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Simulation results with independent RVs

When all the RVs were in linkage equilibrium (with ρ = 0 in simulations), all the

tests seemed to have satisfactory Type I error rates that were well controlled around

the specified nominal level α = 0.05 (Table 1). Next we investigated their power

properties.

First, we considered a situation with a common association effect: all the 8 causal

RVs had an equal odds ratio OR = exp(βj) = 2 associated with the binary trait,

which was ideal to the pooled association tests. As shown in Table 2, among the

SPU tests, when the number of non-associated RVs was small, the SPU(1) (i.e. Sum)

test was most powerful; however, as the number of non-associated RVs increased,

SPU(3) became most powerful. This observation is in agreement with Basu and Pan

(2011), showing the deteriorating performance of the Sum (and other similar pooled

association tests) in the presence of many non-associated RVs. The reason for better

performance of the SPU(3) test, or more generally of a SPU(γ) test with a large value

of γ, in the presence of many non-associated RVs is the following: as the number of

non-associated RVs increased, more and more components of the score vector U were

just noises; using a larger value of γ corresponds to down-weighting those smaller,

and likely noisy, components of U . However, there is a trade-off: a too large value

of γ will also down-weight and thus diminish those smaller signals in U ; an extreme

is that, the SPU(∞) only uses the largest component of |U |, ignoring the signals

contained in |U | for other causal RVs. We also note that, although the SPU(2) (i.e.

SSU) test performed well, it was always less powerful than SPU(3), and their power

difference was large in the presence of many non-associated RVs. A SPU(γ) test with

a large value of γ, e.g. γ > 8, performed similarly to SPU(∞).

Among the adaptive tests, the KBAC test was most powerful with no or few

non-associated RVs, but overall the aSum+ test performed best because, as the Sum

test, the aSum+ test used the common OR assumption while having the capability
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of RV selection to deal with non-associated RVs. Interestingly, as the number of

the non-associated RVs increased, the aSPU test gradually caught up with power

almost the same as that of the aSum+ test. The EREC test was also high powered

with no or few non-associated RVs, but not in the presence of many non-associated

RVs. In particular, as the number of non-associated RVs increased, the aSPU test

was much more powerful than the EREC, PWST, KBAC and other adaptive tests

(except aSum+). It is noted that the aSPU test maintained high power close to the

winner in the class of the SPU tests.

Second, we considered a more realistic situation: there was no common association

strength but only a common association direction among the 8 causal RVs; the ORs

for the 8 causal RVs were randomly drawn from a uniform distribution between 1 and

3, U(1, 3), in each simulation (Table 3). Many of the earlier conclusions held. For

example, among the SPU tests, the SPU(1) (i.e. Sum) test was most powerful in the

absence of non-associated RVs; otherwise, the SPU(3) test was most powerful, though

several other SPU(γ) tests with γ > 3 were similarly powerful in the presence of 128

non-associated RVs. Again the SPU(16), SPU(32) and SPU(∞) behaved similarly.

However, there were also some deviations. Overall, the aSum+ test was most powerful

only for ≤ 32 non-associated RVs; otherwise, the aSPU test was most powerful. For

≥ 64 non-associated RVs, the aSSU test performed as well as the aSum+ test, much

more powerful than the KBAC, aSum, PWST and EREC tests, though much less

powerful than the aSPU test.

Third, we examined a case with both varying association strengths and varying

association directions for the 8 causal RVs (Table 4). As expected, the SPU(1) (i.e.

Sum) test performed terribly. Among the SPU tests, with a smaller number (≤ 32)

of non-associated RVs, the SPU(2) (i.e. SSU) test was most powerful; otherwise the

SPU(4) was the winner. Among the adaptive tests, with only a smaller number of non-

associated RVs, the SKAT was most powerful, closely followed by the PWST, EREC,
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aSPU and aSSU tests; otherwise, the aSPU and aSSU tests performed similarly and

were winners. Although the aSum+ test dramatically improved over the Sum test,

it still had deteriorating performance in the presence of many non-associated RVs

as compared to the aSSU test. Surprisingly, although the aSum2d was designed to

take account of both positive and negative associations, it did not perform better

than the aSum+ test. The reason was that, it was much difficult to detect negative

associations for RVs, unlike for CVs as shown in Pan et al (2011): the aSum- test

aiming to detect negative associations was consistently low powered across all the

scenarios (not shown). It is also noted that both BhGLM and KBAC did not perform

well.

Fourth, we investigated a more extreme case: there was only one causal RV with

a large effect with OR = 5, for which case the SPU(∞) was expected to perform

best due to its selecting only one RV with the largest |Uj| (Table 5). Interestingly,

any SPU(γ) test with γ > 4 performed similarly to each other, and were winners.

Again the aSPU test maintained high power close to the winners in the SPU test

family, and had a clear edge over other adaptive tests, especially in the presence of

many non-associated RVs; the aSSU test also performed well with no or only few

non-associated RVs.

Simulation results with higher signficance levels

We also considered using higher nominal significance levels α. The simulation set-ups

were the same as those presented in the paper; in particular, the RVs were correlated

with ρ = 0.9 being used for latent variables. As for the GAW17 data analysis, we

started with B = 103, then gradually increased B: if an estimated p-value was less

than 5/B, we increased B to ten times of its current value to re-estimate the p-value,

and the process was repeated until no estimated p-value was less than 5/B; we used

B up to B = 105.
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Table 6 shows the estimated Type I error rates with k − k1 = 96 null RVs at

various values of α based on 105 simulation replicates. It is clear that the SPU and

aSPU tests could control their Type I error rates satisfactorily. Table 7 shows the

estimated power based on 103 simulation replicates, again with k− k1 = 96 null RVs

but k1 = 8 causal RVs with their association ORs randomly drawn from U(1, 2). As

for α = 0.05, with more significant α levels the aSPU test was more powerful than

SKAT and SKAT-O; more interestingly, the advantage of the aSPU test was more

dramatic with a more significant α.

Simulation results with higher signficance levels and

a covariate

We considered a new simulation set-up with a single covariate. The correlated RVs

were generated as before with ρ = 0.9 being used for latent variables. A single

covariate was generated from a normal distribution N(0, 10); it was associated with

the binary trait with regression coefficient 1 in the logistic regression model. We used

105 simulation replicates. As for the GAW17 data analysis, we started with B = 103,

then gradually increased B: if an estimated p-value was less than 5/B, we increased

B to ten times of its current value to re-estimate the p-value, and the process was

repeated until no estimated p-value was less than 5/B; we used B up to B = 105. We

used the permutation method based on permuting residuals to calculate the p-values

for the SPU and aSPU tests. As shown in Table 7, the SPU and aSPU tests could

control Type I error rates satisfactorily at the various values of the significance level

α.
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Table 1: Empirical Type I error rates of various tests for the cases with 8 RVs plus

various numbers of non-associated RVs; all RVs were independent; all results were

based on 1000 simulation replicates.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .031 .024 .021 .009 .008 .011 .009

SPU(1) .045 .051 .056 .059 .046 .042 .049

SPU(2) .047 .047 .052 .040 .042 .036 .043

SPU(3) .043 .038 .046 .031 .033 .030 .033

SPU(4) .042 .045 .053 .029 .033 .036 .029

SPU(5) .042 .033 .048 .027 .040 .044 .031

SPU(6) .042 .039 .051 .030 .039 .033 .029

SPU(7) .041 .033 .049 .030 .037 .043 .031

SPU(8) .042 .037 .049 .033 .041 .042 .031

SPU(16) .041 .036 .046 .028 .042 .040 .030

SPU(32) .041 .035 .046 .028 .041 .041 .032

SPU(∞) .040 .035 .046 .028 .041 .041 .033

aSPU .046 .056 .054 .042 .042 .049 .048

aSum+ .052 .055 .054 .041 .041 .041 .070

aSum2d .053 .052 .056 .047 .039 .043 .033

aSSU .050 .047 .059 .040 .041 .054 .055

KBAC .060 .051 .056 .047 .046 .043 .050

aSum .054 .046 .060 .046 .047 .049 .049

PWST .061 .051 .053 .046 .042 .047 .057

EREC .062 .048 .056 .044 .039 .045 .051

BhGLM .052 .056 .056 .059 .043 .042 .055

SKAT .060 .047 .056 .050 .050 .050 .055
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Table 2: Empirical power of various tests for the cases with 8 causal RVs with ORs=(2,

2, 2, 2, 2, 2, 2, 2); all RVs were independent; all results were based on 1000 simulation

replicates. The highest powered non-adaptive and adaptive tests in each case are

bold-faced.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .421 .281 .230 .156 .115 .076 .076

SPU(1) .953 .790 .654 .461 .269 .211 .183

SPU(2) .742 .673 .615 .516 .418 .306 .278

SPU(3) .769 .718 .666 .557 .472 .391 .361

SPU(4) .632 .594 .550 .460 .411 .352 .324

SPU(5) .629 .588 .531 .444 .415 .357 .337

SPU(6) .573 .529 .488 .397 .383 .318 .295

SPU(7) .574 .535 .487 .397 .383 .333 .301

SPU(8) .546 .515 .465 .380 .368 .299 .283

SPU(16) .514 .482 .427 .354 .346 .286 .270

SPU(32) .508 .470 .419 .349 .337 .281 .265

SPU(∞) .506 .464 .419 .347 .338 .279 .265

aSPU .914 .767 .697 .571 .458 .381 .351

aSum+ .912 .834 .776 .661 .522 .396 .354

aSum2d .867 .758 .683 .557 .415 .307 .174

aSSU .632 .582 .526 .442 .387 .293 .281

KBAC .953 .858 .765 .596 .392 .225 .183

aSum .937 .765 .644 .485 .348 .246 .221

PWST .764 .641 .558 .413 .319 .229 .195

EREC .915 .805 .734 .571 .411 .299 .265

BhGLM .952 .808 .671 .469 .285 .215 .184

SKAT .773 .676 .615 .512 .413 .284 .275
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Table 3: Empirical power of various tests for the cases with 8 causal RVs with ORs

randomly chosen from U(1,3); all RVs were independent; all results were based on

1000 simulation replicates. The highest powered non-adaptive and adaptive tests are

bold-faced.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .552 .427 .336 .281 .199 .178 .146

SPU(1) .900 .749 .593 .442 .270 .232 .177

SPU(2) .795 .737 .655 .607 .501 .428 .357

SPU(3) .818 .765 .684 .645 .571 .537 .437

SPU(4) .730 .688 .620 .599 .542 .492 .442

SPU(5) .732 .682 .618 .577 .548 .510 .456

SPU(6) .696 .652 .587 .560 .527 .475 .446

SPU(7) .688 .639 .579 .544 .518 .475 .449

SPU(8) .670 .630 .570 .533 .507 .464 .434

SPU(16) .648 .609 .552 .516 .487 .443 .412

SPU(32) .646 .599 .544 .507 .483 .429 .407

SPU(∞) .641 .597 .542 .507 .480 .423 .408

aSPU .879 .783 .692 .643 .565 .523 .451

aSum+ .905 .846 .760 .670 .517 .465 .377

aSum2d .863 .778 .693 .580 .408 .366 .193

aSSU .721 .665 .594 .535 .483 .433 .379

KBAC .925 .837 .719 .593 .330 .255 .171

aSum .892 .746 .613 .483 .329 .277 .217

PWST .785 .682 .583 .464 .344 .287 .230

EREC .902 .816 .701 .578 .408 .358 .273

BhGLM .905 .766 .619 .465 .280 .235 .179

SKAT .798 .722 .641 .562 .467 .401 .318
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Table 4: Empirical power of various tests for the cases with 8 causal RVs with ORs=(3,

1/3, 2, 2, 2, 1/2, 1/2, 1/2); all RVs were independent; all results were based on 1000

simulation replicates. The highest powered non-adaptive and adaptive tests are bold-

faced.

# non-associated RVs

Test 0 8 16 32 64 96 128

UminP .486 .351 .295 .208 .171 .145 .133

SPU(1) .276 .190 .142 .101 .072 .051 .068

SPU(2) .797 .690 .638 .513 .409 .336 .292

SPU(3) .603 .515 .495 .418 .347 .307 .288

SPU(4) .706 .602 .569 .478 .452 .403 .380

SPU(5) .634 .522 .498 .430 .404 .372 .343

SPU(6) .674 .565 .535 .455 .444 .399 .369

SPU(7) .624 .527 .492 .423 .411 .380 .351

SPU(8) .655 .551 .512 .430 .437 .390 .356

SPU(16) .637 .532 .494 .421 .420 .384 .348

SPU(32) .628 .526 .488 .413 .419 .380 .347

SPU(∞) .626 .522 .485 .413 .418 .377 .349

aSPU .718 .598 .564 .469 .421 .360 .339

aSum+ .689 .562 .509 .377 .283 .228 .196

aSum2d .694 .523 .470 .330 .240 .201 .106

aSSU .692 .597 .557 .484 .418 .368 .320

KBAC .699 .485 .389 .250 .163 .116 .096

aSum .670 .505 .402 .284 .241 .173 .137

PWST .784 .645 .579 .421 .328 .256 .197

EREC .769 .630 .518 .376 .277 .215 .202

BhGLM .490 .303 .219 .134 .080 .060 .071

SKAT .810 .685 .625 .504 .404 .318 .291
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Table 5: Empirical power of various tests for the cases with only one causal RV with

OR=5; all RVs were independent; all results were based on 1000 simulation replicates.

The empirical power for all the tests was around 0.850 in the absence of non-associated

RVs. The highest powered non-adaptive and adaptive tests are bold-faced.

# non-associated RVs

Test 8 16 32 64 96 128

UminP .696 .629 .556 .496 .479 .461

SPU(1) .365 .263 .160 .096 .088 .086

SPU(2) .710 .664 .580 .520 .470 .427

SPU(3) .717 .664 .634 .585 .569 .541

SPU(4) .731 .697 .653 .633 .605 .574

SPU(5) .727 .692 .654 .627 .622 .593

SPU(6) .732 .701 .651 .637 .620 .598

SPU(7) .731 .696 .652 .634 .621 .596

SPU(8) .730 .699 .656 .634 .623 .600

SPU(16) .729 .700 .653 .638 .624 .594

SPU(32) .730 .700 .652 .638 .626 .594

SPU(∞) .730 .700 .651 .640 .627 .594

aSPU .707 .683 .645 .615 .592 .571

aSum+ .731 .627 .512 .329 .278 .256

aSum2d .668 .561 .432 .263 .202 .187

aSSU .736 .685 .628 .561 .518 .481

KBAC .629 .483 .330 .193 .128 .103

aSum .447 .314 .215 .152 .130 .126

PWST .665 .533 .405 .280 .211 .174

EREC .685 .545 .424 .272 .197 .184

BhGLM .480 .385 .257 .157 .127 .121

SKAT .713 .638 .544 .436 .379 .333
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Table 6: Empirical Type I error rates based on 105 simulation replicates with 96 + 8

null RVs and ρ = 0.9. For comparison, the results for resampling-based SKAT and

SKAT-O and asymptotics-based SKAT and SKAT-O (A-SKAT and A-SKAT-O) are

also included.
α SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(15) SPU(16) SPU(31) SPU(32) SPU(∞) aSPU A-SKAT SKAT A-SKAT-O SKAT-O

0.05 0.04875 0.04964 0.04976 0.05028 0.04970 0.04956 0.04931 0.04961 0.04968 0.04957 0.04967 0.04956 0.03359 0.04862 0.05050 0.05070 0.05300 0.05119

0.01 0.00904 0.00935 0.00917 0.00937 0.00922 0.00924 0.00933 0.00913 0.00925 0.00915 0.00926 0.00915 0.00587 0.00882 0.00978 0.01023 0.01085 0.00982

0.005 0.00362 0.00396 0.00421 0.00442 0.00431 0.00446 0.00419 0.00427 0.00408 0.00416 0.00409 0.00416 0.00274 0.00445 0.00520 0.00418 0.00547 0.00442

0.001 0.00086 0.00084 0.00082 0.00088 0.00089 0.00085 0.00086 0.00087 0.00078 0.00085 0.00078 0.00085 0.00056 0.00083 0.00104 0.00095 0.00117 0.00083

0.0005 0.00034 0.00037 0.00039 0.00051 0.00048 0.00042 0.00035 0.00036 0.00035 0.00035 0.00035 0.00035 0.00025 0.00045 0.00060 0.00041 0.00050 0.00038

Table 7: Empirical power based on 103 simulation replicates with 8 causal RVs, 96

null RVs and ρ = 0.9. For comparison, the results for resampling-based SKAT and

SKAT-O and asymptotics-based SKAT and SKAT-O (A-SKAT and A-SKAT-O) are

also included.
α SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(15) SPU(16) SPU(31) SPU(32) SPU(∞) aSPU A-SKAT SKAT A-SKAT-O SKAT-O

0.05 0.29700 0.83300 0.81900 0.86000 0.84600 0.85400 0.84600 0.84800 0.83800 0.84100 0.83800 0.84100 0.79600 0.84400 0.79600 0.79900 0.76800 0.76200

0.01 0.14600 0.70300 0.72600 0.77400 0.76100 0.75700 0.74700 0.74100 0.72800 0.72500 0.72600 0.72400 0.66700 0.73300 0.65000 0.64500 0.59600 0.57200

0.005 0.09900 0.65500 0.68200 0.73400 0.72100 0.71300 0.70000 0.69100 0.65900 0.66200 0.65800 0.66100 0.58700 0.68600 0.58400 0.55200 0.53400 0.51200

0.001 0.04500 0.52200 0.58600 0.61900 0.60400 0.58700 0.57000 0.55600 0.52700 0.52600 0.52500 0.52500 0.46200 0.57100 0.45300 0.44600 0.42000 0.39800

Table 8: Empirical Type I error rates based on 105 simulation replicates with a

covariate, 96 + 8 null RVs and ρ = 0.9.
α SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(15) SPU(16) SPU(31) SPU(32) SPU(∞) aSPU

0.05 0.05024 0.05037 0.05007 0.04938 0.05014 0.04949 0.04939 0.04917 0.04895 0.04886 0.04888 0.04883 0.04889 0.04738

0.01 0.00993 0.00961 0.00999 0.00966 0.00982 0.00993 0.00994 0.01017 0.01001 0.00996 0.00979 0.00980 0.00985 0.00865

0.005 0.00460 0.00459 0.00494 0.00487 0.00490 0.00478 0.00477 0.00472 0.00457 0.00458 0.00450 0.00451 0.00451 0.00471

0.001 0.00092 0.00102 0.00108 0.00101 0.00121 0.00107 0.00107 0.00112 0.00114 0.00112 0.00113 0.00113 0.00111 0.00093

0.0005 0.00037 0.00049 0.00043 0.00052 0.00053 0.00049 0.00050 0.00048 0.00051 0.00053 0.00051 0.00051 0.00051 0.00040
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