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1 Sampling from the prior

In order to assess the correctness of our implementation of the deterministic
coalescent SIR and stochastic coalescent SIR models, for each model we used the
MCMC algorithm to sample trees from the corresponding distribution f(T |η),
and compared these samples with coalescent trees simulated directly under the
model.

The chosen η included β = 7.5 × 10−4, γ = 0.3, S0 = 999 and z0 = 30.
The comparisons were performed for trees generated from 20 leaves, sampled at
integer times 0 through 19, inclusive.

For the deterministic coalescent SIR model, the direct simulation involved
numerically solving the Eqs. (1)–(3) in the main text for t ∈ [0, 30] and using
this solution in combination with Eq. (10) in the main text to determine the
instantaneous coalescent rate λ(τ). This rate was used to simulate each of the
coalescent trees in the usual fashion for heterochronous leaf times. In the case
that the MRCA was not reached before the origin time of the epidemic, the tree
was discarded and the simulation repeated.

The direct simulation proceeded in a similar way for the stochastic coales-
cent SIR model, the major difference being that the stochasticity of this model
required each coalescent tree to be simulated under a distinct realization of the
stochastic trajectory.

Comparisons between the direct simulation and MCMC results are shown
in Figures S1 and S2 for three different summary statistics and show very close
agreement.

2 Validation through simulated data analysis

As part of the validation of our implementation of the two coalescent SIR
models, trees were simulated by their own methods (using stochastically- and
deterministically-generated SIR trajectories, as discussed in the Methods sec-
tion of the main paper), and relevant epidemiological parameters were inferred
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using the stochastic and deterministic coalescent SIR models. Tables 1 and 2
show the results of these analyses, indicative of correct implementations.

Analyses for varying R0 (and necessarily, slightly varied other parameters,
such as the birth rate β) are provided in Tables S3 and S4. Results from tests of
the influence of broader priors (with larger standard deviations in log space) are
shown in Table S4. It appears that allowance of broader priors reduces 95% HPD
coverage in some cases (e.g., for parameter R0) when using the deterministic
coalescent SIR inference model, as they increase error and bias.

Finally, it was noticed that even for the higher true parameter values of
R0 = 2.50 and S0 = 999, under which deterministic coalescent SIR is expected
to perform relatively well, there was an inability to accurately estimate the
origin parameter z0. Figure S3 provides some insight into this conundrum by
examining the trajectories used for tree simulation and subsequent analysis.

2.1 H1N1 data selection

Initially, the H1N1 dataset contained 45 sequences. The ages of the inferred trees
(Figure S4) using the original 45 sequences extended more than 1.5 years into the
past for each of the SIR models, which is contrary to what we expect for a single,
current strain of seasonal influenza. Three taxa (labelled 32197, 31893, and
31988) were hypothesized to belong to a unique strain, e.g., an additional seeding
from outside the Canterbury region or a low-lying previous strain. Removing
these three taxa caused the inferred trees to behave as expected, i.e., tree heights
and epidemic origin z0 less than a year old. It also raised the estimated R0 values
for all three SIR models (initially 1.24, 1.10, and 1.55 for stochastic coalescent
SIR, deterministic coalescent SIR, and BDSIR, respectively), as well as those
for γ (initially 8.74, 12.65, and 11.33 for stochastic coalescent SIR, deterministic
coalescent SIR, and BDSIR, respectively).

It will be interesting to further investigate the interplay between influenza
strains and its contribution to the overall dynamics. For the closed SIR models
discussed in this manuscript, however, this additional complexity leads to in-
creased chance of model misspecification and misleading results. Therefore, we
focused our attention on the analyses using 42 sequences.

2.2 HIV-1 data analysis

The original HIV-1 dataset (Hué et al. 2005) was agglomerated from both acute
and chronic infections sampled in the United Kingdom (UK) and constitutes six
phylogenetic clusters, from which the five used here (Clusters 1-4 and 6) were
drawn. These particular clusters, with the omission of Cluster 5, were cho-
sen simply for the purpose of direct comparison with Kühnert et al. (2014).
Our extension to the models allowed us to imprint respective tip dates on the
sequence data, sampled from 1999 to 2003, for inclusion in the likelihood com-
putation.

For the selected five clusters, the nucleotide alignments contained 41, 62,
29, 26, and 35 sequences, respectively, each with 952 sites. The substitution
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scheme chosen for phylogenetic analysis was the symmetric and independent
general time reversible model (GTR), with gamma distributed rate variation and
explicit proportion of invariable sites (GTR+G+I). Following Hué et al. (2005),
the substitution rate was set to 2.55e-4 substitutions per site per year. All other
parameters were estimated conjointly, and the Bayesian prior distributions are
presented in Table 4: Bayesian prior distributions.

The pathophysiology of HIV is multifarious, and the patterns of its advance-
ment within an infected host change throughout time. In addition to increased
complexity potentially caused by recombination events, the transition between
HIV’s acute and chronic phases alters the host’s infectivity (Guss 1994). The
SIR compartmental model used for this particular phylodynamic analysis on the
UK cluster data does not allow for independent infection rates for the acute and
chronic phases (but see Volz et al. (2012) and Volz et al. (2013)). However, in
this study we did not attempt to estimate the infection rate β and thus did not
expect such a difference to significantly impact the estimation of the parameters
of interest: the basic reproductive number R0, removal rate γ, size of the initial
susceptible population S0, and origin of the outbreak z0.

2.2.1 HIV-1 inference results

In regard to parameter inference from the serially-sampled HIV-1 sequence data,
the stochastic coalescent SIR, deterministic coalescent SIR, and BDSIR methods
were most alike in light of the R0 results. The medians and HPD intervals for all
clusters pertaining to this parameter, (especially Clusters 1, 2, 3, and 6), were
very close, and those of Cluster 4 were still congruent across the three analyses
(Figure S5).

The coalescent SIR models and BDSIR disagreed with respect to the age of
the most recent common ancestor and the origin z0 (Figure S6). The coalescent
SIR models also exhibited much larger 95% HPD intervals for z0 in each of the
clusters; while BDSIR encompassed an average of 16 years, the stochastic coa-
lescent SIR and deterministic coalescent SIR models had averages of 49 and 37
years, respectively. Furthermore, the estimated age of the common ancestor of
the tree was older under the coalescent SIR models than the estimates reported
by either BDSIR or the original data analysis (Hué et al. 2005) for each cluster.
This was also true for the time of origin for the epidemic, although for certain
clusters the differences between the coalescent estimates of the origin z0 and the
birth-death estimates were much greater than others (e.g., Cluster 3).

The estimates of removal rate γ from Clusters 1 and 6 were very similar
across the three methods (Figure S7). However, both coalescent SIR models
estimated considerably higher γ values for Clusters 2-4 than BDSIR. This is
reflective of the simulation study results, where the two coalescent models did
not perform as well as BDSIR for the removal parameter.

Median estimates for the initial susceptible population S0 were quite similar
in all methods for Clusters 1-4, although BDSIR displayed much wider HPD
intervals than stochastic coalescent SIR and deterministic coalescent SIR (Figure
S8). In Cluster 6, the coalescent SIR models showed the smallest HPD intervals
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for their individual analyses on each cluster, while the opposite was true for
BDSIR. There was also a disparity between the median estimates for the two
coalescent approaches and that of BDSIR for Cluster 6. To this effect, it should
be noted that the number of infections accrued throughout the duration of the
epidemic was reported as Ne = 1, 350 by Hué et al. This casts some suspicion on
the low susceptible population estimates obtained by the stochastic coalescent
SIR and deterministic coalescent SIR methods (median estimates of S0 = 727
and S0 = 693, respectively), since they appear lower than the estimated number
of infected individuals from the original study.

There is disagreement in the literature in regard to the modelling of HIV-
1 evolutionary dynamics under stochastic or deterministic processes (Nijhuis
et al. 1998; Rouzine and Coffin 1999; Achaz et al. 2004; Shriner et al.
2004). The predicament dwells in the observation that the actual effective
population size Ne for HIV-1 is often smaller than the total population size
(Kouyos et al. 2006). While most of this debate has focused on within-host
population dynamics, many of the arguments hold when considering the broader
epidemic dynamics of host-to-host transmission. As previously mentioned, the
appropriateness of these descriptions is hinged on the magnitude of the infected
population, precisely, the effective infected population size. Consequently, even
when the total infected population is quite large there may yet be significant
stochastic effects in play.

Finally, as mentioned in the main article, the existence of two distinct infec-
tious stages and the possibility of large effects due to recombination are reasons
for any discrepancy produced by these SIR inference models.

2.2.2 Example XML

Below is an example XML for simulating 100 trees and trajectories in MASTER
(Vaughan and Drummond 2013). This example is for R0 = 2.4975 and S0 =
999. The simulation ends when the infected I population returns to zero, i.e.,
when the last infected individual is removed.

<beast version=‘2.0’

namespace=‘master.beast:beast.core.parameter:beast.evolution.tree.TreeHeightLogger’>

<run spec=‘InheritanceEnsemble’

nTraj=‘100’

samplePopulationSizes=‘true’

verbosity=‘1’>

<model spec=‘InheritanceModel’ id=‘model’>

<population spec=‘Population’ id=‘S’ populationName=‘S’/>

<population spec=‘Population’ id=‘I’ populationName=‘I’/>

<population spec=‘Population’ id=‘R’ populationName=‘R’/>

<population spec=‘Population’ id=‘Rh’ populationName=‘Rh’/>

<!-- infection reaction -->

<reaction spec=‘InheritanceReaction’ reactionName=‘Infection’ rate=‘0.00075’>

S + I -> 2I
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</reaction>

<!-- recovery reaction -->

<reaction spec=‘InheritanceReaction’ reactionName=‘Recovery’ rate=‘0.25’>

I -> R

</reaction>

<!-- sampling reaction -->

<reaction spec=‘InheritanceReaction’ reactionName=‘Sampling’ rate=‘0.05’>

I -> Rh

</reaction>

</model>

<initialState spec=‘InitState’>

<populationSize spec=‘PopulationSize’ population=‘@S’ size=‘999’/>

<lineageSeed spec=‘Individual’ population=‘@I’/>

</initialState>

<populationEndCondition spec=‘PopulationEndCondition’

population=‘@I’

threshold=‘0’

exceedCondition=‘false’/>

<inheritancePostProcessor spec=‘LineageFilter’

reactionName=‘Sampling’

discard=‘false’/>

<output spec=‘NewickOutput’ fileName=‘SIR.newick’/>

<output spec=‘NexusOutput’ fileName=‘SIR.nexus’/>

<output spec=‘JsonOutput’ fileName=‘SIR.json’/>

</run>

</beast>

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]
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