
Supplementary Information

Throughout this document, when the mean and variance of the Normal distribution probability and cumu-
lative density functions are not mentioned, they are assumed equal to 0 and 1, respectively for the mean and
variance. Hence, by default, fN (`) and ΦN (`) correspond to a standard Normal distribution.

A Proof for analytical solutions for binary traits

Equivalence between a Binomial/Probit GLMM and the threshold model We consider the probabil-
ity of the observed data z to be 1, knowing that the latent trait value is ` (hence from the GLMM perspective):

P (z = 1) = ΦN (`) = P (X < `) = P (0 < `−X), (S1)

where X is a random variable following a standard Normal distribution. Let ε be a variable such that ε = −X,
then ε also follows a standard Normal distribution. This allows us to rewrite the above equation as:

P (z = 1) = P (0 < `+ ε), (S2)

which is the probability defined from the threshold model perspective. The addition of the ε term, which has a
variance of 1, explains the appearance of the so-called “link variance”. Note that the exact same reasoning apply
to the logit link function, which inverse function is the cumulative distribution function of a logistic distribution
of location 0 and scale 1. Thus, the “link variance” associated with a logit link is π3/2.

This equivalence, and the fact that the liability and expected data scales are different is illustrated in Fig. S1.
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Figure S1: Comparison between a Binomial/probit model (left) and a threshold model (right). GLMMs are
characterised by a probit-link transformation followed by a Binomial distribution, whereas the threshold model
uses a threshold on the liability scale to directly define the observed binary values. Deterministic relationships
are denoted using grey plain arrows, whereas stochastic relationships are denoted using grey dashed arrows.
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Observed phenotypic mean Let p be the average phenotype (as well as the probability of 1, which is an
equivalent definition). Note that because of the equivalence between the GLMM and the threshold model:

p =

∫
ΦN (`)fN (`, µ, VP)d` = 1− ΦN (0, µ, VP + 1) , (S3)

which provides a quick analytical way to compute p. If fixed effects are included in the model, p is simply this
calculation averaged over the elements of Xb̂:

p = 1− 1

N

∑
i

ΦN (0, µ+ (Xb̂)i, VP + 1). (S4)

Observed phenotypic variance The observed variance of the phenotype only depends on the mean p and
is p(1− p). This is a property of a binomial distribution with only one trial and is consistent with Eq. ??:

VP,obs =
∫

(ΦN (`)− p)2 fN (`, µ, VP)d`+
∫
v(`)fN (`, µ, VP)d`,

=
∫

ΦN (`)2fN (`, µ, VP)d`− p2 +
∫

ΦN (`)fN (`, µ, VP)d`−
∫

ΦN (`)2fN (`, µ, VP)d`,
= p− p2,
= p (1− p).

(S5)

This very simple analytical solution allows to easily compute VP,obs. Of course, when fixed effects are included,
p should be computed using Eq. S4.

Consistency with Dempster & Lerner equation Using Dempster and Lerner (1950) equation and the
threshold model framework, one would compute the observed-scale heritability as:

h2obs, DL =
t2

p (1− p)
VA

VP + 1
(S6)

Note that the VP + 1 arise because of the addition of the so-called “link variance” (Nakagawa and Schielzeth,
2010). The term t is the probability density of a standard normal distribution evaluated at the pth quantile.
Hence (standardising the latent distribution):

t = fN (Φ−1(p)) = fN (
µ√

VP + 1
) (S7)

On the other hand, using our framework, one would compute the observed heritability by computing Ψ as in
Eq. ??, and combine it with Eqs. ??&??:

h2obs =
Ψ2VA
p (1− p)

(S8)

By comparing Eqs. S6&S8, one can see the identity holds if, and only if:

Ψ =
t√

VP + 1
= fN (0, µ, VP + 1) (S9)

In order to prove this identity, let us compute the ratio between the two:

Ψ/fN (0, µ, VP + 1) =

∫
fN (x)fN (x, µ, VP)dx

fN (0, µ, VP + 1)

=

√
VP + 1

VP

1√
2π

∫
exp

[
−1

2

(
x2 +

(x− µ)2

VP
− µ2

VP + 1

)]
dx

=

√
VP + 1

VP

1√
2π

∫
exp

[
−1

2

(
(x+ xVP − µ)2

VP (VP + 1)

)]
dx

=

√
VP + 1

VP

1√
2π

∫
exp

[
−1

2

(
(x− (µ/(VP + 1))2

VP/(VP + 1)

)]
dx

=

∫
fN (x,

µ

VP + 1
,

VP
VP + 1

)dx

= 1

(S10)

Note that, if fixed effects are included in the model, Ψ can be computed by averaging over them, as in Eq. S4:

Ψ =
1

N

∑
i

fN (0, µ+ (Xb̂)i, VP + 1) (S11)
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B Proof for analytical solutions for Poisson traits

Observed phenotypic mean The observed phenotypic mean, hereafter noted λ, is the quantity (in absence
of fixed effects):

λ =

∫
exp(`)fN (`, µ, VP)d` = exp(µ+ VP/2) (S12)

after simplifications in Mathematica. Again, when fixed effects are included, it suffices to average over them:

λ =
1

N

∑
i

exp(µ+ (Xb̂)i + VP/2) =
1

N

∑
i

λi, (S13)

where λi is the observed mean conditional to (Xb̂)i.

Expected-scale variance In absence of fixed effects, the expected-scale variance is defined as follow (using
Keonig’s formula):

VP,exp =

∫
exp(`)2fN (`, µ, VP)d`− λ2, (S14)

which, using Mathematica, simplifies into:

VP,exp = λ2 [exp(VP)− 1] . (S15)

When fixed effects, are included in the model, the formula does not simplify as much, because of the averaging:

VP,exp = exp(VP)
1

N

∑
i

exp(2µ+ 2(Xb̂)i + VP)− λ2 (S16)

Note that λ should be computed according to Eq. S15 in that case. Let us define the parameter Λ as

Λ =
1

N

∑
i

exp(2µ+ 2(Xb̂)i + VP) =
1

N

∑
i

λ2i , (S17)

so that VP,exp = Λ exp(VP) − λ2. The parameter Λ is the average of the squared values of λi. Unfortunately,
Λ 6= λ2, hence there is no further simplification.

Distribution variance Because the variance of a Poisson distribution is equal to the mean, the distribution
variance reduces to λ:

Vdist =

∫
exp(`)fN (`, µ, VP)d` = λ (S18)

When fixed effects are included in the model, λ should be computed as in Eq. S15.

Observed-scale additive variance In order to compute the observed-scale additive variance, we need the
parameter Ψ defined in Eq. ?? in the main text. Again, because the derivative of an exponential is an expo-
nential, the calculation reduces to λ:

Ψ =

∫
exp(`)fN (`, µ, VP)d` = λ (S19)

Once again, when fixed effects are included in the model, λ should be computed as in Eq. S15.
The observed-scale additive variance is then computed as Ψ2VA = λ2VA.

Observed-scale heritability In presence of fixed effects in the model, the heritability is consequently the
“simple” following ratio:

h2obs =
λ2VA

Λ exp(VP)− λ2 + λ
(S20)

Negative-Binomial distribution All the above results can be extended to the Negative-Binomial distribu-
tion, which, compared to the Poisson distribution, includes an overdispersion parameter (hereby noted θ). The
new parameter θ only affects the distribution variance such as:

h2obs =
λ2VA

Λ exp(VP)− λ2 + λ+ exp(2(µ+ VP))/θ
(S21)
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C Calculation of the Price-Robertson identity

The Price-Robertson identity (Robertson, 1966; Price, 1970) is based on the covariance between the (latent)
additive genetic values and the expected fitness. This covariance can be computed using Koenig’s formula for
covariance:

∆µ = cov(a,Wexp) = E[a×Wexp]− E[a] E[Wexp] = E[a×Wexp], (S22)

since, by definition, E[a] = 0. Hence we obtain the following complex calculation:

cov(a,Wexp) =

∫∫
a(Wexp(`))f(`|a)f(a)d`da =

∫∫
aWexp(`)fN (`, µ+ a, VRE + VO)fN (a, 0, VA)d`da. (S23)

Double-integration can be difficult to solve, but we can simplify further the computation by noticing that:

cov(a,Wexp) =

∫∫
aWexp(`)fN (`, µ+ a, VRE + VO)fN (a, 0, VA)d`da,

=

∫
afN (a, 0, VA)

∫
Wexp(`)fN (`, µ+ a, VRE + VO)d`da.

(S24)

Noting that

E[Wexp|a] =

∫
Wexp(`)fN (`, µ+ a, VRE + VO)d`, (S25)

we can simplify Eq. S24 into

∆µ = cov(a,Wexp) =

∫
aE[Wexp|a]fN (a, 0, VA)da. (S26)

This computation of the expected response on the latent scale is the one implemented in the QGglmm R
package.

D Code for the R package QGglmm

The up-to-date code of the package can be found at the following GitHub repository:
https://github.com/devillemereuil/qgglmm

The package can be downloaded and installed in R from the same repository. It requires the packages mvtnorm
and R2Cuba.
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