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Figure S1. Equivalent to Figure 1 in the main text, with U = 0.1 (and other param-

eters as in Figure 1).
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Figure S2. Equivalent to Figure 1 in the main text, with s = 0.01 (and other

parameters as in Figure 1).
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Figure S3. Equivalent to Figure 1 in the main text, with s = 0.1 (and other param-

eters as in Figure 1).
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Figure S4. Mean fitness when deleterious alleles are fully recessive (same parameter

values as in Figure 4 in the main text). As in Figures 1 and S1–S3, dashed and solid

curves represent analytical predictions ignoring (dashed, W ≈ e−U) and including

(solid, equation 10 in the main text) the effects of identity disequilibria, while dotted

lines show (1 − α) e−U .
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Figure S5. Dominance coefficient h of deleterious alleles as a function of their selec-

tion coefficient s, assuming a log-normal distribution of selection coefficients (s) and

fixed heterozygous effect (sh) of deleterious alleles. Parameter values are as in Figure

5 in the main text.
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Figure S6. Same as Figure 5 in the main text, setting θ = 0.5 exp [µ− σ2/2] ≈

0.01318 so that h = 0.5.
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Figure S7. Same as Figure 6 in the main text, showing approximations from Glémin

et al (2003) for the mutation load, inbreeding depression and heterosis (dashed curves).
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FILE S1: PARTIAL SELF-FERTILIZATION

I consider a very large (effectively infinite) population with discrete genera-

tions. Individuals are hermaphroditic, and a parameter α measures the proportion of

offspring produced by selfing (while the other 1 − α are produced by random union

of gametes). Deleterious mutations occur at a rate U per haploid genome per gene-

ration. I assume for simplicity that all deleterious alleles have the same selection (s)

and dominance (h) coefficients, although this assumption will be relaxed at the end.

Throughout, the effects of deleterious alleles at different loci are assumed to be multi-

plicative (no epistasis).

Genetic associations. Following previous work (Barton and Turelli, 1991; Kirk-

patrick et al., 2002), genetic associations within and between loci may be defined as

follows. The frequencies of the deleterious allele at locus i on the first and second

haplotype of an individual are denoted Xi(1) and Xi(2), respectively (these variables

equal 0 or 1, depending on whether the deleterious allele is present or not on this

haplotype). Centered variables ζi(1) and ζi(2) are defined as:

ζi(1) = Xi(1) − pi, ζi(2) = Xi(2) − pi (A1)

where pi is the frequency of the deleterious allele at locus i in the whole population.

The association between the sets S and T of loci present in the two haplotypes of the

same individual is defined as:

DS,T = E [ζS,T] (A2)
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where E stands for the average over the whole population, and where

ζS,T =
ζS(1) ζT(2) + ζS(2) ζT(1)

2
,

ζS(1) =
∏
i∈S

ζi(1), ζT(2) =
∏
i∈T

ζi(2)

(A3)

(note that DS,T = DT,S). Associations between genes present on the same haplotype

of an individual (DS,∅) will be simply denoted DS. For example, Di,i = E
[
ζi(1) ζi(2)

]
measures the departure from Hardy-Weinberg equilibrium at locus i, while Dij =

E
[
ζi(1) ζj(1) + ζi(2) ζj(2)

]
/2 is the linkage disequilibrium between deleterious alleles at

loci i and j. Finally, associations with repeated indices (such as Dii,j) usually appear

when deriving recursions; however, these repeated indices can be eliminated using the

relation:

DSii,T = piqiDS,T + (1− 2pi)DSi,T (A4)

(e.g., equation 5 in Kirkpatrick et al., 2002). In particular, Dii,j = (1− 2pi)Di,j.

Recursions on genetic associations. General expressions for the effects of selection,

reproduction (recombination and gamete fusion, with selfing rate α) and mutation on

genetic associations can obtained using the methods developed by Barton and Turelli

(1991) and Kirkpatrick et al. (2002). In particular, DS,T after selection (denoted Ds
S,T)

is given by:

Ds
S,T = D•S,T +

∑
X⊂S

∑
Y⊂T

D•S\X,T\Y
∏
i∈X

(−∆spi)
∏
j∈Y

(−∆spj) (A5)

where

D•S,T = E

[
W

W
ζS,T

]
. (A6)

In the expressions above, W and W stand for the fitness of an individual and the

average fitness of the population. The sums in the second term are over all subsets X
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and Y of the sets S and T (including the empty set), while S\X stands for the set S,

from which the elements of the set X have been removed. Finally, ∆spi is the change

in frequency of the deleterious allele at locus i due to selection.

Associations after recombination and fertilization (denoted Dr
S,T) are given by:

Dr
S,T =

∑
XY=S

∑
UV=T

tX,YtU,V

[
(1− α)Ds

X,YD
s
U,V +

α

2

(
Ds

XU,YV +Ds
XV,YU

)]
(A7)

where (X,Y) is a partition of the set S, and tX,Y is the probability that loci in the set

X come from one of the haplotypes of the parent, and loci in the set T come from the

other haplotype (when S contains only one locus i we have ti,∅ = 1, while when S = ij,

we have tij,∅ = 1 − rij and ti,j = rij, where rij is the recombination rate between the

two loci).

Finally, the effect of mutation on associations writes:

D′S,T = (1− u)|S|+|T|DS,T (A8)

where u is the deleterious mutation rate per locus, and |S| is the number of elements

in the set S. However, in the following we will neglect the effect of mutation when

deriving recursions on genetic associations, as it only has a negligible effect on expres-

sions at equilibrium (as long as u� s).

Effects of genetic associations on mean fitness. Using the notations defined

above, the fitness of an individual can be written as:

W =
∏
i

[
1− sh

(
Xi(1) +Xi(2)

)
− s (1− 2h)Xi(1)Xi(2)

]
(A9)

Expressing in terms of ζi(1), ζi(2) variables and rearranging, one obtains:

W =
∏
i

[
1 + Ti + ai

(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

)]
(A10)
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where

Ti = −2sh pi − s (1− 2h)
(
pi

2 +Di,i

)
ai = −s [h+ (1− 2h) pi] , ai,i = −s (1− 2h) .

(A11)

Through the following, I assume that deleterious alleles stay at low frequency in the

population (pi small), so that Ti ≈ −2sh pi − s (1− 2h)Di,i and ai ≈ −sh. From

equation A10, and assuming that s is small, log-fitness is given by:

lnW ≈
∑
i

[
Ti + ai

(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

)]
. (A12)

Therefore, the mean log-fitness is approximately:

lnW ≡ E [lnW ] ≈
∑
i

Ti ≈ −
∑
i

(2sh pi + s (1− 2h)Di,i) . (A13)

Note that terms in pi
2 should be included in the equations above to deal with the effects

of fully recessive deleterious alleles (h close to zero) under panmixia, since Di,i = 0

when mating is random; however, in the following we will assume that either h or α is

significantly greater than zero.

Assuming that the variance in fitness in the population remains small, mean

fitness W ≡ E [W ] can be expressed in terms of the mean and variance in log-fitness

through the following argument. Denoting z = lnW , z = lnW and dz = z − z, we

have:

W = E [ez] = E
[
ez+dz

]
, (A14)

and a Taylor series to the second order in dz yields:

W ≈ elnW
(

1 +
Var [lnW ]

2

)
. (A15)

Using a similar reasoning, one obtains for the variance in fitness (neglecting terms in

Var [lnW ]2):

Var [W ] ≈ e2lnW Var [lnW ] . (A16)
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From equations A12 and A13, the variance in log-fitness is given by:

Var [lnW ] = E

(∑
i

(
ai
(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

)))2


= E

[∑
i,j

(
ai
(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

))
×
(
aj
(
ζj(1) + ζj(2)

)
+ aj,j

(
ζj(1)ζj(2) −Dj,j

))]
(A17)

where the last sum is over all i and j, including i = j. Equation A17 finally yields:

Var [lnW ] ≈ 2 (sh)2
∑
i,j

(Dij +Di,j) + 2s2h (1− 2h)
∑
i,j

(Dij,i +Dij,j)

+ s2 (1− 2h)2
∑
i,j

(Dij,ij −Di,iDj,j) .

(A18)

In an infinite, randomly mating population, all associations within and between loci

should be zero at equilibrium, and using the fact that Dii = piqi and Dii,ii = (piqi)
2

(from equation A4), equation A18 simplifies to the classical expression for the variance

of a quantitative trait in the absence of epistasis, under random mating: 2 (sh)2
∑

i piqi+

s2 (1− 2h)2
∑

i (piqi)
2 (e.g., Lynch and Walsh, 1998, p. 69). At mutation-selection bal-

ance, and assuming again that h is significantly greater than zero, pi ≈ u/ (hs) (where

u is the deleterious mutation rate per locus), and the variance in log-fitness is thus

approximately 2shU (neglecting terms in pi
2).

With inbreeding, all the associations that appear in equation A18 differ from

zero at equilibrium. However, we will see that under weak selection, different types

of associations are of different orders of magnitude: Di,i and Dij,ij are generated by

inbreeding (even in the absence of selection), Dij,i is generated by inbreeding and by

selection acting on locus j and is of order s, while Dij, Di,j are generated by inbreeding

and by selection acting on both loci, and are of order s2. Neglecting associations

generated by selection, and noting from equation A4 that Dii,i = (1− 2pi)Di,i while
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Dii,ii = (piqi)
2 + (1− 2pi)

2Di,i, which are both approximately equal to Di,i when pi is

small, one obtains (to the first order in pi):

Var [lnW ] ≈ 2 (sh)2
∑
i

pi + s2
(
1− 2h2

)∑
i

Di,i

+ s2 (1− 2h)2
∑
i 6=j

(Dij,ij −Di,iDj,j) .

(A19)

Because Di,i and Dij,ij are proportional to pi and to pipj, respectively (for pi, pj small),

while pi and pj are proportional to u/s at equilibrium, the terms on the first line of

equation A19 are proportional to sU , while the term on the second line is proportional

to U2. Because we will focus on situations where s � U (so that many deleterious

alleles may be present in a single genome, and interactions between these alleles may

thus have noticeable effects), in the following we will neglect the terms on the first line

of equation A19. Although the expression obtained for Var [lnW ] may not be accurate

when the average number of mutations per genome is low or when h is close to 0.5,

the term in Var [lnW ] in equation A15 should be negligible in these situations. Using

this approximation, one obtains (from equations A13, A15 and A19):

W ≈ e−2sh
∑

i pi−s(1−2h)
∑

iDi,i

[
1 +

1

2
s2 (1− 2h)2

∑
i 6=j

(Dij,ij −Di,iDj,j)

]
. (A20)

Interference between loci appears in the terms between brackets in equation A20, but

also affects the equilibrium values of Di,i and pi. We now derive expressions for these

different terms to the order U2, that is, neglecting the effects of higher-order interac-

tions (between three or more loci), which would generate terms of higher order in U .

Expressions for genetic associations under neutrality. As mentioned before,

the term Dij,ij − Di,iDj,j is generated by partial selfing even in the absence of se-

lection. Recursions for Di,i and Dij,ij under neutrality are obtained from equation
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A7:

D′i,i =
α

2
(Di,i + piqi) (A21)

D′ij,ij =
α

2

[
[1− 2rij (1− rij)] (Dij,ij + pqij)

+ 2rij (1− rij) (piqiDj,j + pjqjDi,i)
] (A22)

with pqij = piqipjqj. At equilibrium, one obtains:

Di,i = F piqi, Dij,ij = φij pqij (A23)

with

F =
α

2− α
, φij =

α

2− α
2− α− 2 (2− 3α) rij (1− rij)

2− α [1− 2rij (1− rij)]
. (A24)

Therefore,

Dij,ij −Di,iDj,j = Gij pqij ≈ Gij pipj (A25)

(assuming pi, pj small), where Gij = φij − F 2 is the identity disequilibrium between

loci i and j. Under free recombination (rij = 1/2), Gij simplifies to:

G =
4α (1− α)

(4− α) (2− α)2
. (A26)

Because Gij is only weakly dependent on rij, it is often close to G even when rij < 1/2.

Associations Di,i and Dij,j to the first order in s. The effect of identity dis-

equilibria on the term in
∑

iDi,i (which appears in the exponential in equation A20)

can be obtained as follows. From equations A12 and A20, we have to the first order

in s:

W

W
≈ −sh

∑
j

(
ζj(1) + ζj(2)

)
− s (1− 2h)

∑
j

(
ζj(1)ζj(2) −Dj,j

)
. (A27)

From equation A5, the association Di,i after selection is given by:

Ds
i,i = E

[
W

W
ζi(1)ζi(2)

]
− (∆spi)

2 . (A28)
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However, (∆spi)
2 is of order s2 and can be neglected. Using equation A27, one obtains:

Ds
i,i ≈ −2sh

∑
j

Dij,i − s (1− 2h)
∑
j

(Dij,ij −Di,iDj,j) . (A29)

The sums in equation A29 are over all loci j, including j = i; however we may neglect

terms with j = i when the number of segregating loci is large (s� U). Furthermore,

the first term of equation A29 is of order s2, since Dij,i is of order s. Neglecting these

terms, one obtains the following recursion for Di,i:

D′i,i ≈
α

2

[
piqi +Di,i − s (1− 2h)

∑
j 6=i

(Dij,ij −Di,iDj,j)

]
. (A30)

Therefore, at equilibrium:

Di,i ≈ F

[
1− s (1− 2h)

∑
j 6=i

Gij pj

]
pi . (A31)

In order to calculate allele frequencies at mutation-selection balance, we will

also need an expression for associations Dij,j at equilibrium, to the first order in s.

From equation A5, we have (to the first order in s):

Ds
ij,j = E

[
W

W

ζij,j + ζj,ij
2

]
− (∆spi)Dj,j . (A32)

Furthermore,

∆spi = E

[
W

W

Xi(1) +Xi(2)

2

]
− pi = E

[
W

W

ζi(1) + ζi(2)
2

]
(A33)

and thus, to the first order in s (using equation A27):

∆spi = −sh pi − s (1− h)Di,i . (A34)

From equations A27, A32 and A34, one obtains:

Ds
ij,j ≈ Dij,j − s (1− h) (Dij,ij −Di,iDj,j) . (A35)
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A recursion for Dij,j over the whole life cycle (to the first order in s) is given by:

D′ij,j ≈
α

2
Ds
ij,j ≈

α

2
[Dij,j − s (1− h) (Dij,ij −Di,iDj,j)] (A36)

giving at equilibrium:

Dij,j ≈ −s (1− h)F Gij pipj (A37)

(assuming pi, pj small).

Allele frequencies. To take into account the effects of between-locus interactions

on equilibrium allele frequencies, we need to express W/W to the second order in s.

From equations A12 and A20, this is:

W

W
≈ 1− sh

∑
j

(
ζj(1) + ζj(2)

)
− s (1− 2h)

∑
j

(
ζj(1)ζj(2) −Dj,j

)
+ (sh)2

∑
i<j

(
ζi(1) + ζi(2)

) (
ζj(1) + ζj(2)

)
+ s2h (1− 2h)

∑
i 6=j

(
ζi(1) + ζi(2)

) (
ζj(1)ζj(2) −Dj,j

)
+ s2 (1− 2h)2

∑
i<j

[(
ζi(1)ζi(2) −Di,i

) (
ζj(1)ζj(2) −Dj,j

)
− (Dij,ij −Di,iDj,j)

]
(A38)

From equations A33 and A38, neglecting terms in pi
2 and neglecting terms in sU

relative to terms in U2, one obtains:

∆spi = −sh pi − s (1− h)Di,i − s (1− 2h)
∑
j 6=i

Dij,j

+ s2 (1− h) (1− 2h)
∑
j 6=i

(Dij,ij −Di,iDj,j) .

(A39)

Using equations A25, A31 and A37, this is:

∆spi = −s

[
h+ (1− h)F − s (1− h) (1− 2h) (1 + 2F )

∑
j 6=i

Gijpj

]
pi . (A40)
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while the change in pi due to mutation is approximately u. Assuming unlinked loci

(Gij = G), one obtains for the average number of deleterious alleles per haploid

genome, n =
∑

i pi, to the order U2:

n ≈ U

s [h+ (1− h)F ]

[
1 +

U (1− h) (1− 2h) (1 + 2F )G

[h+ (1− h)F ]2

]
(A41)

or in terms of the selfing rate α:

n ≈ U (2− α)

s [2h+ α (1− 2h)]

[
1 +

4U (1− h) (1− 2h)α (1− α) (2 + α)

(2− α) (4− α) [2h+ α (1− 2h)]2

]
. (A42)

Finally, equations A20, A25, A26, A31 and A42 yield the following expressions for

mean fitness:

W ≈ (1 + I2) exp

[
−U 4h+ α (1− 4h)

2h+ α (1− 2h)
(1 + I1) +

2α

2− α
I2

]
(A43)

with:

I1 = 2U (1− h) (1− 2h)
2 + α

2− α
T, I2 = U2 (1− 2h)2 T (A44)

and

T =
2α (1− α)

(4− α) [2h+ α (1− 2h)]2
. (A45)

Furthermore, from equations A13, A16, A19, A25, A31 and A42, one obtains for the

variance in fitness:

Var [W ] ≈
(
sU

4h2 (1− α) + α

2h+ α (1− 2h)
+ 2I2

)
exp

[
−2U

4h+ α (1− 4h)

2h+ α (1− 2h)
(1 + I1) +

4α

2− α
I2

]
(A46)

simplifying to 2shUe−4U when α = 0, and sUe−2(2−α)U when h = 1/2. Note that

a term in sU2 has been neglected in the first parenthesis of equation A46, this term

being given by:

sU2 (1− 2h)
4α (1− α) [8h2 (1− h) + α (1− 2h) (2− 4h2 + αh)]

(2− α) (4− α) [2h+ α (1− 2h)]3
. (A47)
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Inbreeding depression. Using the same reasoning as for the derivation of equation

A20 above, one obtains that the mean fitness of selfed offspring is given by:

W self ≈ e−2shn−s(1−2h)
∑

iD
self
i,i

[
1 +

1

2
s2 (1− 2h)2

∑
i 6=j

(
Dself
ij,ij −Dself

i,i D
self
j,j

)]
(A48)

where Dself
i,i and Dself

ij,ij correspond to the averages of ζi,i and ζij,ij over selfed offspring.

Because the same quantities averaged over outcrossed offspring equal zero, the mean

fitness of outcrossed offspring is simply W out ≈ e−2shn, and therefore:

δ = 1− W self

W out

≈ 1− e−s(1−2h)
∑

iD
self
i,i

[
1 +

1

2
s2 (1− 2h)2

∑
i 6=j

(
Dself
ij,ij −Dself

i,i D
self
j,j

)]
.

(A49)

Finally, noting that Dself
i,i = 1

2
(piqi +Di,i), while under free recombination Dself

ij,ij =

1
4

(pqij +Dij,ij + piqiDj,j + pjqjDi,i), one obtains after simplification:

δ ≈ 1−
(

1 +
I2
4

)
exp

[
−U 1− 2h

2h+ α (1− 2h)
(1 + I1) +

α

2− α
I2

]
(A50)

where I1 and I2 are given by equation A44.

Variable selection and dominance coefficients across loci. The above ana-

lysis can easily be extended to the case where s and h vary across loci, if we can

assume that drift remains negligible at most loci. Denoting si and hi the selection and

dominance coefficient of the deleterious allele at locus i, equation A13 becomes:

lnW ≈ −
∑
i

si (2hi pi + (1− 2hi)Di,i) (A51)

while from equation A19, the variance in log-fitness is approximately

Var [lnW ] ≈
∑
i 6=j

si (1− 2hi) sj (1− 2hj) (Dij,ij −Di,iDj,j) (A52)
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when α > 0 and h 6= 1/2. Furthermore, first order expressions for Di,i and Dij,j at

equilibrium (equations A31 and A37 above) become:

Di,i ≈ F

[
1−

∑
j 6=i

sj (1− 2hj)Gij pj

]
pi (A53)

Dij,j ≈ −si (1− hi)F Gij pipj . (A54)

From this, one obtains the following expression for the frequency of the deleterious

allele at locus i at mutation-selection balance, taking into account effects of identity

disequilibria:

pi ≈
u

si [hi + (1− hi)F ]

[
1 +

(1− hi) (1 + 2F )G

hi + (1− hi)F
∑
j 6=i

u (1− 2hj)

hj + (1− hj)F

]
. (A55)

From equations A15 and A51 – A55, and assuming that the total number of loci is

large, one obtains that mean fitness and inbreeding depression are approximately given

by:

W ≈ exp
[
−U
[
Λ1 +GU ((1 + 2F ) Λ2 − F Λ3) Λ3

]](
1 +

1

2
GU2Λ2

3

)
(A56)

δ ≈ 1− exp
[
−U
[
1 + F +GU ((1 + F ) (1 + 2F ) Λ2 − F Λ3)

]Λ3

2

]
×
(

1 +
1

8
GU2Λ2

3

) (A57)

where Λ1, Λ2 and Λ3 are integrals over the distribution of h across loci, ψ (h):

Λ1 =

∫
ψ (h)

2h+ (1− 2h)F

h+ (1− h)F
dh, (A58)

Λ2 =

∫
ψ (h)

(1− h) [2h+ (1− 2h)F ]

[h+ (1− h)F ]2
dh, (A59)

Λ3 =

∫
ψ (h)

1− 2h

h+ (1− h)F
dh . (A60)

Figure 5 in the main text has been obtained by calculating numerically these integrals

using the NIntegrate function of Mathematica.
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FILE S2: POPULATION STRUCTURE

In order to explore the effects of population subdivision, I use the infinite island

model of population structure: the population consists in an infinite number of demes,

each containing N hermaphroditic, diploid adults. These individuals produce a very

large (effectively infinite) number of gametes, which fuse at random to form diploid ju-

veniles. Each juvenile then migrates (to any other deme) with probability m. Finally,

N individuals are sampled randomly from each deme to form the next adult generation.

Recursions on genetic associations. The methods developed in Roze and Rousset

(2008) and Roze (2009) can be used to define genetic associations, and derive recursions

representing the effects of selection, recombination, migration and coalescence within

demes on allele frequencies and genetic associations. For this, Xi(xy1) and Xi(xy2) are

defined as indicator variables that equal 1 if individual y in deme x carries a delete-

rious allele at locus i on its first or second haplotype (respectively). Calling pi the

frequency of the deleterious allele at locus i in the whole metapopulation, centered

variables ζi(xy1) and ζi(xy2) are defined as:

ζi(xy1) = Xi(xy1) − pi, ζi(xy2) = Xi(xy2) − pi . (B1)

As before, genetic associations between genes present on the same or on different

haplotypes of an individual are defined as:

DS,T = E
[
ζS,T(xy)

]
(B2)
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where E stands for the average over all demes x and all individuals y, and where

ζS,T(xy) =
ζS(xy1) ζT(xy2) + ζS(xy2) ζT(xy1)

2
,

ζS(xy1) =
∏
i∈S

ζi(xy1), ζT(xy2) =
∏
i∈T

ζi(xy2)

(B3)

(as before, DS,∅ will be simply denoted DS). Additionally, we need to define associa-

tions between genes present in different individuals from the same deme. The associa-

tion between the sets S and T of genes present on the first and second haplotype of an

individual, and the sets U and V of genes present on the first and second haplotype of

a different individual from the same deme is denoted DS,T/U,V, and defined as:

DS,T/U,V = E
[
ζS,T(xy)ζU,V(xz)

]
(B4)

where E stands for the average over all demes x and all pairs of individuals y, z,

with y 6= z. Associations between genes present in three or more individuals from the

same deme (such as DS,T/U,V/X,Y) can be defined similarly. In the following we will

also consider associations between genes from individuals sampled with replacement

from the same deme, denoted DS,T
a
/U,V and defined as in equation B4, excepts that the

average is over all individuals y and z including y = z. Note that we have:

DS,T
a
/U,V =

DSU,TV +DSV,TU

2N
+

(
1− 1

N

)
DS,T/U,V . (B5)

Finally, because we assume random fusion of gametes within demes, it will be conve-

nient to define associations at the gamete stage, since these will only involve haploid

“individuals” (where an individual now corresponds to a gamete). These are denoted

Dg
S, Dg

S/T... and are defined as above, except that averages are taken over all demes

and all gametes (note that because we assume an infinite number of gametes per deme,

we have Dg

S
a
/T

= Dg
S/T).
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Recursions describing the effects of migration, recombination and coalescence

within demes can be obtained by considering the possible origins of genes in a given

set at the previous generation (see Roze and Rousset, 2008; Roze, 2009 for general

expressions). For example, Dg
i/i measures the association between two genes at locus i,

sampled from two different gametes from the same deme. In the absence of selection,

these gametes have been produced by the same parent with probability 1/N , and by

two different parents with probability 1− 1/N ; therefore:

Dg
i/i = D

i
a
/i

=
piqi +Di,i

2N
+

(
1− 1

N

)
Di/i (B6)

where associations D
i
a
/i

, Di,i and Di/i are measured in the diploid parents. Two genes

present on different haplotypes of a parent were carried by two gametes produced in

the same deme at the previous generation; the same is true for two genes present in

different parents, if these parents come from the same deme (while the association

between two genes sampled from two different demes is zero, due to our assumption of

an infinite number of demes). Therefore, a recursion for Dg
i/i under neutrality is given

by:

Dg
i/i
′ =

piqi +Dg
i/i

2N
+

(
1− 1

N

)
(1−m)2Dg

i/i (B7)

When N is large and m small, this is approximately:

Dg
i/i
′ ≈ piqi

2N
+

(
1− 1

2N
− 2m

)
Dg

i/i, (B8)

which gives at equilibrium:

Dg
i/i ≈

piqi
1 + 4Nm

(B9)

that is, FST piqi (Roze and Rousset, 2008). Finally, selection can be incorporated by

weighting each parent by its fitness. For example assuming soft selection, so that
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the fitness of parent y in deme x only depends on the number of gametes it produces

(denoted Wxy), relative to the average number of gametes produced in deme x (denoted

Wx), the change in allele frequency pi due to selection is given by:

∆spi = E

[
Wxy

Wx

Xi(xy1) +Xi(xy2)

2

]
− pi = E

[
Wxy

Wx

ζi(xy1) + ζi(xy2)
2

]
(B10)

where again the average is over all demes x and individuals y. Furthermore, the

association between genes at locus i present in two different gametes (Dg
i/i) can be

expressed in terms of genetic associations among parents from the relation:

Dg
i/i = E

[(
Wxy

Wx

ζi(xy1) + ζi(xy2)
2

)(
Wxz

Wx

ζi(xz1) + ζi(xz2)
2

)]
− (∆spi)

2 (B11)

where the average is over all demes x and all pairs of parents y and z (including y = z).

Assuming weak selection, equations B10 and B11 can then be expressed in terms of

associations among parents, as shown in the next section.

A single selected locus. We will first consider the case of a single locus (denoted

i) and assume that the fecundity (number of gametes produced) of heterozygous in-

dividuals is reduced by a factor 1 − hs relative to wild type individuals, while the

fecundity of homozygous individuals for the deleterious allele is reduced by a factor

1 − s. As shown in the single population case (equation A10 in Supplementary File

A), the fecundity Wxy of individual y in deme x can be written as:

Wxy ≈ 1 + Ti − sh
(
ζi(xy1) + ζi(xy2)

)
− s (1− 2h)

(
ζi,i(xy) −Di,i

)
(B12)

with Ti = −2sh pi − s (1− 2h)Di,i (assuming that the frequency of the deleterious

allele in the metapopulation pi is small). The average fecundity in deme x is thus

given by:

Wx ≈ 1 + Ti − 2sh ζi(x) − s (1− 2h)
(
ζi,i(x) −Di,i

)
(B13)
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where ζS,T(x) stands for the average over all individuals y of ζS,T(xy). From this, we have

to the first order in s:

Wxy

Wx

≈ 1− sh
(
ζi(xy1) + ζi(xy2) − 2ζi(x)

)
− s (1− 2h)

(
ζi,i(xy) − ζi,i(x)

)
. (B14)

From equations B10 and B14, the change in frequency of the deleterious allele due to

selection is given by:

∆spi ≈ −sh
(
piqi +Di,i − 2D

i
a
/i

)
− s (1− 2h)

(
Dii,i −Di,i

a
/i

)
(B15)

where Dii,i = (1− 2pi)Di,i ≈ Di,i when pi is small. Expressing Di,i, Di
a
/i

and D
i,i

a
/i

in

terms of associations between gametes produced by parents of the previous generation,

one obtains:

∆spi ≈ −sh
(

1− 1

N

)[
piqi +

[
1− 2 (1−m)2

]
Dg

i/i

]
− s (1− 2h)

(
1− 1

N

)(
Dg

i/i − (1−m)2Dg
i/i/i

)
.

(B16)

A similar expression is derived in Roze and Rousset (2003) and Roze and Rousset

(2004). In these previous works, an approximation of ∆spi to the first order in s

is then obtained by replacing associations Dg
i/i and Dg

i/i/i in equation B16 by their

equilibrium values under neutrality — a similar method has been used by Whitlock

(2002, 2003) and Wakeley (2003). While the expression obtained is generally accurate

as long as m� s, it may greatly overestimate the effect of population structure when

m is of the same order of magnitude as s or lower (Roze and Rousset, 2003, 2004), as

selection may generate important deviations of genetic associations from their neutral

values. The methods of Roze and Rousset (2008) can be used to compute the effect of

selection on genetic associations (assuming weak selection), but this leads to an infinite

system of recursions (as the recursion for Dg
i/i depends on Dg

i/i/i and Dg
i/i/i/i, which in
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turn depend on associations between genes present in 5 or 6 different gametes from

the same deme, and so on). When 1/N � m and s, however, associations between

genes present in two different gametes from the same deme should be of order 1/N ,

while associations between genes present in 3, 4, ... gametes should be of order 1/N2,

1/N3, ... (as these associations are ultimately generated by identity-by-descent, and

probabilities of identity by descent between genes present in 2, 3... gametes are of order

1/N , 1/N2...). To leading order in 1/N , one may thus neglect associations involving 3

or more gametes in the recursion for Dg
i/i (and similarly, neglect associations involving

4 or more gametes in the recursion for Dg
i/i/i). As we will see, the results obtained by

doing so improve considerably the approximations obtained by replacing associations

by their neutral equilibrium values, even when 1/N , m and s have the same order of

magnitude. Through the following, we assume that 1/N , m and s are of order ε, and

derive recursions to leading order in ε. From equations B11 and B14, one obtains to

the first order in ε (neglecting associations between genes from 3 or more gametes, and

neglecting terms in pi
2):

Dg
i/i ≈ (1− 2sh)D

i
a
/i

(B17)

wich, together with equation B7, yields:

Dg
i/i
′ ≈ pi

2N
+

(
1− 2sh− 1

2N
− 2m

)
Dg

i/i . (B18)

Thus, at equilibrium:

Dg
i/i ≈

pi
1 + 4N (m+ sh)

. (B19)

Interestingly, the same result has been obtained by Glémin et al. (2003) using a method

developed by Ohta and Kimura (1969, 1971) to compute moments of allele frequencies
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in finite populations (equation 11a in Glémin et al., 2003). Similarly, one obtains:

Dg
i/i/i

′ ≈ 3

2N
Dg

i/i +

(
1− 3sh− 3

2N
− 3m

)
Dg

i/i/i (B20)

giving at equilibrium:

Dg
i/i/i ≈

pi
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]

. (B21)

Expressing equation B16 to the first order in ε, we have:

∆spi ≈ −sh pi − s (1− 3h)Dg
i/i + s (1− 2h)Dg

i/i/i (B22)

which, together with equations B19 and B21 gives at mutation-selection equilibrium:

pi ≈
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]u

2Ns (m+ sh) [1 + 4Nh (m+ sh)]
. (B23)

Furthermore, from equation B12 the mutation load L is given by:

L = 1−W ≈ 2sh pi + s (1− 2h)Dg
i/i (B24)

which, from equations B19 and B23, becomes:

L ≈ [1 + 2N (m+ sh)] [1 + 8Nh (m+ sh)]u

2N (m+ sh) [1 + 4Nh (m+ sh)]
. (B25)

Heterosis H can be defined as the increase in fitness of offspring generated by crossing

parents from two different demes (denoted Wbetween), relative to the mean fitness of

offspring produced by random mating within demes, which is simply W (e.g., Whitlock

et al., 2000; Theodorou and Couvet, 2002; Roze and Rousset, 2004). From equation

B12, and using the fact that the average of ζi,i(xy) over offspring whose parents come

from different demes is zero, we have Wbetween ≈ 1− 2sh pi, yielding (to the first order

in s):

H = 1− W

Wbetween

≈ s (1− 2h)Dg
i/i . (B26)
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From equations B19 and B23, one obtains:

H ≈ (1− 2h) [1 + 2N (m+ sh)]u

2N (m+ sh) [1 + 4Nh (m+ sh)]
. (B27)

Finally, inbreeding depression δ may be defined as the decrease in fitness of selfed

offspring relative to offspring produced by random mating within demes (see equation

14 in the main text). From equation B12, and using the fact that the average of ζi,i(xy)

over selfed offspring is
(
pi +Dg

i/i

)
/2, one obtains:

δ ≈ 1

2
s (1− 2h)

(
pi −Dg

i/i

)
, (B28)

yielding:

δ ≈ (1− 2h) [1 + 2N (m+ sh)]u

1 + 4Nh (m+ sh)
. (B29)

When m � sh, equations B23, B25, B27 and B29 become equivalent to equations

35-39 in Roze and Rousset, 2004. Furthermore, the reasoning described above can be

generalized to the case where individuals self-fertilize at a rate α, which leads to the

same expressions as equations 35-39 in Roze and Rousset (2004), except that m is

changed to m+ sh.

Many selected loci. As in the single population case, I assume that all deleteri-

ous alleles have the same selection and dominance coefficients. The methods of Roze

and Rousset (2008) can be used to derive expressions for equilibrium allele frequencies,

mutation load, inbreeding depression and heterosis, taking into account the effects of

pairwise interactions between selected loci. For this, general expressions have been

implemented in a Mathematica notebook (available as a supplementary file) in order

to automatically generate recursions for allele frequencies and genetic associations in

a two-locus model. The results can then be extrapolated to many loci, neglecting
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higher-order interactions (involving three or more loci). The main steps of the deriva-

tions are shown in the following. As before, I assume that the equilibrium frequency

of deleterious alleles is small, so that terms in pi
2 can be neglected. I also assume that

1/N , m and s are small (of order ε). More general results can be derived for arbitrary

values of N and m, but the expressions obtained are cumbersome and thus not shown

here.

From equation A38 in Supplementary File A, the fecundity of individual y in

deme x (Wxy) relative to the average fecundity in the whole metapopulation (W ) can

be written as (to the second order in s):

Wxy

W
≈ 1− 2sh

∑
j

ζj(xy) − s (1− 2h)
∑
j

(
ζj,j(xy) −Dj,j

)
+ (sh)2

∑
i 6=j

(
ζij(xy) + ζi,j(xy)

)
+ 2s2h (1− 2h)

∑
i 6=j

(
ζij,j(xy) − ζi(xy)Dj,j

)
+

1

2
s2 (1− 2h)2

∑
i 6=j

(
ζij,ij(xy) − ζi,i(xy)Dj,j − ζj,j(xy)Di,i −Dij,ij + 2Di,iDj,j

)
(B30)

where ζU,V(xy) is given by equation B3. The mean fecundity is deme x (Wx) relative

to the average fecundity in the whole population is given by the same expression,

replacing each ζU,V(xy) by its average over all individuals in the deme x, ζU,V(x). From

this, one obtains the following expression for the ratio Wxy/Wx, to the second order
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in s:

Wxy

Wx

≈ 1− 2sh
∑
i

(
ζi(xy) − ζi(x)

)
− s (1− 2h)

∑
i

(
ζi,i(xy) − ζi,i(x)

)
+ s2h2

∑
i 6=j

[
ζij(xy) − ζij(x) + ζi,j(xy) − ζi,j(x) − 4

(
ζi(xy) − ζi(x)

)
ζj(x)

]
+ 2s2h (1− 2h)

∑
i 6=j

[
ζij,j(xy) − ζij,j(x) − ζi(xy)ζj,j(x) − ζj,j(xy)ζi(x) + 2ζi(x)ζj,j(x)

]
+

1

2
s2 (1− 2h)2

∑
i 6=j

[
ζij,ij(xy) − ζij,ij(x) − 2ζi,i(xy)ζj,j(x) + 2ζi,i(x)ζj,j(x)

]
.

(B31)

The change in frequency of the deleterious allele at locus i due to selection is given by:

∆spi = E

[
Wxy

Wx

ζi(xy)

]
(B32)

where the average is over all demes and all individuals. Using equation B31, one

obtains:

∆spi ≈− sh pi − s (1− 3h)Dg
i/i + s (1− 2h)Dg

i/i/i

− s (1− 2h)
∑
j 6=i

(
Dg

ij/j −D
g
i/j/j

)
+ s2 (1− 2h)

∑
j 6=i

[
(1− h)

(
Dg

ij/ij −D
g
i/i/j/j

)
− 4h

(
Dg

ij/i/j −D
g
i/i/j/j

)]
− s2 (1− 2h)2

∑
j 6=i

(
Dg

ij/ij/i +Dg
ij/j/i/i − 2Dg

i/i/i/j/j

)
.

(B33)

Note that equation B33 involves a term in spi (first line, which is equivalent to the

term derived in the single-locus model) and a sum over all loci j of terms in s2pipj, that

vanish when h = 1/2 (when h = 1/2, interactions between loci affect changes in allele

frequencies through terms in s4pipj, that are not considered here). In equation B33,

these terms are expressed to leading order in ε. Associations with at least two i and

two j indices (Dg
ij/ij, D

g
ij/i/j, D

g
i/i/j/j, D

g
ij/ij/i, D

g
ij/j/i/i and Dg

i/i/i/j/j) are generated

D. Roze 10 SI



by population structure (even in the absence of selection), while associations Dg
ij/j

and Dg
i/j/j are generated by population structure and by selection acting at locus i.

Recursions for the first series of associations to the first order in ε are given by:

Dg
i/i/j/j

′ ≈
(

1− 6

2N
− 4m− 4hs

)
Dg

i/i/j/j +
1

2N

(
piD

g
j/j + pjD

g
i/i + 4Dg

ij/i/j

)
(B34)

Dg
ij/i/j

′ ≈
(

1− 3

N
− 3m− 4hs

)[
(1− rij)Dg

ij/i/j + rijD
g
i/i/j/j

]
+

1

2N

[
piD

g
j/j + pjD

g
i/i + 3Dg

ij/i/j + (1− rij)Dg
ij/ij + rijD

g
i/i/j/j

] (B35)

Dg
ij/ij

′ ≈
(

1− 1

N
− 2m− 4hs

)[
(1− rij)2Dg

ij/ij + 2rij (1− rij)Dg
ij/i/j + rij

2Dg
i/i/j/j

]
+

1

2N

[
[1− 2rij (1− rij)]

(
pi +Dg

ij/ij

)
+ 2rij (1− rij)

(
piD

g
j/j + pjD

g
i/i

)]
(B36)

Dg
i/i/i/j/j

′ ≈
(

1− 5

N
− 5m− 5hs

)
Dg

i/i/i/j/j +
1

2N

(
pjD

g
i/i/i + 6Dg

ij/j/i/i + 3Dg
i/i/j/j

)
(B37)

Dg
ij/j/i/i

′ ≈
(

1− 6

N
− 4m− 5hs

)[
(1− rij)Dg

ij/j/i/i + rijD
g
i/i/i/j/j

]
+

1

2N

[
pjD

g
i/i/i + (1− rij)

(
6Dg

ij/j/i/i + 2Dg
ij/ij/i + 3Dg

ij/i/j

)
+ rij

(
5Dg

ij/j/i/i + 3Dg
i/i/i/j/j + 3Dg

i/i/j/j

)]
(B38)

Dg
ij/ij/i

′ ≈
(

1− 3

N
− 3m− 5hs

)
×
[
(1− rij)2Dg

ij/ij/i + 2rij (1− rij)Dg
ij/j/i/i + rij

2Dg
i/i/i/j/j

]
+

(1− rij)2

2N

(
pjD

g
i/i + 3Dg

ij/ij/i + 2Dg
ij/ij

)
+
rij (1− rij)

N

(
pjD

g
i/i/i +Dg

ij/j/i/i +Dg
ij/ij/i + 3Dg

ij/i/j

)
+
rij

2

2N

(
pjD

g
i/i + 2Dg

ij/j/i/i +Dg
ij/ij/i + 2Dg

i/i/j/j

)
.

(B39)
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From this, one obtains at equilibrium, to leading order,

Dg
ij/ij ≈ Dg

ij/i/j ≈ Dg
i/i/j/j ≈

pipj

[1 + 4N (m+ sh)]2
(B40)

Dg
ij/ij/i ≈ Dg

ij/j/i/i ≈ Dg
i/i/i/j/j ≈

pipj

[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]2
. (B41)

indicating that the last two lines of equation B33 are of order s2ε pi
∑

j pj (since these

lines cancel when equations B40 and B41 are used).

Recursions for Dg
ij/j and Dg

i/j/j to leading order are given by:

Dg
ij/j
′ ≈ 1

2N
Dg

ij/j +

(
1− 1

N
− 2m− 3hs

)[
(1− rij)Dg

ij/j + rijD
g
i/j/j

]
− sh

[
(1− rij)

(
Dg

ij/ij − 2Dg
ij/i/j +Dg

i/iD
g
j/j

)
+ rij

(
2Dg

ij/i/j − 3Dg
i/i/j/j +Dg

i/iD
g
j/j

)]
− s (1− 2h)

[
(1− rij)

(
Dg

ij/ij/j − 2Dg
ij/i/j/j +Dg

i/i/iD
g
j/j

)
+ rij

(
Dg

ij/i/j/j − 2Dg
i/i/i/j/j +Dg

i/i/iD
g
j/j

)]
− s (1− 2h)

(
Dg

ij/i/j −D
g
i/iD

g
j/j

)

(B42)

Dg
i/j/j

′ ≈ 1

N
Dg

ij/j +

(
1− 3

2N
− 3m− 3hs

)
Dg

i/j/j

− sh
(

2Dg
ij/i/j − 3Dg

i/i/j/j +Dg
i/iD

g
j/j

)
− s (1− 2h)

(
2Dg

ij/i/j/j − 3Dg
i/i/i/j/j +Dg

i/i/iD
g
j/j

)
− s (1− 2h)

(
Dg

i/i/j/j −D
g
i/iD

g
j/j

)
.

(B43)

From equations B34–B39 and B42–B43, one obtains that Dg
ij/j and Dg

i/j/j are both of

order s pipj at equilibrium. However, leading-order expressions for these associations

are identical, causing the term on the second line of equation B33 to cancel. Therefore,

the second line of equation B33 is also of order s2ε pi
∑

j pj.
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Finally, recursions for Dg
i/i and Dg

i/i/i taking into account effects of pairwise

interactions between loci are given by (to leading order):

Dg
i/i
′ ≈ pi

2N
+

(
1− 1

2N
− 2m− 2hs

)
Dg

i/i−2s (1− 2h)
∑
j 6=i

(
Dg

ij/i/j −D
g
i/i/j/j

)
(B44)

Dg
i/i/i

′ ≈ 3

2N
Dg

i/i +

(
1− 3

2N
− 3m− 3hs

)
Dg

i/i/i

− 3s (1− 2h)
∑
j 6=i

(
Dg

ij/j/i/i −D
g
i/i/i/j/j

)
.

(B45)

At equilibrium, and assuming freely recombining loci, one obtains:

Dg
i/i ≈

pi
1 + 4N (m+ sh)

[
1− s (1− 2h)

8Nm

[1 + 4N (m+ sh)]2

∑
j

pj

]
(B46)

Dg
i/i/i ≈

pi
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]

×

[
1− s (1− 2h)

4Nm [3 + 8N (m+ sh)]

[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]2

∑
j

pj

]
.

(B47)

In order to obtain equations B46 and B47, the terms Dg
ij/i/j −D

g
i/i/j/j and Dg

ij/j/i/i −

Dg
i/i/i/j/j that appear in equations B44 and B45 must be expressed to the first order

in ε. From equations B34–B39, one obtains:

Dg
ij/i/j −D

g
i/i/j/j ≈

mpipj

rij [1 + 4N (m+ sh)]2
(B48)

Dg
ij/j/i/i −D

g
i/i/i/j/j ≈

mpipj

rij [1 + 2N (m+ sh)] [1 + 4N (m+ sh)]2
(B49)

(note that although these expressions diverge when rij tends to zero, expressions that

do not diverge can be obtained by assuming that rij is of order ε).

From equations B46 and B47, one can see that interactions between loci affect

the first line of equation B33 through a term of order s2 pi
∑

j pj, which is thus higher

in magnitude than the terms on the last three lines (which are of order s2ε pi
∑

j pj).
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Neglecting these terms, one finally obtains the following approximation for the mean

number of deleterious alleles per haplotype, n =
∑

i pi at equilibrium:

n ≈ (1− I3)
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]U

2Ns (m+ sh) [1 + 4Nh (m+ sh)]
(B50)

with:

I3 = (1− 2h)U
m

m+ sh

1 + 8N (m+ sh) [h− (1− 3h)N (m+ sh)]

N (m+ sh) [1 + 4N (m+ sh)] [1 + 4Nh (m+ sh)]2
. (B51)

From equation A20 in Supplementary File A, and neglecting the term in Dij,ij−Di,iDj,j

which is of order ε, we have:

W ≈ e−2shn−s(1−2h)
∑

i Di,i (B52)

From equations B46 and B50, one obtains:

W ≈ exp

[
− (1− I4)

[1 + 2N (m+ sh)] [1 + 8Nh (m+ sh)]U

2N (m+ sh) [1 + 4Nh (m+ sh)]

]
(B53)

with:

I4 = (1− 2h)U
m

m+ sh

1 + 8Nh (m+ sh) [1− (1− 4h)N (m+ sh)]

N (m+ sh) [1 + 4Nh (m+ sh)]2 [1 + 8Nh (m+ sh)]
. (B54)

As we have seen in the previous section, heterosis is defined as H = 1−W/W between,

where W between is the fitness of offspring obtained by crossing parents from two different

demes. Since W between ≈ e−2shn, we have H ≈ 1− e−s(1−2h)
∑

i Di,i , which yields:

H ≈ 1− exp

[
− (1− I5)

(1− 2h) [1 + 2N (m+ sh)]U

2N (m+ sh) [1 + 4Nh (m+ sh)]

]
(B55)

with:

I5 = (1− 2h)U
m

m+ sh

1 + 8Nh (m+ sh) [1 +N (m+ sh)]

N (m+ sh) [1 + 4Nh (m+ sh)]2
. (B56)

Finally, the average inbreeding depression within demes is given by:

δ = 1− Ex

[
Wself, x

Wout, x

]
(B57)
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where Wself, x and Wout, x are the average fitnesses of individuals produced by selfing and

by outcrossing in deme x (respectively), while Ex stands for the average over all demes

x (e.g., Whitlock, 2002; Glémin et al., 2003; Roze and Rousset, 2004). Assuming that

the variances of Wself, x and Wout, x across demes remain small, we have (e.g., Appendix

1 in Lynch and Walsh, 1998):

δ ≈ 1− Ex [Wself, x]

Ex [Wout, x]

[
1 +

Varx [Wout, x]

Ex [Wout, x]2
− Covx [Wout, x,Wself, x]

Ex [Wout, x] Ex [Wself, x]

]
(B58)

where Varx and Covx stand for the variance and covariance across demes. Expressions

for Varx [Wout, x] and Covx [Wout, x,Wself, x] can be computed using the same methods

as above. One obtains in particular:

Varx [Wout, x] ≈ s2 (1− 2h)2
∑
i 6=j

(
Dg

i/i/j/j −D
g
i/iD

g
j/j

)
(B59)

which is of order ε U2 when 1/N , m and s are of order ε, since from equation B40

Dg
i/i/j/j − D

g
i/iD

g
j/j is of order ε pipj. Similarly, one obtains that Covx [Wout, x,Wself, x]

is also of order ε U2. Neglecting these terms, we thus have:

δ ≈ 1− Ex [Wself, x]

Ex [Wout, x]
(B60)

where Ex [Wout, x] is equivalent to W ≈ e−2shn−s(1−2h)
∑

i Di,i , while Ex [Wself, x] is given

by e−2shn−s(1−2h)
∑

i D
self
i,i (where Dself

i,i is the average of ζi,i(xy) over selfed offspring).

Using the fact that Dself
i,i ≈ (pi +Di,i) /2, one obtains δ ≈ 1 − e−

s
2
(1−2h)(n−

∑
i Di,i).

From equations B46 and B50, this is:

δ ≈ 1− exp

[
− (1 + I6)

(1− 2h) [1 + 2N (m+ sh)]U

1 + 4Nh (m+ sh)

]
(B61)

with:

I6 = 2 (1− 2h)2 U
m

m+ sh

1

N (m+ sh) [1 + 4Nh (m+ sh)]2
. (B62)
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