

Figure S1: Cross scheme for collecting large numbers of *Blm* **mutant mothers**. Due to the severe maternal-effect lethality observed in *Blm* females, (90-95% of embryos from *Blm* mothers fail to hatch) we used a scheme to make it easier to collect large numbers of *Blm* mothers, which makes it possible to produce sufficient numbers of progeny in order to carry out our experiments. We utilized the following cross, based on a similar scheme from McMahan et. al (2013) to achieve

this aim. Virgin female flies containing the Blm^{NI} null allele were crossed to male flies containing the Blm^{D2} null allele, both of which were maintained over a balancer chromosome to prevent recombination. Most of the progeny classes from this cross inherit the yeast transcriptional activator GAL4 as well as the GAL4 DNA recognition sequence, UAS, attached to the proapoptotic gene *rpr* (this includes all classes of male flies, which inherit the UAS::rpr construct on the Y chromosome). The combination of the GAL4 and UAS::rpr genetic elements in the same cell activates expression of Rpr and is lethal (Wang *et al.* 1999). One additional progeny class inherits two copies of the *Stubble* (*Sb*) allele, which is lethal. Shaded boxes indicate a genotype class of flies that does not survive. Only female progeny inheriting both the Blm^{NI} and the Blm^{D2} alleles survive (white box). Red arrows indicate the cause of lethality in each class of flies, where applicable.

References

- McMahan S., K. P. Kohl, and J. Sekelsky, 2013 Variation in meiotic recombination frequencies between allelic transgenes inserted at different sites in the drosophila melanogaster genome. *G3 Genes, Genomes, Genet.* 3: 1419–1427. https://doi.org/10.1534/g3.113.006411
- Wang S. L., C. J. Hawkins, S. J. Yoo, H. A. J. Müller, and B. A. Hay, 1999 The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. *Cell* 98: 453–463. https://doi.org/10.1016/S0092-8674(00)81974-1

Tests for normal distribution					
Cross	Shapiro Wilk	s test statistic	p-val	ue	
$Blm^+ \ge w^{1118}$	0.95794	0.95794		21	
$Blm^+ \ge C(1;Y)3/O$	0.97992		0.941	4	
$Blm^+ \ge C(1;Y)6/Y$	0.99062		0.967	2	
$Blm^+ \ge Dp(1;Y)B^S$	0.93479		0.090	62	
$Blm^+ \ge Dp(1;Y)y^+$	0.88919		0.004	615*	
$Blm^+ \ge In(1)sc^{4L}sc^{8R}$	0.97212		0.854	4	
$Blm \ge w^{1118}$	0.90824		0.000	8018*	
$Blm \ge C(1;Y)3/O$	0.77813		< 0.0	001*	
$Blm \ge C(1;Y)6/Y$	0.8243		< 0.0	001*	
$Blm \ge Dp(1;Y)B^S$	0.96559		0.008321*		
$Blm \ge Dp(1;Y)y^+$	0.98927		0.6342		
$Blm \ge In(1)sc^{4L}sc^{8R}$	0.9737		0.020	0.02033	
t-tests compari	ng observed propor	tion of female proge	ny to o	expected (0.5)	
Cross	t-statistic	Degrees of free	edom	p-value	
$Blm^+ \ge w^{1118}$	0.10861	28		0.9143	
$Blm^+ \ge C(1;Y)3/O$	2.707	18		0.01444	
$Blm^+ \ge C(1;Y)6/Y$	1.6151	46		0.1131	
$Blm^+ \ge Dp(1;Y)B^S$	2.7044	26		0.01191	
$Blm^+ \ge Dp(1;Y)y^+$	0.16313	29		0.8715	
$Blm^+ \ge In(1)sc^{4L}sc^{8R}$	2.0157	157 16		0.06095	
$Blm^{-} \ge w^{1118}$	13.041	041 50		< 0.0001	
<i>Blm</i> ⁻ x <i>C(1;Y)3/</i> O	35.02	02 106		< 0.0001	
$Blm^{-} \ge C(1;Y)6/Y$	67.759	106		< 0.0001	
$Blm^{-} \ge Dp(1;Y)B^{S}$	42.147	103		< 0.0001	

Table S1: Statistical Results from Figure 2

$Blm^{-} \ge Dp(1;Y)y^{+}$	36.013		95		< 0.0001	
$Blm^{-} \ge In(1)sc^{4L}sc^{8R}$	29.125	117		< 0.0001		
t-tests c	omparing observed	l pro	portions	of female pro	ogeny	
Cross comparisons		t-sta	atistic	Degrees of	freedom	p-value
$Blm^+ \mathbf{x} w^{1118} \mathbf{vs.} Blm^- \mathbf{x} w$,1118	11.4	19	71.706		< 0.0001
$Blm^+ \ge C(1;Y)3/O$ vs. Blm	<i>n</i> ⁻ x <i>C(1;Y)3/</i> O	40.4	41	93.376		< 0.0001
$Blm^+ \ge C(1;Y)6/Y \le Blm$	n ⁻ x C(1;Y)6/Y	18.4	18	40.202		< 0.0001
$Blm^+ \ge Dp(1;Y)B^S$ vs. Blm	$n^{-} \ge Dp(1; Y)B^{S}$	29.4	19	93.556		< 0.0001
$Blm^+ \ge Dp(1;Y)y^+ $ vs. Blm^+	$n^{-} \ge Dp(1; Y)y^{+}$	21.6	524	63.984		< 0.0001
$Blm^+ ext{x} In(1)sc^{4L}sc^{8R} ext{vs.} Blm^+$	$Blm^{-} \ge In(1)sc^{4L}sc^{8R}$	11.7	705	25.674		< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{-} \ge Im^{-}$	$e(1)sc^{4L}sc^{8R}$	2.66	589	81.915		0.009172
$Blm^{-} \ge w^{1118} \ge Blm^{-} \ge D$	$p(1;Y)y^+$	5.11	.82	77.964		< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{-} \ge D$	$p(1;Y)B^S$	8.07	738	78.557		< 0.0001

Tests for female proportion throughout development				
Comparison	z-test statistic	p-value		
Embryo vs. 1 st instar larvae	3.1416	0.00168		
Embryo vs. 3 rd instar larvae	3.7332	0.0002		
Embryo vs. adult	3.7191	0.0002		
1 st instar larvae vs. 3 rd instar larvae	1.0314	0.30302		
1 st instar larvae vs. adult	1.0338	0.30302		
3 rd instar larvae vs. adult	0.0164	0.98404		

Table S2: Statistical Results from Figure 3

Table S3: Statistical Results from Figure 5

Test for normal distribution of data				
Data Set	Shapiro Wilks test statistic	p-value		
w^{1118} fathers (Blm^+ , Blm^- , and Blm^{N2} mothers)	0.97998	0.06055		
$B^{S}Y$ fathers (Blm^{+} , Blm^{-} , and Blm^{N2} mothers)	0.90465	< 0.0001#		
$C(1:Y)6$ fathers (Blm^+ , Blm^- , and Blm^{N2} mothers)	0.86422	< 0.0001*		

Tests for differences in proportion of females based on maternal genetic background

Data Set	ANOVA test statistic	df	p-value
w^{1118} fathers (Blm^+ , Blm^- , and Blm^{N2} mothers)	68.095	2	< 0.0001
$B^{S}Y$ fathers (Blm^{+} , Blm^{-} , and Blm^{N2} mothers)	404.85	2	< 0.0001
$C(1:Y)6$ fathers (Blm^+ , Blm^- , and Blm^{N2} mothers)	786.62	2	< 0.0001
			•

Post-hoc comparisons of proportion female

Comparison	t-statistic	df	p-value
$Blm^{-} \ge w^{1118} \ge Blm^{N2} \ge w^{1118}$	8.879	122	< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{+} \ge w^{1118}$	10.560	122	< 0.0001
$Blm^+ \ge w^{1118} $ vs. $Blm^{N2} \ge w^{1118}$	2.687	122	0.0222
$Blm^{-} \ge B^{S}Y \lor Blm^{N2} \ge B^{S}Y$	23.568	166	< 0.0001
$Blm^{-} \ge B^{S}Y \ge Blm^{+} \ge B^{S}Y$	21.035	166	< 0.0001
$Blm^+ \ge B^S Y \lor s. Blm^{N2} \ge B^S Y$	0.302	166	0.9511
$Blm^{-} \ge C(1:Y)6$ vs. $Blm^{N2} \ge C(1:Y)6$	24.778	190	< 0.0001
$Blm^{-} \ge C(1:Y)6$ vs. $Blm^{+} \ge C(1:Y)6$	36.758	190	< 0.0001
$Blm^+ \ge C(1:Y)6$ vs. $Blm^{N2} \ge C(1:Y)6$	8.300	190	< 0.0001

[#] Nonparametric tests due to non-normally distributed data

*sample size >30, so parametric tests appropriate

Data Set	Kruskal- Wallis result	df	p-value
$B^{S}Y$ fathers (Blm^{+} , Blm^{-} , and Blm^{N2} mothers)	119.04	2	< 0.0001

Post-hoc comparisons of proportion female

Comparison	Wilcoxon ran sum test	p-value
$Blm^{-} \ge B^{S}Y \lor Blm^{N2} \ge B^{S}Y$	3947	< 0.0001
$Blm^{-} \ge B^{S}Y \lor Blm^{+} \ge B^{S}Y$	2808	< 0.0001
$Blm^+ \ge B^S Y \lor s. Blm^{N2} \ge B^S Y$	525	0.8783

Test for normal distribution of data			
Data Set	Shapiro Wilk statistic	p-value	
w^{1118} fathers (Blm^+ , Blm^- , Blm^+ $pola^{+/-}$, and Blm^- $pola^{+/-}$ mothers)	0.95725		0.0001305#
$C(1:Y)6$ fathers $(Blm^+, Blm^-, Blm^+ pola^{+/-}, and Blm^- pola^{+/-} mothers)$	0.77936		< 0.0001#
Parametric tests for differences in proportion backgrour	of females base Id	ed on mater	nal genetic
Data Set	ANOVA test statistic	df	p-value
w^{1118} fathers (Blm^+ , Blm^- , Blm^+ $pol\alpha^{+/-}$, and Blm^- $pol\alpha^{+/-}$ mothers)	88.328	3	< 0.0001
$C(1:Y)6$ fathers $(Blm^+, Blm^-, Blm^+ pola^{+/-}, and Blm^- pola^{+/-} mothers)$	915.24	3	< 0.0001
Nonparametric post-hoc comparis	sons of proport	ion female	
Comparison	t-statistic	df	p-value
$Blm^- \mathbf{x} w^{1118} \mathbf{vs.} Blm^+ \mathbf{x} w^{1118}$	11.247	147	< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{+} pola^{+/-} \ge w^{1118}$	10.142	147	< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{-} pol\alpha^{+/-} \ge w^{1118}$	1.979	147	0.2006
$Blm^+ pol\alpha^{+/-} \ge w^{1118} \ge Blm^- pol\alpha^{+/-} \ge w^{1118}$	11.585	147	< 0.0001
$Blm^+ pol\alpha^{+/-} \ge w^{1118} \ge Blm^+ \ge w^{1118}$	0.512	147	0.9561
$Blm^- pol\alpha^{+/-} \ge w^{1118} \ge Blm^+ \ge w^{1118}$	12.729	147	< 0.0001
$Blm^{-} \ge C(1:Y)6 $ vs. $Blm^{+} \ge C(1:Y)6$	43.319	212	< 0.0001

Table S4: Statistical Results from Figure 6

$Blm^{-} \ge C(1:Y)6 $ vs. $Blm^{+} pola^{+/-} \ge C(1:Y)6$	26.736	212	< 0.0001
$Blm^{-} \ge C(1:Y)6 $ vs. $Blm^{-} pola^{+/-} \ge C(1:Y)6$	6.193	212	< 0.0001
$Blm^+ pola^{+/-} \ge C(1:Y)6$ vs. $Blm^- pola^{+/-} \ge C(1:Y)6$	28.386	212	< 0.0001
$Blm^+ pola^{+/-} \ge C(1:Y)6$ vs. $Blm^+ \ge C(1:Y)6$	2.119	212	0.1504
$Blm^{-}pola^{+/-} \ge C(1:Y)6 $ vs. $Blm^{+} \ge C(1:Y)6$	41.622	212	< 0.0001

[#] Nonparametric tests due to non-normally distributed data

Data Set	Kruskal- Wallis result	df	p-value
w^{1118} fathers (Blm^+ , Blm^- , Blm^+ $pol\alpha^{+/-}$, and Blm^- $pol\alpha^{+/-}$ mothers)	92.01	3	< 0.0001
$C(1:Y)6$ fathers (Blm^+ , Blm^- , Blm^+ $pola^{+/-}$, and $Blm^- pola^{+/-}$ mothers)	153.33	3	< 0.0001

Nonparametric post-hoc comparisons of proportion female

Comparison	Wilcoxon ran sum test	p-value
$Blm^- \mathbf{x} w^{1118} \mathbf{vs.} Blm^+ \mathbf{x} w^{1118}$	1397	< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{+} pola^{+/-} \ge w^{1118}$	1189	< 0.0001
$Blm^{-} \ge w^{1118} \ge Blm^{-} pola^{+/-} \ge w^{1118}$	959.5	0.1238
$Blm^+ pola^{+/-} \ge w^{1118} \ge Blm^- pola^{+/-} \ge w^{1118}$	6	< 0.0001
$Blm^+ pola^{+/-} \ge w^{1118} $ vs. $Blm^+ \ge w^{1118}$	397	0.5553
$Blm^- pol\alpha^{+/-} \ge w^{1118} \ge Blm^+ \ge w^{1118}$	1334	< 0.0001
$Blm^{-} \ge C(1:Y)6 $ vs. $Blm^{+} \ge C(1:Y)6$	0.5	< 0.0001

$Blm^{-} \ge C(1:Y)6 $ vs. $Blm^{+} pola^{+/-} \ge C(1:Y)6$	1	< 0.0001
$Blm^{-} \ge C(1:Y)6$ vs. $Blm^{-} pola^{+/-} \ge C(1:Y)6$	3902	< 0.0001
$Blm^+ pola^{+/-} \ge C(1:Y)6$ vs. $Blm^- pola^{+/-} \ge C(1:Y)6$	765	< 0.0001
$Blm^+ pola^{+/-} \ge C(1:Y)6$ vs. $Blm^+ \ge C(1:Y)6$	289.5	0.096
$Blm^{-}pola^{+/-} \ge C(1:Y)6 $ vs. $Blm^{+} \ge C(1:Y)6$	0	< 0.0001