
File S4 Methodology for estimating the critical population size86

We generated 1000 pseudo-observed data sets and 100,000 simulated data sets, each with independent introductions

to 200 locations. The critical population sizes were drawn from a uniform distribution on [0,100]. We fixed the other88

parameters of the population dynamics (k0 = 10, 000, k1 = 1000, r = 0.1, c = 0) and assumed them to be known

with certainty. We further assumed that the original distribution of founder population sizes was Poisson with mean 20,90

and sampled the founder population sizes independently for each location from the conditioned distribution of founder

population sizes for the respective critical population size. Given the selected founder population size, we simulated the92

population dynamics at each location from the conditioned Markov chain until the population reached size 200, i.e. twice

the largest possible critical population size.94

At this point, we sampled nl = 20 individuals at both genome copies, resulting in 40 copies of each locus from a given

location. We generated genealogies for 20 freely recombining loci. To obtain a more differentiated picture of patterns of96

genetic variation and capture as much information as possible, we did not use the average pairwise coalescence times

or total lengths of the genealogy as before. Instead, we took the means and variances across loci of the entries of98

the site-frequency spectrum (SFS) ξi, i.e. the number of mutations that appear in i chromosomes in the sample for

i ∈ 1, 2, . . . , 39. To compute these summary statistics, we first took the combined length of all branches Bi that have i100

descendants in the sample and assumed the infinite-sites model such that the number of mutations on a branch of length

b is Poisson-distributed with parameter µ · b. Given sufficiently many loci, which we assume we have, we do not actually102

need to simulate mutations along the branches. Instead, we can use the branch lengths to directly estimate the means

and variances across loci of the ξi as104

Ê[ξi] = µ · B̄i (S8)

and, using the law of total variance,

V̂ar[ξi] = Ê [Var[ξi|Bi]] + V̂ar [E[ξi|Bi]] = µ · B̄i + µ2 · s2(Bi), (S9)

where the B̄i are the average branch lengths across the nl loci and the s2(Bi) are the corresponding empirical variances.106

We assumed throughout that µ = 0.001.

We further summarized the data for each SFS entry i ∈ 1, 2, . . . , 39 by computing the averages and empirical standard108

deviations of the quantities in (S8) and (S9) across locations. To investigate how the quality of the estimation depends

on the number of independent locations available, we took into account either only 10, 25, 50, 100, or all 200 of them to110

compute these statistics. Using the pls script from abctoolbox (Wegmann et al. 2010) and the pls package in R (Mevik

and Wehrens 2007), we then conducted partial least squares regression on the first 10,000 simulated data sets to condense112
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Figure S5 Root mean squared error of prediction (RMSEP) as a function of the number of PLS components for various
numbers of locations.

the information contained in the 156 summary statistics to a smaller number of components. To decide on the number

of components, we examined plots of the root mean squared error of prediction (RMSEP) as a function of the number114

of components (Figure S5). For none of the different numbers of locations did the RMSEP change substantially beyond

20 components. Thus, we decided to include 20 components as summary statistics for ABC.116

We used these 20 PLS components as summary statistics for parameter estimation with the R package abc (Csilléry

et al. 2012). We chose a tolerance of 1 % and used the option “loclinear” implementing the local linear regression method118

(Beaumont et al. 2002). To avoid estimated parameter values that fall outside the prior, we estimated ln(a/(100 − a))

and then back-transformed the estimated values. For each pseudo-observed data set, we thus used the 100,000 simulated120

data sets to approximate the posterior distribution of the critical population size given a uniform prior on [0,100]. For each

data set, we stored the mean of the posterior, which we take as our point estimator, and the 50 % and 95 % credibility122

intervals. We observed that the quality of parameter inference improved with an increasing number of locations (Figures

8 and S6). An examination of the percentage of pseudo-observed data sets for which the true parameter value falls into124

the respective 50 % or 95 % credibility interval suggests that ABC approximates Bayesian inference reasonably well in

this case (Figure S7).126
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Figure S6 The root mean squared error (RMSE) of the estimated critical population size as a function of the number
of independent locations used for the estimation.

● ● ●
● ●

0 50 100 150 200

0
20

40
60

80
10

0

● ● ●
● ●

number of locations

%
 tr

ue
 v

al
ue

s 
in

 c
re

d.
 in

t.

● 50% credibility interval
95% credibility interval

Figure S7 Percentage of true parameter values that fall within the 50% and 95% credibility interval, an indicator for
how well Approximate Bayesian Computation approximates Bayesian inference. The gray lines are at 50% and 95%.
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