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Supporting Methods 

Sequence Reweighting and Pseudocounts 

 In order to control for sequence bias in our MSA, sets of sequences that exceed a certain identity threshold 

are down-weighted as a group (Weigt et al. 2009; Marks et al. 2011; Morcos et al. 2011; Hopf et al. 2012).  For every 

sequence m in an MSA, the number of “identical” sequences km is defined as 
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where θ is a step function equal to one if its argument is greater than or equal to zero and zero if the summation is 

negative, δ is the Kronecker symbol used for counting, which is equal to one if Ai
m equals Bi

n and to zero otherwise, 

and x is the identity threshold, defined here as 0.7.  When counting pair and single amino acid frequencies, the 

contribution of sequence m is down-weighted by 1/km.  The effective number of sequences in an alignment is 

therefore not M but Meff, where 
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Pair and single amino acid frequencies are then calculated according to the relationships 
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where λ is a pseudocount term used to ameliorate statistical noise due to underrepresented amino acids and pairs.  

Here we set λ equal to Meff.  Note that the empirical correlation matrix is not invertible before pseudocounts are 

incorporated. 

 

DCA 

According to DCA, the coupling between columns i and j in an MSA is given by the direct information, DIij, 

score according to the relationship 
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where Pij(A,B) represents the inferred probability of finding amino acid pair (A,B) at positions i and j in the absence of 

interactions with other residues, fi(A) and fj(B) represent the single amino acid frequencies of A and B at positions i 

and j, and the summation is evaluated over all 441 pairs (A,B) possible for a q = 21 state system, where the states 

represent the twenty amino acids and a gap.  Pij(A,B) is itself a function of the inferred coupling energy eij(A,B) and the 

inferred single residue energies 



˜ h i(A)  and 



˜ h j (B)  of amino acids A and B at positions i and j according to 
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where Zij is the partition function.  The coupling energies eij(A,B) are determined as described below by inverting an 

empirical correlation matrix, C.   

The empirical correlation matrix C is determined from the MSA according to the relationships   
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where fi(A) is the frequency of amino acid A in MSA column i, fj(B) is the frequency of amino acid B in MSA column j, 

and fij(A,B) is the frequency of amino acid pair (A,B) in columns i and j.  Calculation of correlations Cij(A,B) where i = j 

but A ≠ B is carried out according to Equation S6.  Note that pair frequencies fij(A,B) are set to zero for these entries 

(despite having a finite value based on pseudocounts, as described below to reflect the fact that no protein sequence 

contains two different amino acids at a single site.  The empirical correlation matrix has the dimensions 20L by 20L 

despite the fact that we employ a q = 21 state model.  This is because one amino acid, in our case the gap, is left out 

of the analysis in order to serve as a reference energy.   

The global nature of the DCA algorithm derives from inversion of the empirical correlation matrix (or the 

composite matrix C* described below), which results in the coupling energy matrix, e: 
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The fields 



˜ h i(A)  and 



˜ h j (B)  from Equation S5 are calculated numerically along with the partition function Zij so 

that the pair probabilities recapitulate the single amino acid frequencies, fi(A) and fj(B), observed in the MSA: 
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Once field and coupling energies have been determined, direct information DIij scores can be evaluated using 

Equations S4 and S5.  The result is a list of DIij scores representing the direct information between every pair of 

positions. 
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Table S1  Strains and plasmids  

Strain/plasmid Genotype and relevant features Reference 

   

E. coli K-12 strains  

MC4100 F- araD139  (argF-lac)U169  rpsL150  relA1   flb5301 deoC1   ptsF25 thi Boyd et al 2000 

JCM158 MC4100  arar/-  Malinverni et al 2006 

JCM320 JCM158  ∆bamA  ∆(λatt-lom)::bla  PBAD bamA  araC Wu et al 2005 

DPR437 JCM320  pDPR1 Ricci et al 2012 

DPR660 JCM320  pBamAR661G This study 

DPR1345 JCM320  pBamAD740G This study 

DPR1346 JCM320  pBamAD740G+R661G This study 

DPR1374 JCM320  pBamAD740G+F395V This study 

DPR1309 JCM320  pBamAD740G+T423I This study 

DPR1310 JCM320  pBamAD740G+E607A This study 

DPR1311 JCM320  pBamAD740G+G631V This study 

DPR1500 JCM320 pBamAD740G+G631W This study 

DPR1313 JCM320  pBamAD740G+F717L This study 

DPR1317 JCM320  pBamAR661G+F395V This study 

DPR1318 JCM320  pBamAR661G+T423I This study 

DPR1319 JCM320  pBamAR661G+E607A This study 

DPR1320 JCM320  pBamAR661G+G631V This study 

DPR1501 JCM320 pBamAR661G+G631W This study 

DPR1321 JCM320  pBamAR661G+F717L This study 

   

Plasmids   

pZS21 Expression vector; λ PL-driven expression, Kanr Lutz & Bujard, 1997 

pBamA (pDPR1) pZS21::bamAWT Kim et al 2007 

pBamAR661G pZS21::bamAR661G This study 
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pBamAD740G pZS21::bamAD740G This study 

pBamAD740G+R661G pZS21::bamAD740G+R661G This study 

pBamAD740G+F395V pZS21::bamAD740G+F395V This study 

pBamAD740G+T423I pZS21::bamAD740G+T423I This study 

pBamAD740G+E607A pZS21::bamAD740G+E607A This study 

pBamAD740G+G631W pZS21::bamAD740G+G631W This study 

pBamAD740G+G631V pZS21::bamAD740G+G631V This study 

pBamAD740G+F717L pZS21::bamAD740G+F717L This study 

pBamAR661G+F395V pZS21::bamAR661G+F395V This study 

pBamAR661G+T423I pZS21::bamAR661G+T423I This study 

pBamAR661G+E607A pZS21::bamAR661G+E607A This study 

pBamAR661G+G631W pZS21::bamAR661G+G631W This study 

pBamAR661G+G631V pZS21::bamAR661G+G631V This study 

pBamAR661G+F717L pZS21::bamAR661G+F717L This study 
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Table S2   Primers 

BamA mutation Primer pairs 

F395V 

5' GAATCGTCTGGGCTTCGTTGAAACTGTCGATAC 3' 

5' GTATCGACAGTTTCAACGAAGCCCAGACGATTC 3’ 

T423I 

5' GTAAAAGAGCGCAACATCGGTAGCTTCAACTTTG 3' 

5' CAAAGTTGAAGCTACCGATGTTGCGCTCTTTTAC 3' 

E607A 

5' CTGGATCGGATAACGCATACTACAAAGTGAC 3' 

5' GTCACTTTGTAGTATGCGTTATCCGATCCAG 3' 

G631V 

5' CAAATGGGTTGTTCTGGTGCGTACCCGCTGGG 3'  

5' CCCAGCGGGTACGCACCAGAACAACCCATTTG 3'  

G631W 

5' CAAATGGGTTGTTCTGTGGCGTACCCGCTGGG 3' 

5' CCCAGCGGGTACGCCACAGAACAACCCATTTG 3' 

R661G 

5' TTCCAGCACCGTGGGCGGCTTCCAGTCCAATA 3' 

5' TATTGGACTGGAAGCCGCCCACGGTGCTGGAA 3' 

F718L 

5' CAGCCTCGAGTTAATCACCCCGACG 3' 

5' CGTCGGGGTGATTAACTCGAGGCTG 3' 

D740G 

5' CTTCCTTCTTCTGGGGTATGGGTACCGTTTG 3' 

5' CCAAACGGTACCCATACCCCAGAAGAAGGAAGTAC 3' 
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Figure S1   Effect of sequence informational entropy Si, Sj on pair DIij score.  Log(DIij Score) is plotted against sequence 
informational entropies Si and Sj for all FhaC pairs shown in Figure 1C. 
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Figure	  S2	  	  	  Alignment	  of	  BamA	  POTRA	  5	  and	  FhaC	  POTRA	  2	  domains.	  	  FhaC	  sequence	  comprises	  residues	  165	  to	  238	  of	  
Bordetella	  pertussis	  FhaC.	  	  BamA	  sequence	  comprises	  residues	  347	  to	  421	  of	  Escherichia	  coli	  BamA.	  	  Sequences	  were	  
aligned	  using	  COBALT.	   	   Secondary	   structure	  was	  determined	   for	   FhaC	  and	  BamA	   from	  crystal	   structures	  2QDZ	  and	  
3OG5,	  respectively.	  
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Figure S3   Correlation of 



DCADI ij

0
 and 



DCADIZ ij

0.6
 scores.  DCA was performed as in Figures 2E,F.  Least squares 

regression line (red) is shown along with correlation coefficient r. 
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Figure S4   Effect of shrinkage with model matrix 

   

M
S
 on DCA true positive rates.  DCA was applied to FhaC as in 

Figures 1A,B with the same true positive definition.  True positive rates are shown for various values of shrinkage 
intensity α between 0 and 1. 
 


