
INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

Wendy
Typewritten Text

Wendy
Typewritten Text
File S1

Wendy
Typewritten Text

Wendy
Typewritten Text

Wendy
Typewritten Text

Wendy
Typewritten Text

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

INSTRUCTIONS - ASSEMBLY

#FILES available from https://github.com/justin-lack/Drosophila-Genome-Nexus/
round1_assembly.pl #execute the first round of mapping

round2_assembly.pl #executes the second round of mapping

VCF_filter.pl #filters SNP calls from the first round; requires >=75% of the reads at a position to
match the alternate call, other wise the SNP is discarded; should be placed in the same directory
as the read files and the round_1_assembly.pl script

IndelShift.pl #Removes indels added following the first round

VCF_to_Seq_Haploid.pl AND VCF_to_Seq_Diploid.pl #Produces the final
unformatted sequence files (one file for each chromosome arm),
filtering a specified number of bases around indels, implementing a
Q-value cutoff of 75 and the same 75% threshold implemented in VCF_filter.pl for alternate
read proportions

#This pipeline consists of two rounds of mapping. First round maps to the publicly available D.
melanogaster reference genome (or any other reference genome in fasta format), and the second
round maps to a reference genome that has been updated with the SNPs and INDELS called
from the first round. The original reference should have each chromosome renamed numerically
in the order they are in in the reference fasta file (i.e., >1, >2, >3, etc.). This is required by the
AlternateReferenceMaker module of GATK (I don't know why, but it automatically renames
every chromosome in numerical order in the new reference that it creates). It's best to simply do
this before you begin, and keep a record of the order of chromosomes in the file. You'll need this
info for the VCF_to_Seq.pl script, because it will convert back to actual chromosome arm
names when it produces the final sequence files.

#To run the assembly pipeline and produce a final all-sites VCF file, you simply need to have
the two perl scripts that run each round (round1_assembly.pl and round2_assembly.pl) and the
VCF_filter in a single folder with the fastq read files you want to assemble. Each instance of the
pipeline should be run in its own folder containing all of the fastq input files. List the unique
identifiers for your fastq files in the @FastqFile array at the top of round1_assembly.pl and add
the other necessary info (i.e., paths to programs, reference name/path, etc.) and execute
round1_assembly.pl. This will produce the alternate reference to be used in the second round, as
well as retain the first round *realign.bam file and SNP and INDEL calls.

#If everything looks satisfactory from the first round, add the appropriate information to the top
of the round2_assembly.pl script and execute this script. This will map again, but to the updated
reference instead of the original reference. This will output an all-sites VCF that will serve as
the input for two additional perl scripts (IndelShift.pl and VCF_to_Seq.pl), as well as a second
round *realign2.bam file.

#After the second round of assembly, the all-sites VCF (from the second round) and INDEL
calls (from the first round) serve as input for the IndelShift.pl script, which removes the indels
we inserted following the first round. The shifted VCF output of this script then serves as input
for VCF_to_Seq.pl, which outputs unformatted sequence files for each chromosome arm,
filtered for a Q-value of 75, 75% alternate read proportion, and 3 bases around indels.

#EXPLANATION OF COMMANDS
FIRST ROUND:

#Assembly commands

#Uncomment next 10 lines if reference genome has not been indexed for BWA, Stampy, or
GATK.
THESE ARE THE INDEXING STEPS FOR THE REFERENCE FOR ALL STEPS IN THE
FIRST ROUND. THIS ONLY NEED TO BE DONE ONCE FOR REFERENCE IN THE
FIRST ROUND
$cmd = "bwa index -a bwtsw " . $reference . ".fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $reference . ".fasta OUTPUT=" . $reference . ".dict";
system($cmd);
$cmd = "samtools faidx " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $reference . " " . $reference . ".fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -H " . $reference;
system($cmd);

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_1.fastq > " . $FastqFile[$i] .
"_1.sai"; #MAPPING OF READ FILE 1
system($cmd);
$cmd = "bwa aln " . $reference . ".fasta " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] .
"_2.sai"; #MAPPING OF READ FILE 2
system($cmd);
$cmd = "bwa sampe -P " . $reference . ".fasta " . $FastqFile[$i] . "_1.sai " . $FastqFile[$i] .
"_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " . $FastqFile[$i] . ".sam";
#COMBINING MAPPED FILES 1 AND 2
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai"; #REMOVES *.sai FILE 1
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai"; #REMOVES *.sai FILE 2
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
#CONVERTS TO BAM FORMAT FOR Stampy INPUT
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $reference . " -h " . $reference . " --
bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " . $FastqFile[$i] . "_remapped.sam";
#Stampy MAPPING STEP. THIS IS A RELATIVELY LONG STEP (AS LONG AS 15 HOURS
ON SOME OF THE HIGHEST COVERAGE DPGP2 GENOMES)
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam"; #FILTERS BY MAPPING QUALITY 20 AND CONVERTS TO BAM
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam"; #REMOVES SAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam"; #FILTERS UNMAPPED READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam"; #SORTS
BAM FILE ON COORDINATES
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics"; #IDENTIFIES DUPLICATE READS
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam"; #FORMATS HEADER
FOR GATK
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam"; #INDEX BAM FILE FOR GATK INPUT
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $reference . ".fasta -I " . $FastqFile[$i] . "header.bam -o " .
$FastqFile[$i] . ".intervals"; #IDENTIFIES INTERVAL TO BE REALIGNED AROUND
INDELS
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $reference . ".fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . "realign.bam"; #REALIGNS INTERVALS IDENTIFIED IN
PREVIOUS STEP
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam"; #REMOVES BAM FILE
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals"; #REMOVES INTERVALS FILE. COMMENT
THIS LINE OUT IF YOU WANT TO RETAIN THE INTERVALS FILE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -I " .
$FastqFile[$i] . "realign.bam -o " . $FastqFile[$i] . "_round1_SNPs.vcf"; #CALLS SNPS
USING THE UNIFIED GENOTYPER, FILTERING ON A MINIMUM QUALITY VALUE OF
31
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_round1_SNPs.vcf.idx"; #REMOVES SNP VCF FILE INDEX
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $reference . ".fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -ploidy 1 -
minIndelFrac 0.51 -minIndelCnt 3 -glm INDEL -I " . $FastqFile[$i] . "realign.bam -o " .
$FastqFile[$i] . "_INDELS.vcf"; #CALLS INDELS USING THE UNIFIED GENOTYPER,
REQUIRING A MINIMUM OF 3 READS CONTAINING THE INDEL, QUALITY VALUE
OF 31 OR HIGHER, AND A MAJORITY OF THE READS CONTAINING (0.51) THE
INDEL
system($cmd);
}

$cmd = "perl VCF_filter.pl"; #FILTERS ALL SNP VCF FILES FOR SNPS WITH <75% OF
READS AT A GIVEN SITE MATCHING THE ALTERNATE BASE CALL
system($cmd);

for ($g = 0; $g < @FastqFile; $g++){
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $reference . ".fasta -V " . $FastqFile[$g] .
"_SNPs_filtered.vcf -o " . $FastqFile[$g] . "_SNPs_reference.fasta";
system($cmd); #GENERATES NEW REFERENCE UPDATED WITH SNP CALLS
$cmd = "samtools faidx " . $FastqFile[$g] . "_SNPs_reference.fasta"; #INDEXES THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$g] . "_SNPs_reference.fasta OUTPUT=" . $FastqFile[$g] .
"_SNPs_reference.dict"; #CREATES A SEQUENCE DICTIONARY FOR THE NEW
REFERENCE
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
FastaAlternateReferenceMaker -R " . $FastqFile[$g] . "_SNPs_reference.fasta -V " .
$FastqFile[$g] . "_INDELS.vcf -o " . $FastqFile[$g] . "_reference.fasta"; #GENERATES NEW
REFERENCE UPDATED WITH BOTH INDELS AND SNPS
system($cmd);
}

SECOND ROUND:
#EXPLANATIONS ARE ONLY GIVEN FOR COMMANDS THAT DIFFER FROM THE
FIRST ROUND

#!/usr/bin/perl -w
use strict;

#assumes the bwa and samtools executables have been copied to your system path
#For this second round, each set of fastq read files has its own unique reference genome
(produced automatically from the round1_assembly.pl script), and this reference genome must
be in the same folder as this script and all the files.
#This pipeline assumes all barcodes have been trimmed off of the fastq reads. If barcodes are
still present, simply add the '-B 6' (the 6 should be the length of your barcodes) option to the
bwa aln command (lines 34 and 36).

my $i = 0;
my $cmd = "";

my $mem = 8; #memory (in gigabytes) allocated to GATK and Picard

my $stampy = '/Users/justin/Desktop/stampy-1.0.21/'; #path to stampy.py script

my $gatk = '/Users/justin/Desktop/GenomeAnalysisTK-2.1-13-g1706365/'; #path to
GenomeAnalysisTK.jar

my $picard = '/Users/justin/Desktop/picard-tools-1.79/picard-tools-1.79/'; #path to all Picard
java modules

my @FastqFile = ('SRR306630'); #array of input file names; this script is designed to handle
only paired end read files from a single lane downloaded from the SRA. The sample file name
(i.e., SRR306632) would then be followed by "_1.fastq" or "_2.fastq".

#Assembly commands

for ($i = 0; $i < @FastqFile; $i++){
$cmd = "bwa index -a bwtsw " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CreateSequenceDictionary.jar
REFERENCE=" . $FastqFile[$i] . "_reference.fasta OUTPUT=" . $FastqFile[$i] .
"_reference.dict";
system($cmd);
$cmd = "samtools faidx " . $FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -G " . $FastqFile[$i] . "_reference " .
$FastqFile[$i] . "_reference.fasta";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -H " .
$FastqFile[$i] . "_reference";
system($cmd);
#ALL OF THE ABOVE COMMANDS INDEX THE NEW REFERENCE FOR THE
DOWNSTREAM PROGRAMS

$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.fastq > " .
$FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "bwa aln " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "bwa sampe -P " . $FastqFile[$i] . "_reference.fasta " . $FastqFile[$i] . "_1.sai " .
$FastqFile[$i] . "_2.sai " . $FastqFile[$i] . "_1.fastq " . $FastqFile[$i] . "_2.fastq > " .
$FastqFile[$i] . ".sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_1.sai";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_2.sai";
system($cmd);
$cmd = "samtools view -bS " . $FastqFile[$i] . ".sam > " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".sam";
system($cmd);
$cmd = "python2.6 " . $stampy . "stampy.py -g " . $FastqFile[$i] . "_reference -h " .
$FastqFile[$i] . "_reference --bamkeepgoodreads -M " . $FastqFile[$i] . ".bam -o " .
$FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".bam";
system($cmd);
$cmd = "samtools view -bS -q 20 " . $FastqFile[$i] . "_remapped.sam > " . $FastqFile[$i] .
"_remapped.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.sam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "CleanSam.jar INPUT=" . $FastqFile[$i] .
"_remapped.bam OUTPUT= " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "_remapped.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "SortSam.jar SORT_ORDER=coordinate
INPUT=" . $FastqFile[$i] . "clean.bam OUTPUT=" . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "clean.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "MarkDuplicates.jar INPUT=" .
$FastqFile[$i] . "sort.bam OUTPUT=" . $FastqFile[$i] . "dups.bam METRICS_FILE=" .
$FastqFile[$i] . "dups.metrics";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "sort.bam";
system($cmd);
$cmd = " java -Xmx" . $mem . "g -jar " . $picard . "AddOrReplaceReadGroups.jar
RGLB=Lane1 RGPL=Illumina RGPU=TTAGGC RGSM=" . $FastqFile[$i] . " INPUT=" .
$FastqFile[$i] . "dups.bam OUTPUT=" . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "dups.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $picard . "BuildBamIndex.jar INPUT=" .
$FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T
RealignerTargetCreator -R " . $FastqFile[$i] . "_reference.fasta -I " . $FastqFile[$i] .
"header.bam -o " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T IndelRealigner -R
" . $FastqFile[$i] . "_reference.fasta -targetIntervals " . $FastqFile[$i] . ".intervals -I " .
$FastqFile[$i] . "header.bam -o " . $FastqFile[$i] . "realign2.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . "header.bam";
system($cmd);
$cmd = "rm " . $FastqFile[$i] . ".intervals";
system($cmd);
$cmd = "java -Xmx" . $mem . "g -jar " . $gatk . "GenomeAnalysisTK.jar -T UnifiedGenotyper -
R " . $FastqFile[$i] . "_reference.fasta -mbq 10 -stand_call_conf 31 -stand_emit_conf 31 -
ploidy 1 -out_mode EMIT_ALL_SITES -I " . $FastqFile[$i] . "realign2.bam -o " .
$FastqFile[$i] . "_SNPs.vcf"; #GENERATION OF ALL-SITES VCF. QUALITY VALUE
CUTOFFS ARE IGNORED IN THIS COMMAND LINE BECAUSE ALL SITES WITH AT
LEAST A SINGLE READ COVERING ARE CALLED
system($cmd);
}

#Following the end of the second round of the pipeline, several additional steps are required to
produce the sequence files provided in the Drosophila Genome Nexus
#POSITION ADJUSTMENT - due to aligning to an augmented reference, with INDELS called
in the first round inserted into the original reference genome, positions in the ALL-SITES VCF
files must be shifted back to those of the original reference genome.
#To adjust the base positions in the ALL SITES VCF files, simply place the IndelShift.pl script
in the same directory as the ALL SITES VCF file(s) produced from the pipeline above, along
with the round1 *INDELS.vcf files, and execute the IndelShift.pl script.
#Following position adjustment, the VCF_to_Seq scripts can be used to generate unformatted
sequences for each contig in the reference genome.
#For *sites.vcf files called with the diploid (-ploidy 2) option in the Unified Genotyper, use the
VCF_to_Seq_diploid.pl version, while those called with the haploid option (-ploidy 1) should
use the VCF_to_Seq_haploid.pl version.
#Place the appropriate version of this script in the same directory as your *sites.vcf files. Supply
the chromosome/contig names, the number of total chromosomes/contigs, the quality threshold,
and the number of bases around indels to be masked (change this to zero if you want to remove
this feature)

After generating raw sequences filtered only around indels (3-base filter), for the Drosophila
Genome Nexus (DGN) we performed additional filtering of heterozygosity and identity-by-
descent regions. Below, we describe these filters in detail and describe the provided scripts that
can be used to perform this filtering.

HETEROZYGOSITY FILTERING
For diploid genomes (i.e., the DGRP genomes from Raleigh), we masked all heterozygous
tracts. We scanned the 5 euchromatic arms of each diploid genome for heterozygous calls in
100 kb windows advancing in 5 kb increments. Rather than use a hard boundary for delineating
windows of residual heterozygosity, we chose to scale the threshold for a given window to the
level of genetic diversity observed in that window within either sub-Saharan or cosmopolitan
populations, depending on the geographic origin of each individual genome. To determine
these thresholds, we estimated nucleotide diversity (π) in 100 kb windows advancing in 5 kb
increments for the large Rwandan (RG) sample of 27 haploid embryo genomes and the French
sample of 9 haploid embryo genomes to represent sub-Saharan and cosmopolitan diversity,
respectively. Then to scan each genome for heterozygosity, whenever the proportion of
heterozygous sites in a given window exceeded π/5, a masking interval was initiated, and this
interval was extended in both directions on the chromosome arm until encountering a window
with heterozygosity less than π/20.
To perform this filtering, place the heterozygosity_windows.pl script in the same directory as
your gzipped target *sites.vcf.gz files and execute. This will output heterozygosity in windows
suitable for the heterozygosity_to_filter.pl to examine for tracts that excede the above described
thresholds. To identify these tracts, the FR_pi.txt and RG_pi.txt files should be placed in the
same directory as the HetRegions.txt inputs. These *_pi.txt files contain the cosmopolitan
(FR_pi.txt) and African (RG_pi.txt) pi threshold windows. For cosmopolitan genomes, $thresh
should be set to FR_pi.txt, whereas if the genomes are sub-Saharan African, $thresh should be
set to RG_pi.txt. In addition, the objects in the @Chromosome array should be edited to match
the reference contigs you wish to examine. Then, execute the heterozygosity_to_filter.pl script.
Sequence ranges that excede the designated thresholds will be identified in the
*HetFilterTracts.txt files that are produced.

PSEUDOHETEROZYGOSITY FILTERING
While haploid embryo genomes are not expected to contain any true heterozygosity, repetitive
and/or duplicated regions can cause mismapping that results in tracts of
“pseudoheterozygosity”. To detect these tracts and remove them, we implemented the same
threshold approach as outlined above (without normalization, since none of these genomes
showed elevated background levels of putative heterozygosity). For these genomes, the Unified
Genotyper was run in haploid mode, and so read proportions were analyzed in place of called
heterozygous sites. For windows with the proportion of sites with <75% of the reads matching
the consensus base above π/5, that window was enucleated, and this window was extended in
both directions until encountering a window below π/20.
To perform the pseudoheterozygosity filtering, the approach is the same as outlined above for
true heterozygosity, with the exception of using haploid *sites.vcf.gz files as inputs, and
utilizing the pseudoheterozygosity_windows.pl script to generate "heterozygosity" windows.

IDENTITY-BY-DESCENT FILTERING
Tracts of IBD may reflect the sampling of related individuals, and can contradict theoretical
assumptions and complicate many population genetic analyses. To identify tracts of IBD, we
implemented the approach of Pool et al. (2012), but with slight modifications for the diploid
genomes and for the large DPGP3 population sample (described below). All possible pairwise
comparisons were made for each of the five euchromatic arms of each genome, and pairwise
differences per site were calculated in 500 kb windows advanced in 100 kb increments.
Windows with less than 0.0005 pairwise differences per site were deemed putatively IBD.
Some chromosomal intervals (including centromere- and telomere-proximal regions) exhibited
large-scale, recurrent IBD between populations suggesting explanations other than close
relatedness, and therefore did not contribute to a genome’s IBD total unless they extended
outside these recurrent IBD regions. Elsewhere, within population IBD (presumably due to
very recent common ancestry) was determined to be that which totaled genome-wide >5 Mb
for a pairwise comparison of genomes.
For the DPGP2 and AGES genomes, we excluded the same recurrent IBD regions as those of
Pool et al. (2012). However, for the much larger DGRP and DPGP3 samples of genomes, we
visually reexamined these recurrent IBD tracts and generated new regions to be excluded for
each of these data sets (provided in Table S4 of the DGN manuscript and available at http://
johnpool.net/genomes.html).
Due to heterozygosity filtering, some diploid genomes had genomic coverages far less than the
typical ~111 Mb. Therefore, the genome-wide threshold for IBD filtering was adjusted to 5% of
all called positions rather than 5 Mb. In addition, only 500 kb windows with >100 kb pairwise
comparisons were allowed to contribute to the 5% total, minimizing the influence of windows
with large numbers of masked sites.

Pool, J. E., R. B. Corbett-Detig, R. P. Sugino, K. A. Stevens, C. M. Cardeno et al., 2012
Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and

