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Sequence Reweighting and Pseudocounts
In order to control for sequence bias in our MSA, sets of sequences that exceed a certain identity threshold
are down-weighted as a group (Weigt et al. 2009; Marks et al. 2011; Morcos et al. 2011; Hopf et al. 2012). For every
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sequence m in an MSA, the number of “identical” sequences k, is defined as
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where ¢ is a step function equal to one if its argument is greater than or equal to zero and zero if the summation is
negative, 6 is the Kronecker symbol used for counting, which is equal to one if A/” equals B/ and to zero otherwise,
and x is the identity threshold, defined here as 0.7. When counting pair and single amino acid frequencies, the
contribution of sequence m is down-weighted by 1/k.,. The effective number of sequences in an alignment is

therefore not M but Meg;, where
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Pair and single amino acid frequencies are then calculated according to the relationships
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where A is a pseudocount term used to ameliorate statistical noise due to underrepresented amino acids and pairs.
Here we set A equal to Mg Note that the empirical correlation matrix is not invertible before pseudocounts are

incorporated.

DCA
According to DCA, the coupling between columns j and j in an MSA is given by the direct information, DI,
score according to the relationship

P,(A,B)
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where Pj(A,B) represents the inferred probability of finding amino acid pair (A,B) at positions i and j in the absence of
interactions with other residues, fi{A) and fj(B) represent the single amino acid frequencies of A and B at positions i
and j, and the summation is evaluated over all 441 pairs (A,B) possible for a g = 21 state system, where the states

represent the twenty amino acids and a gap. Pj(A,B) is itself a function of the inferred coupling energy e;(A,B) and the

inferred single residue energies ﬁi (A) and ﬁj (B) of amino acids A and B at positions j and j according to
1 ; N
P(AB)=— i (AB)+h,(A)+h;(B)} [s5]
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where Zj is the partition function. The coupling energies e;(A,B) are determined as described below by inverting an
empirical correlation matrix, C.
The empirical correlation matrix C is determined from the MSA according to the relationships

C,(AB),; = f,(AB) - f,(A)f,(B)
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Cij (A B)i:j,A:B =f; (A)(l_ fi(A)) [57]
where fi(A) is the frequency of amino acid A in MSA column i, fi(B) is the frequency of amino acid B in MSA column j,
and fj(A,B) is the frequency of amino acid pair (A,B) in columns i and j. Calculation of correlations Cj(A,B) where j = j
but A # B is carried out according to Equation S6. Note that pair frequencies f;(A,B) are set to zero for these entries
(despite having a finite value based on pseudocounts, as described below to reflect the fact that no protein sequence
contains two different amino acids at a single site. The empirical correlation matrix has the dimensions 20L by 20L
despite the fact that we employ a g = 21 state model. This is because one amino acid, in our case the gap, is left out
of the analysis in order to serve as a reference energy.
The global nature of the DCA algorithm derives from inversion of the empirical correlation matrix (or the

composite matrix C* described below), which results in the coupling energy matrix, e:
-1
e=-C~. [s8]
The fields hi(A) and hj (B) from Equation S5 are calculated numerically along with the partition function Z; so

that the pair probabilities recapitulate the single amino acid frequencies, fi(A) and fj(B), observed in the MSA:

q

Y P,(AB)=f,(A) (9]
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zpaj(A, B)=f,(B). [598]
A=1

R. S. Dwyer et al. 35Sl



Once field and coupling energies have been determined, direct information DI; scores can be evaluated using
Equations S4 and S5. The result is a list of DI scores representing the direct information between every pair of

positions.
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