File S1

SUPPLEMENTAL MATERIAL

Analysis of data. Because the interpretation of LD measures in terms of conventional population-genetic parameters relies on the assumption of drift-mutation-recombination equilibrium, we restricted our analyses to genomes from single diploid, non-intentionally inbred individuals. The raw reads (i.e., Sanger reads or Illumina short reads) for each genome were downloaded from the NCBI Short Read Archive. The latest repeat-masked reference assembly for each genome was downloaded from NCBI or Ensembl. The Sanger reads were trimmed based on sequence qualities using the program LUCY with default settings (Chou and Holmes 2001). The software BWA 0.7.5 (Li and Durbin 2009; Li and Durbin 2010) was used to map the Sanger raw reads against the reference assembly (bwasw command with default settings) and to align the Illumina short reads (sampe commands with default settings).

To eliminate potential problems that can arise from the mapping process, we applied three strict criteria for selecting sites that go into the final analyses. First, we removed all raw reads that mapped to multiple locations of the genome (which represent, for example, potential duplicate genes and transposons) as well as reads with a mapping quality score lower than 25. Second, sites located within paralogous genes with >90% sequence identity were excluded. Third, our analyses included only sites with coverages >4× but less than twice the genome-wide average coverage.

The software Samtools (Li et al. 2009) was used to generate a pileup of the mapped raw reads for every possible position in the genome. The pileup was then converted to a quartet profile using the software sam2pro (http://guanine.evolbio.mpg.de/mlRho/). For each site, the quartet profile describes the numbers of the four different nucleotide reads observed (n_A , n_c , n_g , n_T), with their sum ($n_A + n_c + n_g + n_T$) representing the coverage at each site.

The program mlRho 2.0 (Haubold et al. 2010) was used to calculate the maximum-likelihood estimates of the zygosity correlation coefficient (Δ), genome-wide heterozygosity (θ), and sequencing error rate (ϵ). The latter two parameters were estimated using all the available sites in the genomes and were subsequently used in the one-dimensional estimation of Δ . We calculated Δ for all pairs of sites separated from 1 to 100,000 bp, with an incremental increase in window size for pooled analyses. For distances up to 1000 bp, Δ was analyzed for 1-bp distance increment (e.g., Δ was estimated for all pairs of sites that are 1-bp apart, then 2-bp, 3-bp, etc.), whereas for the distances between 1 and 10 kbp, these parameters were estimated with increments of 10 bp, pooling all site pairs within each 10-bp increment; and between 10 and 100 kbp, a window size of 100 bp was used.

Literature Cited

Chou, H. H., and M. H. Holmes. 2001. DNA sequence quality trimming and vector removal. Bioinformatics 17: 1093-1104.

- Haubold, B., P. Pfaffelhuber, and M. Lynch. 2010. mlRho a program for estimating the population mutation and recombination rates from shotgun-sequenced diploid genomes. Mol. Ecol. 19: 277-284.
- Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.
- Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.

Li, H., and R. Durbin. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589-595.

Species	Coverage	No. of sites (10 ⁷)	Theta	Epsilon	Reference	DNA source
Ailuropoda melanoleuca	26	10.798	0.00318	0.0150	Li et al. (2010)	a single non-inbred
						female
Anolis carolinensis	8	106.446	0.00260	0.0034	Alfoldi et al. (2011)	A single female
Canis familiaris	10	120.495	0.00094	0.0033	Lindblad-Toh <i>et al.</i> 2005	A female Boxer
Denisovan	28	165.960	0.00042	0.0014	Meyer et al. 2012	DNA from phalanx of a
						Denisovan individual
Fugu rubripes	6	7.535	0.00320	0.0014	Aparicio <i>et al.</i> 2002	A single fish
Gorilla gorilla	32	122.182	0.00314	0.0090	Scally et al. 2012	A single female
Homo sapiens (African)	18	162.557	0.00357	0.0066	Schuster et al. 2010	A single male (KB1)
Homo sapiens (Chinese)	31	152.247	0.00164	0.0119	Wang et al. 2008	A single male
Homo sapiens (Watson)	7	147.303	0.00103	0.0004	Wheeler et al. 2008	A single male
Loxodonta africana	7	98.194	0.00134	0.0020	http://www.broadinstitute.org/	A single individual
Macaca mulatta	8	81.724	0.00261	0.0033	Gibbs <i>et al.</i> 2007	A single female
Ornithorhynchus anatinus	10	59.061	0.00131	0.0033	Warren <i>et al.</i> 2008	A single female
Pan troglodytes	8	88.106	0.00101	0.0042	Chimpanzee Sequencing and Analysis	A single male
					Consortium 2005	
Petromyzon marinus	12	22.753	0.00443	0.0031	Smith <i>et al.</i> 2013	A single female
Pongo abelii	4	27.204	0.00527	0.0087	Locke <i>et al.</i> 2011	A single female (SB550)
Pongo pygmaeus	6	56.747	0.00272	0.0044	Locke et al. 2011	A single male (KB4204)

 Table S1
 Summary of single diploid genomes analyzed in this study. Theta: maximum-likelihood estimate of heterozygosity in a single genome; epsilon: maximum-likelihood estimate of sequencing error rate. All raw reads were downloaded from NCBI Short Read Archive.

Literature Cited

- Chimpanzee Sequencing and Analysis Consortium, 2005 Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69-87.
- Alfoldi, J., F. Di Palma, M. Grabherr, C. Williams, L. Kong *et al.*, 2011 The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477: 587-591.
- Aparicio, S., J. Chapman, E. Stupka, N. Putnam, J. Chia *et al.*, 2002 Whole-genome shotgun assembly and analysis of the genome of *Fugu rubripes*. Science 297: 1301-1310.
- Gibbs, R. A., J. Rogers, M. G. Katze, R. Bumgarner, G. M. Weinstock *et al.*, 2007 Evolutionary and biomedical insights from the rhesus macaque genome. Science 316: 222-234.
- Li, R., W. Fan, G. Tian, H. Zhu, L. He *et al.*, 2010 The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317.
- Lindblad-Toh, K., C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B. Jaffe *et al.*, 2005 Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803-819.
- Locke, D. P., L. W. Hillier, W. C. Warren, K. C. Worley, L. V. Nazareth *et al.*, 2011 Comparative and demographic analysis of orangutan genomes. Nature 469: 529-533.
- Meyer, M., M. Kircher, M.-T. Gansauge, H. Li, F. Racimo *et al.*, 2012 A high-coverage genome sequence from an archaic Denisovan individual. Science 338: 222-226.
- Scally, A., J. Y. Dutheil, L. W. Hillier, G. E. Jordan, I. Goodhead *et al.*, 2012 Insights into hominid evolution from the gorilla genome sequence. Nature 483: 169-175.
- Schuster, S. C., W. Miller, A. Ratan, L. P. Tomsho, B. Giardine *et al.*, 2010 Complete Khoisan and Bantu genomes from southern Africa. Nature 463: 943-947.
- Smith, J. J., S. Kuraku, C. Holt, T. Sauka-Spengler, N. Jiang *et al.*, 2013 Sequencing of the sea lamprey (*Petromyzon marinus*) genome provides insights into vertebrate evolution. Nat. Genet. 45: 415-421.

Wang, J., W. Wang, R. Q. Li, Y. R. Li, G. Tian et al., 2008 The diploid genome sequence of an Asian individual. Nature 456: 60-65.

- Warren, W. C., L. W. Hillier, J. a. M. Graves, E. Birney, C. P. Ponting *et al.*, 2008 Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: 175-183.
- Wheeler, D. A., M. Srinivasan, M. Egholm, Y. Shen, L. Chen *et al.*, 2008 The complete genome of an individual by massively parallel DNA sequencing. Nature 452: 872-875.