CMST. Blue: joint-parametric CMST. Black: AIC and BIC. The

grey line in the top panels corresponds to the α levels.
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Figure SI.3 Overall R2 statistics distributions for the large scale simulation study.

The left and right panels show the distribution for the cis-traits and trans-traits,

respectively.
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Figure SI.4 For each model F and G we performed 1,000 separate simulations, and

tested Y1 against all other phenotypes Yk, k = 2, . . . , 5001, that shared the QTL with Y1,

at each simulation. The panels show the distribution of the number of tests, i.e, the

number of trans-traits that co-mapped to Y1, per simulation study. In total, we

performed 1,656,261 tests across the 1,000 simulations with model F , and 1,286,243

tests across the simulations with model G.
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Figure S14 Uncorrected p-value distributions for the BIC-based CMST tests with

data simulated from model F in Figure 5. Results based on 1,656,261 tests. For these

simulations, the M1 call is the correct one, hence the skewed distribution towards small

p-values at the left panels. The skewness towards larger p-values for the M2, M3, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M1 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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Figure S15 Uncorrected p-value distributions for the AIC-based CMST tests with

data simulated from model F in Figure 5. Results based on 1,656,261 tests. For these

simulations, the M1 call is the correct one, hence the skewed distribution towards small

p-values at the left panels. The skewness towards larger p-values for the M2, M3, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M1 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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Figure S16 Uncorrected p-value distributions for the BIC-based CMST tests with

data simulated from model G in Figure 5. Results based on 1,286,243 tests. For these

simulations, the M3 call is the correct one, hence the skewed distribution towards small

p-values at the M3 panels. The skewness towards larger p-values for the M1, M2, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M3 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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Figure S17 Uncorrected p-value distributions for the AIC-based CMST tests with

data simulated from model G in Figure 5. Results based on 1,286,243 tests. For these

simulations, the M3 call is the correct one, hence the skewed distribution towards small

p-values at the M3 panels. The skewness towards larger p-values for the M1, M2, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M3 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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