
File S1 The conditioned Markov chain and its properties

This section explains how to obtain the transition probability matrix of the Markov chain conditioned on the event that2

the population reaches size z before going extinct (reaching size 0), i.e. conditioned on the event Tz < T0. We also

explain how to derive further properties of the conditioned Markov chain. We first restrict our Markov chain to the states4

0, 1, . . . , z − 1, z, where 0 and z are absorbing states and 1, . . . , z − 1 are transient, that is the Markov chain will leave

them at some time. We can write the transition probability matrix of the original Markov chain as6

P =

Q R

0 I

 , (S1)

where Q is a (z − 1) × (z − 1) matrix representing the transitions between transient states, R is a (z − 1) × 2 matrix

with the transition probabilities from the transient states to the absorbing states z (first column) and 0 (second column),8

0 is a 2× (z − 1) matrix filled with zeros, and I is an identity matrix (in this case 2× 2).

Following Pinsky and Karlin (2010), we then computed the fundamental matrix W = (I − Q)−1. Wij gives the10

expected number of generations a population starting at size i spends at size j before reaching one of the absorbing

states. This matrix operation is based on first-step analysis, i.e. on a decomposition of expected quantities according to12

what happens in the first step (see Pinsky and Karlin 2010, Section 3.4 for details).

The probabilities of absorption in either of the two absorbing states can then be computed as U = WR. The first14

column of U contains the success probabilities Pr(Tz < T0|N0 = i) shown in Figure 2. Using the success probabilities

and Bayes’ formula, we then computed the transition probabilities of the Markov chain conditioned on Tz < T0:16

Qc
ij = Pr(Nt+1 = j|Nt = i, Tz < T0) =

Qij · Pr(Tz < T0|N0 = j)

Pr(Tz < T0|N0 = i)
. (S2)

As z is the only absorbing state of this new Markov chain, the full transition probability matrix is

Pc =

Qc Rc

0 1

 , (S3)

where Rc contains the transition probabilities from the transient states to z. These probabilities are chosen such that18

each row sums to 1. In this case, 0 stands for a 1× (z − 1) vector filled with zeros. We used this transition probability

matrix to simulate the population dynamics conditioned on success.20

To further study the conditioned Markov chain, we computed its fundamental matrix Wc = (I−Qc)−1. W c
ij gives

the number of generations a population starting at size i spends at size j before reaching z, conditioned on reaching22
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z before going extinct. These are the values shown in Figure 4. Note that in these plots we did not include the first

generation, which the population necessarily spends at its founder size.24

We also computed the expected number of surviving offspring per individual at population size i under the conditioned

population dynamics (Figure S1):26

1

i

z∑
j=1

j · P c
ij . (S4)

This is an approximation because our Markov chain is restricted to population sizes up to z whereas actual populations

would be able to grow beyond z. However, in the range of population sizes that is most relevant for our study, i.e. at28

small and intermediate population sizes, Equation (S4) should give an accurate approximation of the expected number

of surviving offspring per individual.30
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Figure S1 The expected number of surviving offspring per individual in successful populations (see Equation (S4)) as
a function of the current population size without an Allee effect (gray line), with a weak Allee effect (dashed black line),
or with a strong Allee effect (other black lines) and different critical sizes. The subplots differ in the growth parameter r.
k1 = 1000.

M.J. Wittmann et al. 3 SI



File S2 Details on the simulation of genealogies

The genealogies are constructed by tracing the ancestry of the sampled genetic material backwards in time. Apart from32

multiple and simultaneous mergers, another special feature is that the genealogical process takes into account explicitly

that individuals are diploid and bi-parental and thus avoids logical inconsistencies that may occur when independently34

simulating the genealogies at different loci (Wakeley et al. 2012). However, this realism comes at a computational cost

and in cases where we are only interested in average levels of genetic diversity, i.e. for the analyses underlying Figures 5,36

7, and S3 we resorted to independently simulating the genealogies at the different loci.

The current state of the ancestry is defined by a set of lineage packages for each population (source population and38

newly founded population). Such a lineage package contains all the genetic material that is traveling within the same

individual at that time point. It has two sets of slots, one set for each genome copy. Each set has a slot for each locus.40

If the genetic material at a certain locus and genome copy is ancestral to the sample, the slot is occupied by a node,

otherwise it is empty.42

The ancestral history starts with 2 · ns lineage packages in the newly founded population. Initially all slots in the

lineage packages are occupied by nodes. From there, the ancestry is modeled backwards in time until at each locus there44

is just one node left. Given the state of the ancestry in generation t, the state in generation t− 1 is generated as follows:

Backward in time, each generation starts with a migration phase (Figure S2). All lineage packages that are currently in46

the newly founded population choose uniformly without replacement one of the Yt migrants from the source population,

or one of the Nt − Yt residents. Note that in our simulations with a single founding event, Y0 = N0 and Yt = 0 for all48

t > 0, whereas in the case of multiple introductions, Yt can be positive also at t > 0. According to their choice in this

step, lineage packages either remain in the newly founded population or are transferred to the source population.50

Then each lineage package splits into two because the two genome copies (sets of slots) each derive from a possibly

different parent (see Figure S2). Lineage packages that do not contain ancestral material are discarded immediately. For52

each of the remaining lineage packages, recombination is implemented by independently constructing a stochastic map

R : {1, . . . , nl} → {0, 1} such that54

R(1) =


0 with probability 1

2

1 with probability 1
2

(S5)

and then

R(n+ 1) =


R(n) with probability 1− ρn

1−R(n) with probability ρn

(S6)

is drawn recursively for n ∈ {1, . . . , nl − 1}. The recombination probability ρn between loci n and n+ 1 was 0.5 for all56

analyses in this study. A node at locus l in the new lineage package is placed into the first genome copy if R(l) = 0 and
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into the second genome copy if R(l) = 1.58

After each lineage package underwent splitting and recombination, all resulting lineage packages uniformly pick one of

the Nt−1 or k0 individuals as ancestor, depending on whether they are in the newly founded or in the source population,60

this time with replacement (see Figure S2). Lineage packages that chose the same ancestor are merged. If there is more

than one node at the same genome copy and slot, a coalescent event takes place.62

Because genetic drift is strong in small populations, many pairs of lineages will already encounter their common

ancestor within the newly founded population. The lineages that did not coalesce until time 0 must all be in the source64

population which is assumed to be of constant size k0 at all times. To simulate the remainder of the ancestry, we could

proceed by going backwards generation-by-generation. However, as the source population is large it would take a long66

time until all lineages find their most recent common ancestor (MRCA) and in most generations nothing would happen.

Furthermore, nodes within the same lineage package typically become separated by recombination relatively fast. For the68

sake of computational efficiency, we therefore use an approximative algorithm to simulate the remainder of the ancestral

history. This efficient simulation mode excludes multiple and simultaneous mergers, events that should be very rare for a70

reasonably large source population size k0. Independently for each locus, we determine the remaining number of nodes

ntotal and draw the number of generations T until the next coalescent event from a geometric distribution with success72

probability

pmerge =

(
ntotal

2

)
2k0

. (S7)

We merge two randomly chosen nodes, reduce ntotal by 1, and update the current time to t−T . We repeat this procedure74

until eventually there is only one node left, the MRCA of all sampled genetic material at the respective locus. Throughout

the simulation, we store all information needed to provide the topology and branch lengths (in number of generations)76

for the genealogies at each locus.
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source

Figure S2 Illustration of the backward-in-time simulation of genealogies.
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File S3 Results based on total length of the genealogy78

In the main text, we use average pairwise coalescence times to assess genetic diversity. Here we show the corresponding

results for the average total length of the genealogy Gtotal, a measure related to the number of segregating sites or the80

number of alleles in a sample. To measure the proportion of variation maintained, we divided Gtotal by 4k0 ·
∑2ns−1

i=1
1
i ,

the expected total length of the sample genealogy if all lineages would have been sampled in the source population82

(Wakeley 2009, p. 76). The results (Figure S3 and S4) were qualitatively similar to the results based on average pairwise

coalescence times (see Figures 5 and 6), except that the proportion of variation maintained more slowly approached one84

with increasing founder population size.
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Figure S3 Average proportion of genetic variation from the source population (based on the average total length of
sample genealogies) that is maintained by an introduced population upon reaching size z. The subplots differ in the
value of the growth rate parameter r and in the type of Allee effect. In the upper row, Allee-effect populations have a
strong demographic Allee effect with a = 50 (indicated by dotted vertical line) and c = 0. In the lower row, Allee-effect
population have a weak Allee effect with a = 0 and c = 30. The values on the x-axes correspond to the mean of the
original founder-size distribution. The four sets of populations in each subplot serve to disentangle the genetic effects
resulting from the shift in founder population sizes and those from the altered post-introduction population dynamics.
Dashed lines: founder population size drawn from the success-conditioned distribution without an Allee effect. Solid
lines: founder population sizes drawn from the success-conditioned distribution with an Allee effect (strong in the upper
row, and weak in the lower row). Black lines: success-conditioned population dynamics with an Allee effect. Gray lines:
success-conditioned population dynamics without an Allee effect. The letters A, B, and C in subplots (B) and (E) refer
to the subplots in Figures 3 and 4, where we examined for r = 0.1 and the respective (mean) founder population sizes
how the Allee effect influences the conditioned distribution of founder population sizes and the conditioned population
dynamics. Across all points, standard errors were between 0.0004 and 0.0015, and the corresponding standard deviations
between 0.689 and 0.203.
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Figure S4 The role of the critical population size a for the average proportion of genetic variation from the source
population (based on the average total length of sample genealogies) that is maintained by an introduced population
upon reaching size z = 100. The average founder population size E[N0] is held fixed at a different value for each of
the four curves. Each point represents the average over 20,000 successful populations. Standard deviations were between
0.085 and 0.158 and standard errors between 0.0006 and 0.0012. c = 0, r = 0.1.
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File S4 Methodology for estimating the critical population size86

We generated 1000 pseudo-observed data sets and 100,000 simulated data sets, each with independent introductions

to 200 locations. The critical population sizes were drawn from a uniform distribution on [0,100]. We fixed the other88

parameters of the population dynamics (k0 = 10, 000, k1 = 1000, r = 0.1, c = 0) and assumed them to be known

with certainty. We further assumed that the original distribution of founder population sizes was Poisson with mean 20,90

and sampled the founder population sizes independently for each location from the conditioned distribution of founder

population sizes for the respective critical population size. Given the selected founder population size, we simulated the92

population dynamics at each location from the conditioned Markov chain until the population reached size 200, i.e. twice

the largest possible critical population size.94

At this point, we sampled nl = 20 individuals at both genome copies, resulting in 40 copies of each locus from a given

location. We generated genealogies for 20 freely recombining loci. To obtain a more differentiated picture of patterns of96

genetic variation and capture as much information as possible, we did not use the average pairwise coalescence times

or total lengths of the genealogy as before. Instead, we took the means and variances across loci of the entries of98

the site-frequency spectrum (SFS) ξi, i.e. the number of mutations that appear in i chromosomes in the sample for

i ∈ 1, 2, . . . , 39. To compute these summary statistics, we first took the combined length of all branches Bi that have i100

descendants in the sample and assumed the infinite-sites model such that the number of mutations on a branch of length

b is Poisson-distributed with parameter µ · b. Given sufficiently many loci, which we assume we have, we do not actually102

need to simulate mutations along the branches. Instead, we can use the branch lengths to directly estimate the means

and variances across loci of the ξi as104

Ê[ξi] = µ · B̄i (S8)

and, using the law of total variance,

V̂ar[ξi] = Ê [Var[ξi|Bi]] + V̂ar [E[ξi|Bi]] = µ · B̄i + µ2 · s2(Bi), (S9)

where the B̄i are the average branch lengths across the nl loci and the s2(Bi) are the corresponding empirical variances.106

We assumed throughout that µ = 0.001.

We further summarized the data for each SFS entry i ∈ 1, 2, . . . , 39 by computing the averages and empirical standard108

deviations of the quantities in (S8) and (S9) across locations. To investigate how the quality of the estimation depends

on the number of independent locations available, we took into account either only 10, 25, 50, 100, or all 200 of them to110

compute these statistics. Using the pls script from abctoolbox (Wegmann et al. 2010) and the pls package in R (Mevik

and Wehrens 2007), we then conducted partial least squares regression on the first 10,000 simulated data sets to condense112
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Figure S5 Root mean squared error of prediction (RMSEP) as a function of the number of PLS components for various
numbers of locations.

the information contained in the 156 summary statistics to a smaller number of components. To decide on the number

of components, we examined plots of the root mean squared error of prediction (RMSEP) as a function of the number114

of components (Figure S5). For none of the different numbers of locations did the RMSEP change substantially beyond

20 components. Thus, we decided to include 20 components as summary statistics for ABC.116

We used these 20 PLS components as summary statistics for parameter estimation with the R package abc (Csilléry

et al. 2012). We chose a tolerance of 1 % and used the option “loclinear” implementing the local linear regression method118

(Beaumont et al. 2002). To avoid estimated parameter values that fall outside the prior, we estimated ln(a/(100 − a))

and then back-transformed the estimated values. For each pseudo-observed data set, we thus used the 100,000 simulated120

data sets to approximate the posterior distribution of the critical population size given a uniform prior on [0,100]. For each

data set, we stored the mean of the posterior, which we take as our point estimator, and the 50 % and 95 % credibility122

intervals. We observed that the quality of parameter inference improved with an increasing number of locations (Figures

8 and S6). An examination of the percentage of pseudo-observed data sets for which the true parameter value falls into124

the respective 50 % or 95 % credibility interval suggests that ABC approximates Bayesian inference reasonably well in

this case (Figure S7).126
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File S5 Consequences of a neglected Allee effect

Using the ABC framework again, we explored the consequences of neglecting the Allee effect when estimating other128

demographic parameters: the founder population size N0, the growth parameter r, and the number of generations since

the founding event. We generated 2000 pseudo-observed data sets from our stochastic model, 1000 without an Allee effect130

and 1000 with an Allee effect and a critical population size of 50. As the basis for estimation in ABC, we used 100,000

data sets that were simulated from a model without an Allee effect. To also explore the consequences of neglecting132

stochasticity, we considered two versions of the model without an Allee effect: our stochastic model with a = 0 and a

modified version where we removed as much stochasticity as possible. That is, the population size in the next generation134

was not drawn from a Poisson distribution, but was set to E[Nt+1] if this value was an integer. Otherwise, we randomly

set Nt+1 to the next smallest or next largest integer with the respective probabilities chosen such that Equation (1) was136

fulfilled.

The priors for the demographic parameters of interest were as follows: r ∼ unif([0.05, 0.1]) and ng ∼ unif({30, . . . , 500}),138

where unif stands for the uniform distribution. To generate values for N0, we first drew Y ∼ unif([ln(5), ln(80)]), and then

set N0 to eY , rounded to the next integer. The other parameters were fixed: k0 = 10, 000, k1 = 1000, µ = 0.001, ns = 10.140

For each data set, we retried simulating with the same parameter combination until we obtained a successful population

with Nng ≥ ns. We generated 100 independent genealogies for samples of size ns taken at time ng and computed means142

and variances of the entries of the site-frequency spectrum as described in File S4. Using partial least squares regression

on the first 10,000 simulated data sets, we reduced this information to 20 components that served as summary statistics144

for ABC. As above, we used the R package abc (Csilléry et al. 2012) with a tolerance of 1 % and the option “loclinear’.

In Figure S8, we compare the quality of parameter estimation across the four possible combinations of whether or not146

the true model includes an Allee effect and whether the model used for estimation was stochastic or deterministic.
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File S6 A conditioned diffusion process148

Our results in the main text indicate that the growth rate under the conditioned population dynamics depends mostly

on the absolute value and not so much on the sign of the growth rate under the unconditioned population dynamics.150

For mathematically interested readers, we now explore a simple model where this fact can be proven easily. We consider

a diffusion process on the interval [0, 1] with constant infinitesimal mean µ(x) = µ and constant infinitesimal variance152

σ2(x) = σ2. We will show that the associated diffusion process conditioned on hitting 1 before 0 is independent of the

sign of µ and that its infinitesimal mean increases with |µ|.154

Our task is to compute the infinitesimal mean and variance of the conditioned diffusion process. Following the formulas

given by Karlin and Taylor (1981, p. 263), the infinitesimal mean of the conditioned diffusion process is156

µ∗(x) = µ(x) +
s(x)

S(x)
· σ2(x), (S10)

where S(x) is the scale function and s(x) is its derivative. Using the definitions of these functions (e.g. Karlin and Taylor

1981, p. 262) and plugging in the parameters of our diffusion, we obtain158

s(x) = exp

(
−
∫ x

0

2µ(η)

σ2(η)
dη

)
= exp

(
−2µx

σ2

)
(S11)

and

S(x) =

∫ x

0

s(η)dη =
σ2

2µ
·
[
1− exp

(
−2µx

σ2

)]
. (S12)

Substituting Equation (S11) and (S12) into Equation (S10), we obtain160

µ∗(x) = µ · exp(2µx/σ2) + 1

exp(2µx/σ2)− 1
=: f(µ), (S13)

a function that is symmetric about 0, i.e. f(−µ) = f(µ), and increases with the absolute value of µ (Figure S9). The

variance σ2∗(x) equals the original variance σ2(x).162
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Figure S9 The infinitesimal mean of the conditioned diffusion process at 0.5 (solid line), i.e. in the middle of the
interval, as a function of the infinitesimal mean of the original process. On the dashed line, the infinitesimal means of
original and conditioned process would be equal.

File S7 Source code and analysis scripts

File S7 is available for download as a zip-folder at164

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167551/-/DC1.
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