Supplementary Tables and Table Legends

Table S1. Subsets of Nucleolar Assembly Factors							
Subset *	Operative Distribution	Latent Distribution	Suggested Role	Fraction Essential $* *$	Non-Essential AFs *	Orthologs Implicated in Disease	
SSU-In	Inner layer	Inner layer	Initiator ?	$2 / 5$	Efg1, Nop6, Nsr1		
SSU-F	Inner layer	Outer layer	SSU knob formation	$50 / 52$	Fyv7, Rrt14	BUD23 [Bud23] Cirhin [Utp4]	

Table S1 Subsets of Assembly Factors - related to Table 1

In addition to the information summarized in Table 1 and Table S2, this table specifies the suggested role of each subset of AFs and the fraction of the AFs in each group that are essential for mitotic growth [2]. We also list those for which homologs in man have been implicated in disease. The group of non-essential AFs in yeast includes proteins associated with the 5 '-ETS (Bud21, Nan1/Utp17), other proteins required for making the SSU (Bud22, Cms1, Efg1, Fyv7, Nsr1, Rrp8, Rrt14, Slx9, Utp30) and proteins required for making the LSU (Bmt2, Bud20, Cgr1, Cic1/Nsa3, Dbp7, Fpr3, Fpr4, Jjj1, Loc1, Mrt4, Ngl2, Nop12, Nop13, Nop16, Puf6, Rrp6, Ssf1, Ssf2, Tri1).

Collection of data. The Saccharomyces Genome Database (SGD) was used to gather information on the abundance, molecular weight and amino acid sequence of assembly factors. For that database, BioPerl and CODONW were used to calculate isoelectric points and abundance data were averaged from multiple quantitative analyses of cells under standard growth conditions [5]. Predictor of Natural Disordered Regions (PONDR) was used to predict overall disorder based on the amino acid sequence (http://www.pondr.com/). FoldIndex was also used to make such estimates and the two algorithms gave similar estimates.

For human proteins, we used UniProt Knowledgebase (UniProtKB) and ExPASy to retrieve molecular weight and isoelectric point information. PONDR was again used to predict order.

Table S2. Master List of Assembly Factors and Their Physical Properties

name	name	MW (kDa)	MW (kDa)	IEP	IEP	predicted disorder (\%)	predicted disorder (\%)	abundance mean	abundance STD	subset	tripartite domain
Nan1/Utp17 *	WDR75	101.22	94.49	6.31	5.65	17.58	17.31	6811	3486	SSU-F	5'-ETS
Utp5 *	WDR43	71.96	74.89	4.56	5.37	34.53	27.62	6874	7312	SSU-F	5'-ETS
Utp6	UTP6	52.43	41.53	9.33	7.59	20.68	16.25	4712	2273	SSU-F	5'-ETS
Utp8	-	80.16	,	4.78	,	18.93	,	7512	3299	SSU-F	5'-ETS
Utp9	,	65.23	,	4.48	-	24.7	,	8516	7706	SSU-F	5'-ETS
Utp13*	TBL3	91.00	89.03	5.06	6.44	21.05	21.41	6417	4007	SSU-F	5'-ETS
Utp15 *	UTP15	57.70	58.41	9.76	9.18	28.65	23.94	4549	3327	SSU-F	5'-ETS
Utp18*	UTP18	66.39	62.00	4.61	8.93	31.99	33.63	6638	7492	SSU-F	5'-ETS
Utp21*	WDR36	104.79	105.32	7.89	7.33	23	19.24	4129	2115	SSU-F	5'-ETS
Bud21/Utp16		24.38	,	6.55		83.64		3559	2746	unknown	5'-ETS
Dip2/Utp12 *	WDR3	106.32	106.09	5.89	6.2	21	24.18	5172	3868	unknown	5'-ETS
Fcf2	DNTTIP2	25.64	84.46	10.17	5.86	71.43	60.58	3755	1318	unknown	5'-ETS
Imp3 ${ }^{\text {\# }}$	IMP3	21.89	21.85	10.33	9.54	22.4	30.43	5499	5796	unknown	5'-ETS
Imp4 ${ }^{+}$	IMP4	33.48	21.85	9.5	9.54	31.38	30.43	4976	2363	unknown	5'-ETS
Mpp10	MPHOSPH10	66.89	78.86	4.27	4.77	66.27	59.18	6676	3779	unknown	5'-ETS
Pwp2/Utp1 *	PWP2	103.94	102.45	4.71	5.76	17.44	17.3	5498	4011	unknown	5'-ETS
Rrp9 *	RRP9	65.04	51.84	5.43	7.97	34.73	38.53	4905	1950	unknown	5'-ETS
Sas10/Utp3	UTP3	70.19	54.55	4.32	5.5	59.18	64.93	6159	3201	unknown	5'-ETS
Sof1 *	DCAF13	56.80	51.40	9.91	9.3	36.61	17.53	4982	2024	unknown	5'-ETS
Utp4 *	CIRH1A	87.79	76.89	6.52	9.03	18.17	4.37	4299	2439	unknown	5'-ETS
Utp7/Kre31*	WDR46	62.33	68.07	10.02	9.69	45.31	52.3	6067	2569	unknown	5'-ETS
Utp10	HEAR1	200.06	242.37	6.44	6.11	13.23	18.24	8060	3856	unknown	5'-ETS
Utp11	UTP11L	29.76	30.00	10.91	10.08	76.4	64.8	2954	1720	unknown	5'-ETS
Dbp8!	DDX49	47.89	54.22	10.24	9.21	21.63	29.24	3904	3732	SSU-F	pre-40S
Dhr2!		82.73	,	9.22	,	33.47	,	1734	1002	SSU-F	pre-40S
Fyv7	,	18.21	,	10.99	,	87.42	,	2403	1324	SSU-F	pre-40S
Noc4/Utp19 -	NOC4L	63.62	58.46	6.01	7.08	14.31	26.16	3607	1572	SSU-F	pre-40S
Rrp7	RRP7A	34.47	32.33	9.35	9.61	36.36	51.07	5813	2489	SSU-F	pre-40S
Utp30	RSL1D1	31.63	54.97	10.15	10.13	24.82	49.59	3195	1655	SSU-F	pre-40S
Efg1	-	27.13	,	10.15	,	66.09	,	4774	2174	SSU-In	pre-40S
$\begin{gathered} \hline \text { Hca4/Dbp4/ } \\ \text { Ecm24! } \\ \hline \end{gathered}$	DDX10	87.19	100.88	7.47	8.72	39.09	42.4	6606	7745	SSU-In	pre-40S
Nop6 ${ }^{\text {\# }}$	-	25.23	,	10.87	\%	64.44	,	5962	3007	SSU-In	pre-40S
Nop9 \# \&	NOP9	77.72	69.43	8.38	6.86	22.07	46.23	4330	1859	SSU-In	pre-40S
Nsr1/She5 ${ }^{\text {\# }}$	NCL	44.51	76.61	4.58	4.6	63.53	55.49	25614	21560	SSU-In	pre-40S
Bfr2	AATF	61.16	63.13	4.41	4.82	37.88	55.89	7791	3997	unknown	pre-40S
Bms1 ${ }^{\wedge}$	BMS1	135.56	145.80	6.79	6.04	48.77	42.59	4889	3601	unknown	pre-40S
Bud22	SRFBP1	60.06	48.63	9.28	9.59	48.55	59.44	3797	1934	unknown	pre-40S
Bud23 \%	WBSCR22	30.74	31.88	9.48	8.95	34.18	44.13	4328	2802	unknown	pre-40S
Cms1	CMSS1	33.39	31.88	8.56	9.26	35.05	38.35	4906	3267	unknown	pre-40S
Dim1\%	PNO1	35.96	27.92	10.16	9.75	28.3	48.02	5449	3874	unknown	pre-40S
Dim2 ${ }^{\text {\# }}$	PNO1	30.33	27.92	9.71	9.75	52.55	48.02	5172	2826	unknown	pre-40S
Ecm16/Dhr1!	DHX37	144.93	129.54	6.26	8.36	40.49	46.59	4312	1955	unknown	pre-40S
Emg1/Nep1\%	EMG1	27.89	26.72	8.58	9.28	20.24	27.46	7148	5216	unknown	pre-40S
Enp1/Meg1	BYSL	55.10	49.60	4.56	8.19	39.96	47.83	7222	4442	unknown	pre-40S
Enp2 *	NOL10	81.72	80.30	6.54	8.64	48.09	31.54	5078	2812	unknown	pre-40S
Esf2/Abt1\#	-	36.40	,	8.37		67.41	,	4489	3189	unknown	pre-40S
Faf1		38.89	,	10.02	,	73.41	,	2182	1168	unknown	pre-40S
Fal1!	EIF4A3	45.22	46.87	9.49	6.3	16.79	30.41	2165	629	unknown	pre-40S
Kre33/Rra1	NAT10	119.35	115.72	7.94	8.5	32.43	31.28	8767	5717	unknown	pre-40S
Kri1	KRI1	68.62	82.30	4.74	5.06	57.06	60.77	9342	12381	unknown	pre-40S
Krr1 ${ }^{\text {\# }}$	KRR1	37.17	43.66	10	9.78	49.05	43.31	6288	3601	unknown	pre-40S
Lcp5	NGDN	40.79	35.89	6.91	9.57	62.59	61.13	2006	1325	unknown	pre-40S

Table S2. Master List of Assembly Factors and Their Physical Properties

$\left.$| name | name | MW (kDa) | MW (kDa) | IEP | IEP | predicted
 disorder (\%) | predicted
 disorder (\%) | abundance
 mean | abundance
 STD | subset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | tripartite |
| :---: |
| domain | \right\rvert\,

Table S2. Master List of Assembly Factors and Their Physical Properties

$\left.$| name | name | MW (kDa) | MW (kDa) | IEP | IEP | predicted
 disorder (\%) | predicted
 disorder (\%) | abundance
 mean | abundance
 sTD | subset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | tripartite |
| :---: |
| domain | \right\rvert\,

Table S2 (contd.)

Master List of Assembly Factors and Their Physical Properties											
name	name	MW (kDa)	MW (kDa)	IEP	IEP	predicted disorder (\%)	predicted disorder (\%)	abundance mean	abundance STD	subset	tripartite domain
Rrn3	-	72.34	-	4.34		27.43	-	469	554	RRN	N/A
Rrn5	-	41.71	-	6.85		47.38	-	811	568	RRN	N/A
Rrn6	-	102.01	-	4.81		34	-	542	739	RRN	N/A
Rrn7	-	60.36	,	8.25		12.06	-	1192	1122	RRN	N/A
Rrn9	-	42.79	,	5.02		41.92	-	638	516	RRN	N/A
Rrn10	-	16.49	-	4.85		27.59	-	1408	1842	RRN	N/A
Rrn11	-	59.24	-	5.85		36.29	-	706	456	RRN	N/A
Rpa12	,	-				-	,	10655	5328	RPA	N/A
Rpa14	,	-				-	-	7820	10363	RPA	N/A
Rpa34	,						-	7722	3534	RPA	N/A
Rpa43	,					-	-	7471	3109	RPA	N/A
Rpa49						-	,	9948	3503	RPA	N/A
Rpa135	-						-	12623	6060	RPA	N/A
Rpa190	-						-	16112	8843	RPA	N/A
Rpb1	-	-	-			-	,	16726	11053	RPB	N/A
Rpb2								14925	6189	RPB	N/A
Rpb3	,						-	8911	4777	RPB	N/A
Rpb7	-						,	6897	3986	RPB	N/A
Rpb8		-	,				-	8439	4971	RPB	N/A
Rpb9							,	5395	2749	RPB	N/A
Rpb11	,		,			-	-	10860	6845	RPB	N/A
Ret1	-	-	,				-	4745	2562	RPC	N/A
Rpc17	-	-	,			-	-	3431	1714	RPC	N/A
Rpc19	-	,	,				-	15166	16514	RPC	N/A
Rpc37	,	-	,					4592	3392	RPC	N/A
Rpc40	-	,	,	,		-	-	15108	4005	RPC	N/A
Rpc53	-	-	-			-	-	3911	1354	RPC	N/A
Rpc82	-	-					-	4435	2123	RPC	N/A
HHF1		-	,				-	73439	141532	histone	N/A
HHF2	,	,	,			,	-	119590	176858	histone	N/A
HHT1							-	64338	101323	histone	N/A
HHT2	-	I	,	,	,	-	-	57624	99029	histone	N/A
HTA1	-	-	,			-	-	20958	21428	histone	N/A
HTA2	-	,	-	1			-	64804	39933	histone	N/A
HTB1								197857	267074	histone	N/A
HTB2	-	-	-			-	,	117817	122347	histone	N/A
! DExD/H-box proteins \# RNA-binding proteins + brix domain					\% methyl transferases * WD repeats -HEAT r				peats \& ARM repeats		${ }^{\wedge}$ GTPases

Table S2 Master List of Nucleolar Assembly Factors and their Physical Properties
The listed AFs are strongly concentrated in the nucleolus and are essentially absent from the nucleoplasm and cytoplasm [1]. The shaded columns correspond to yeast values while the non-shaded columns correspond to human values. The following AFs were not included: Pfa1/Sqs1, Rrp36, Sen1/Cik3 and Utp25.

Table S3.		Physical Properties of Subgroups of Assembly Factors		
Motif Groupings		Subunit	MW	IEP
$\begin{aligned} & \text { \#\# } \\ & \sum_{\substack{\alpha}}^{0} \\ & \underset{\sim}{0} \end{aligned}$	Ipi1	LSU	38	10.1
	Nop9	pre-40S	78	8.4
	Puf6	LSU	75	6.9
	Sgd1	LSU	103	6.9
	Utp20	SSU	287	7.0
	mean +/ S.D.		116 +/- 88	7.8+/-1.2
	Brx1	LSU	33	9.8
	Imp4	5-'ETS	33	9.5
	Rpf1	LSU	35	10.0
	Ssf1	LSU	52	10.0
	Ssf2	LSU	52	9.7
	mean +/- S.D.		41+/-9	9.8+/-0.2
	Dbp3	pre-40S \& LSU	59	9.7
	Dbp4/Hca4	pre-40S	87	7.5
	Dbp6	LSU	70	6.2
	Dbp7	LSU	83	9.8
	Dbp8	SSU	47	10.2
	Dbp9	LSU	68	9.2
	Dbp10	LSU	113	9.7
	Dhr1	SSU	145	6.3
	Dhr2	SSU	83	9.2
	Drs1	LSU	84	5.4
	Fal1	SSU	45	9.5
	Has1	pre-40S \& LSU	57	9.9
	Mak5	LSU	87	8.8
	Prp43	pre-40S \& LSU	88	6.4
	Rok1	pre-40S	63	9.7
	Rrp3	SSU	55	9.7
	Spb4	LSU	69	9.5
	mean +/- S.D.		$77+/-24$	$8.7+/-1.5$
	Bms1	SSU	135	6.8
	Efl1	pre-LSU	124	4.7
	Lsg1	pre-LSU	73	9.2
	Nog1	pre-LSU	74	9.2
	Nog2	pre-LSU	55	10.2
	Nug1	pre-LSU	58	9.4
	mean +/- S.D.		$80+/-32$	$8.9+/-1.2$
	Noc2	LSU	81	8.8
	Noc3	LSU	75	5.7
	Noc4/Utp19	SSU	63	6.0
	Rrp12	SSU	137	7.0
	Sda1	LSU	87	6.9
	Utp10	5'-ETS	200	6.4
	mean +/- S.D.		$107+/-47$	$6.8+/-1.0$
	Bmt2	LSU	39	10.3
	Bud23	SSU	32	9.5
	Dim1	SSU	36	10.2
	Emg1	pre-40S	28	8.6

Table S3.		Physical Properties of Subgroups of Assembly Factors		
Motif Groupings		Subunit	MW	IEP
	Nop1	snoRNP/5'-ETS	34	10.8
	Nop2	LSU	70	4.7
	Rcm1	LSU	56	9.0
	Rrp8	LSU	46	10.1
	Spb1	LSU	96	8.3
	mean +/- S.D.		49+/-20	9.0+/-1.7
	Dim2/Pno1 (KH)	pre-40S	30	9.7
	Esf2 (RRM)	pre-40S	36	8.4
	Imp3 (S4 domain)	5'-ETS	21	10.3
	Krr1 (KH)	pre-40S	37	10.0
	Mrd1 (RRM)	pre-40S	101	6.5
	Nop4 (RRM)	LSU	77	9.4
	Nop6 (RRM)	pre-40S	25	10.9
	Nop8 (RRM)	LSU	57	5.7
	Nop9 (pumilio)	pre40S	77	8.3
	Nop12 (RRM)	LSU	51	12.1
	Nop13 (RRM)	LSU	46	9.9
	Nop15 (RRM)	LSU	25	9.9
	Nsr1 (RRM)	pre-40S	44	4.6
	Puf6 (pumilio)	LSU	75	6.9
	mean +/- S.D.		50+/-23	$8.7+/-2.0$
	Enp2	pre-40S	82	6.5
	Erb1	LSU	92	4.8
	Ipi3	LSU	62	5.5
	Mak11	LSU	53	8.7
	Rrb1	LSU	52	4.2
	Rrp9	5'-ETS	65	5.4
	Rsa4	LSU	57	9.2
	Sof1	5'-ETS	57	9.9
	Utp1	5'-ETS	103	4.7
	Utp4	5'-ETS	88	6.5
	Utp5	5'-ETS	72	4.6
	Utp7	5'-ETS	62	10.0
	Utp12	5'-ETS	106	5.9
	Utp13	5'-ETS	91	5.0
	Utp15	5'-ETS	57	9.8
	Utp17	5'-ETS	101	6.3
	Utp18	5'-ETS	66	4.6
	Utp21	5'-ETS	104	7.9
	Ytm1	LSU	51	7.0
	mean +/- S.D.		75 +/-19	$6.6+/ 1.9$
	Cbf5	pre-40S	54	9.3
	Gar1	pre-40S	21	12.0
	Nhp2	pre-40S	17	10.4
	Nop1	snoRNP/5'-ETS	34	10.8
	Nop10	snoRNP/pre-40S	6	10.8
	Nop56/Sik1	snoRNP/5'-ETS	56	9.4
	Nop58	snoRNP/5'-ETS	57	9.5

Table S3.								
Motif Groupings						Subunit	MW	IEP
	Snu13 (U3)	snoRNP/5'-ETS	13	8.0				
	mean $+/-$ S.D.		$32+/-19$	$10.0+/-1.1$				

Table S3 Physical Properties of Subgroups of Assembly Factors

The quadrants illustrated in Figure 3B/C are differentially enriched in subsets of AFs.
This table lists the physical properties of the relevant groups.

Table S4A. Isoelectric Point and Predicted Disorder Extremes						
	most acidic (<25 ${ }^{\text {th }}$ percentile)		most basic ($>75^{\text {th }}$ percentile)		most disordered (>60\%)	
	yeast AFs	human AFs	yeast AFs	human AFs	yeast AFs	human AFs
5'-ETS	(<4.72)	(< 5.81)	(>9.69)	(> 9.24)	(>60\%)	(>60\%)
	Pwp2	PWP2	Utp15	DCAF13	Mpp10	DNTTIP2
	Utp18	WDR75	Sof1	IMP4	Fcf2	UTP11L
	Utp5	UTP3	Utp7	IMP3	Utp11	UTP3
	Utp9	WDR43	Fcf2	WDR46	Bud21	
	Sas10	MPHOSPH10	Imp3	UTP11L		
	Mpp10		Utp11			
pre-40S	(<6.53)	(<6.91)	(>9.93)	(>9.49)	(>60\%)	(>60\%)
	Rio1	NOP9	Krr1	NGDN	Lcp5	KRI1
	Mrd1	UTP14C	Faf1	SRFBP1	Nsr1	NGDN
	Ecm16	EIF4A3	Utp30	RRP7A	Nop6	UTP14C
	Noc4	RBM19	Efg1	DDX52	Efg1	UTP14A
	Sgd1	BMS1	Dim1	PNO1	Esf2	
	Kri1	RIOK1	Dbp8	KRR1	Utp14	
	Utp14	KRI1	Rrt14	UTP23	Faf1	
	Nsr1	AATF	SIx9	RSL1D1	Rrt14	
	Enp1	NCL	Utp23		Fyv7	
	Bfr2		Nop6			
			Fyv7			
pre-LSU	(<5.48)	(<6.09)	(>9.85)	(>9.93)	(>60\%)	(>60\%)
	Rrp15	URB1	Nop15	RSL24D1	Nop4	NOP2
	Drs1	BMT2	Nop13	RPF2	Rrp15	RBM28
	Rix1	CEBPZ	Ssf1	DDX31	Fpr4	PELP1
	Nop7	WDR12	Rrp17	EBNA1BP2	Ebp2	FTSJ3
	Rix7	NOC2L	Nop53	RBM34	Rlp24	RRP1
	Rrp1	MDN1	Rpf1	RSL1D1	Fpr3	RRP15
	Mak16	RRP15	Rrp8	NOL12	Loc1	ZNF93
	Erb1	DNAJC21	Nop12	NSA2	Cgr1	NOP53
	Nop2	MAK16	Ipi1	NOP53		NOL12
	Rea1	GRWD1	Rlp7	RRS1		
	Mak21	EIF6	Rrs1			
	Rsa3	PELP1	Tri1			
	Fpr4		R/p24			
	Tif6		Bmt2			
	Rrb1		Nsa2			
	Sqt1		Loc1			
	Fpr3		Cgr1			

Table S4B		Outliers from the Comparison of Yeast vs Human				
	isoelectric point outlier		predicted disorder outlier		molecular weight outlier	
	yeast homolog	human homolog	yeast homolog	human homolog	yeast homolog	human homolog
5'-ETS	Fcf2	DNTTIP2	Sof1	DCAF13	Utp10	HEAR1
	Utp18	UTP18			Fcf2	DNTTIP2
pre-40S	Utp14	UTP14A	Nop9	NOP9	Utp30	RSL1D1
	Fal1	EIF4A3	Utp30	RSL1D1	Utp20	UTP20
	Enp1	BYSL			Nsr1	NCL
pre-LSU	Ebp2	EBNA1BP2	Rrp1	RRP1	Rix1	PELP1
	Drs1	DDX27	Rix1	PELP1	Nug1	NUGGC
	Fpr3	FPR3	Fpr3	FPR3	Urb2	URB2
	Rrp1	RRP1			Urb1	URB1
	Bmt2	BMT2			Rea1	MDN1
	Nop2	NOP2				

Table S4 Extreme Values of Physical Parameters of Assembly Factors - related to Figure 2
(A) Isoelectric point and predicted disorder extremes for principal subsets (5'ETS, pre-40S, pre-LSU) in both yeast and man. AFs are listed from top-down in order of increasing acidity for the most acidic and increasing basicity for the most basic. The entries for predicted disorder are organized in comparable fashion. The italicized AFs are those for which both yeast and human homologs have extreme values. The AFs that appear in multiple lists of extremes are highlighted.
(B) Outliers from the comparison of yeast vs human principal groups of AFs (5'-

ETS, pre-40S, pre-LSU). Homolog pairs are listed from top-down in order of increasing difference between yeast and human values. The AFs that appeared in multiple lists of outliers are highlighted.

IQR Rule

The interquartile range (IQR) was calculated by subtracting the first quartile (Q_{1}) from the third quartile $\left(Q_{3}\right)$ in each set of AF parameters. The boundaries for low and high outliers were then determined using the IQR rule (Equation 1, Equation 2).

$$
\begin{aligned}
& \text { low outliers }<Q_{1}-1.5 * I Q R \\
& \text { high outliers }>Q_{3}+1.5 * I Q R
\end{aligned}
$$

Eq. 1
Eq. 2

Table S5.			Assembly Factors with Shared Motif Signatures			
	Signature Name, Activity	Color code	Prototypes	Number of Motifs in Prototype	Proteins with Variant Motif Signatures	Larger Grouping
1	DExD/H-box)	Dbp7, [Dbp8], Dbp9	10	Dbp3, Dbp4, Dpb6, Dbp10, [Dhr1], Dhr2, Drs1, Fal1, [Has1], Mak5, [Prp43], Rok1, [Rrp3], Spb4	
2	GTPase/AAA ATPase	\bigcirc	Rea1	3	$\begin{aligned} & \text { Bms1, [Fun12c], Lsg1c, Nog1, Nog2/Nug2, } \\ & \text { Nug1, [Sen1] } \end{aligned}$	NTPases
3	ATPase	\bigcirc	Drg1c, Rix7	8		
4	snoRNP)	Nop56, Nop58	9		
5	HMG-like)	Nhp2, Snu13	7	(Cic1/Nsa3)	snoRNP
6	Gar1		Gar1	1		proteins
7	RRM)	Mrd1, Nop4, Nop12, Nop13, Nop15, [Nsr1]	5	Esf2, Nop6, Nop8, (Rrp7)	
8	Brix domain		Ssf1, Ssf2	4	Brx1, Imp4, Rpf1, Rpf2	
9	Methyl Transferases)	Nop1	3	Bmt2, Bud23, [Dim1], Emg1, Nop2, Rcm1, Rrp8, Spb1, [YGR283C]	RNA-binding
10	KH domain	\bigcirc	Dim2, Krr1	3		
11	ARM/HEAT	\bigcirc	```Ipi1, Nop9, Puf6, Rrp12, Sda1, Sgd1, Utp10, Utp20```	1	Mak21/Noc1, Noc3, (Noc4/Utp19)	
12	WD repeat and WD-like	\bigcirc	Nan1/Utp17, Rrp9, Utp4, Utp18	6	Enp2, Erb1, (Esf1), Ipi3, Mak11, (Nsa1), Rrb1, (Rrp5), Rsa4, Sof1, Utp1, (Utp5), Utp6, Utp7, (Utp9), Utp12, Utp13, Utp15, Utp21, Ytm1	Structural
13	Prolyl isomerase)	Fpr3, Fpr4	8		
14	Zn-finger)	Bud20, Jjj1	5	Rei1	
15	Kinases		Rio2c	5	Rio1c	
16	PUA domain	\bigcirc	Cbf5*, Nip7	3		Other
17	GTP-binding	\bigcirc	Efl1c	10		
18	Unknown)	Utp3	2	Lcp5	Various
19		\bigcirc	Sdo1	1		

Alb1, Arx1, Bfr2, Bud21, Bud22, Cgr1, Ebp2, Efg1, Enp1, [Fcf2], [Fyv7], Imp3, Kre33, Kri1, Las1, Loc1, Ltv1c, Mak16, Mpp10, Mrt4, Ngl2, [Nob1], Noc2, Nop7, Nop16, Npa1/Urb1, Npa2, Nsa2, Pfa1/Sqs1c, Rcl1, Rix1, Rlp7, Rlp24, Rnt1, Rrp1, Rrp6, Rrp15, Rrs1, Rrt14, Rsa3, [SIx9], Snm1, Tif6, Tri1, Utp2, Utp8, Utp11, Utp14, Utp22, [Utp24/Fcf1], Yvh1.
Color scheme: Green for 5'-ETS, Blue for pre-40S, Red for pre-LSU.
Motif signatures under consideration are listed by the Saccharomyces Genome Database. If a motif is found in only a single AF, that AF is considered to lack shared motifs.
Variant motif signatures can have more or fewer of the motifs by comparison to the prototypes.
Entries in parentheses are marginally-related to the groups in which they are included.
Domain assignments for AFs in brackets are provisional, judging from differences between two publications [6, 7].

* Cbf5 is the pseudouridine synthase of H/ACA snoRNPs. These proteins have been recovered in association with the pre-40S segment of rRNA, unlike Nop1 and other box C/D snoRNP proteins, that are recovered with the 5'-ETS [6, 7].
The suffix, c, signifies that the AF localizes largely to the cytoplasm.
@ Low-stringency BLAST searches detect the following relations: Mrt4 with Rpp0, Tri1 with Uaf30 and Enp1, Fcf1/Utp24 with Utp23, and Tif6 with elF6. Rlp7 and Rlp24 are considered placeholders for Rpl7 and Rpl24 [8] and Rrs1 binds Rpl11.
The colors indicate the segments of rRNA with which the AFs are associated: Green: 5'-ETS, Blue: pre-40S, Red: pre-LSU. Purple: snoRNP.

Table S5 Hierarchic Clustering Motif Signatures - relevant to Figure 3D

AFs with motif(s) that are shared with at least one other AF were tabulated and assigned to 19 groups ("motif signatures"). The lower part of the table lists the AFs that do not share motif signatures with others.

			Table S6. RNA-Binding Proteins Associated with rRNA Domains											
	$\begin{gathered} \text { 5'- } \\ \text { ETS } \end{gathered}$	pre-40S domains				$\begin{gathered} \text { ITS } \\ 1 \end{gathered}$	pre-LSU domains							
荷	ETS	$\begin{aligned} & u \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \stackrel{\theta}{\ddot{0}} \end{aligned}$		$\begin{aligned} & w \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	ITS1	$$	D1	D2	D3	D4	D5	D6	late
	$\begin{aligned} & \text { Imp3 } \\ & (10.3) \end{aligned}$	$\frac{\text { Esf2 }}{(8.4)}$	Kril (4.7) Krr1 (10.1) Nsr1 ${ }^{\text {In }}$ (4.6)	$\frac{\text { Mrd1 }}{}$ (6.5) Nop6 (10.9) Nop9 ${ }^{\text {In }}$ (8.4)	$\begin{aligned} & \text { Pno1 } \\ & (9.7) \end{aligned}$	$\begin{aligned} & \text { Rrp5 } \\ & (6.1) \end{aligned}$		Nop12 (10.1) Nop15 (9.9) Rrp5 (6.1)	Nop4 (9.7)		$\begin{aligned} & \hline \text { Puf6 } \\ & (6.9) \end{aligned}$		$\frac{\text { Nop8 }}{\mathrm{F}(5.7)}$	$\begin{aligned} & \text { Nop13 } \\ & (9.9) \end{aligned}$
$\stackrel{\underset{1}{\mathrm{x}}}{\stackrel{\rightharpoonup}{x}}$		Dbp4 (7.5) Dbp8 (10.2)	$\begin{aligned} & \text { Rok1 } \\ & (9.7) \end{aligned}$		$\begin{aligned} & \text { Dhr1 } \\ & (6.3) \\ & \underline{\text { Dhr2 }} \\ & \hline(9.2) \end{aligned}$		$\begin{aligned} & \hline \text { Dbp7* } \\ & (9.8) \\ & \text { Dbp9 }^{*} \\ & (9.7) \\ & \text { Dbp10 } \\ & (9.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Has1 } \\ & (9.9) \end{aligned}$		$\begin{aligned} & \hline \text { Drs1 } \\ & (5.4) \end{aligned}$				
	$\begin{aligned} & \text { Imp4 } \\ & (9.5) \end{aligned}$						Ssf1 (10.0) Ssf2 (9.7)	$\begin{aligned} & \hline \text { Brx1 } \\ & (9.8) \end{aligned}$	$\begin{aligned} & \hline \text { Rpf1 } \\ & (10.1) \end{aligned}$			$\begin{aligned} & \text { Rpf2 } \\ & (9.6) \end{aligned}$		
				$\begin{aligned} & \text { Emg1 } \\ & (8.6) \end{aligned}$	$\begin{aligned} & \hline \text { Rrp8 } \\ & (10.1) \end{aligned}$							$\frac{\text { Nop2 }}{(4.7)}$		
	Nop1 (10.8) Nop5 $\underline{6}$ (9.4) $\underline{\text { Nop5 }}$ $\underline{8}$ (9.5) $\underline{S n u 1}$ (8.0)		Cbf5 (9.3) Gar1 (12.0) Nhp2 (10.4) Nop10 (10.8)											
Derived from experiments in which AFs have been recovered along with 3'-truncated segments of rRNA [6, 7, 9, 10]. The superscripts (In, F) designate AFs that belong to the SSU-In or LSU-F subsets. IEP values from the Saccharomyces Genome Database are indicated in parentheses. The underlined AFs interact with Nop1 on the basis of biochemical and genetic experiments, as is summarized in the Saccharomyces Genome Database.														

Table S6 Assembly Factors Associated with Successive rRNA Domains - related to Table 3, Figure 4A.

The RNA-binding proteins listed were identified in experiments using 3'-truncated rRNAs that were expressed in yeast, retrieved from lysates and analyzed, as described in the text. Their IEPs are indicated in parentheses. Many additional AFs are also known to contact rRNA judging from cross-linking studies and cryo-EM studies. The column entitled ITS2-Ssf1 corresponds to a very early LSU precursor.

Subset of AFs	Orthologs in LECA *	Orthologs in Archaea	Candidates in E. coli
SSU-F	Dbp8, Dhr2, Fyv7, "Nan1/Utp17, Noc4, Rrp7, "Utp5, \#Utp6, "Utp13, "Utp15, Utp25		ARB1, BUD23, CDC14, CFD1, DBP5, DBP8, DED1, DIM1, DIS3 DRS1, FPR3, Kre33, MDN1, MTR4, NOP2, RCL1, REX2, RIX7, RLI1, RNT1, ROK1, RRP5, RRP6, SKI6
SSU-In	Efg1, Nsr1		
LSU-F	Dbp6, Npa1/Urb1, Npa2/Urb2		
LSU-Ou	Brx1, Cic1, Mak11, Mrt4, Noc2, Noc3, Nop4, Nop7, Nop13, Nop15, Nop16, Puf6, Rrp1, Ytm1, Ssf1	Nog1, Rix7, Tif6	
snoRNP	Gar1, Nhp2, Nop56/Sik1, Nop58	Gar1, Nop1, Nop10, Nop56/Sik1	
shared	Dbp3, Prp43		
Derived from [11]. * We have included only those AFs that we have localized. \# These AFs associate with the 5ETS in yeast: Utp5, Utp6, Utp13, Utp15, Nan1/Utp17.			

Table S7 Assembly Factors in Evolutionary Context - related to Table 1

Comparison of each subunit-specific subset with the likely repertoire of AFs in more primitive organisms. Based on [11].

Supplementary Figures and Legends

Figure S1 Copy Number per Cell of Single Assembly Factors - related to Figure 2 (A) Copy number estimate bar graphs. Mean values and standard deviations for single AFs as well as proteins associated with rDNA, and RNA polymerases. See Figure S1 and Table S4 for detail. Outlier values for each AF (based on the IQR rule see Methods) and outlier AFs for each subset (due to unreasonably high standard deviations) were removed before these calculations were made. The following AFs were removed: Nsr1/She5, Nsa2, Hmo1, Top1 and Top2.

The representation is as in Figure 2 but concerns single proteins of (B) 5'-ETS, (C) pre40S, (D) pre-LSU, (E) additional AFs, (F) RNA polymerase, (G) Rrn proteins, (H) rDNAPs. Outlier values for each AF were removed from consideration (Nsr1/She5, Nsa2, Hmo1, Snu13, Top1 and Top2). Nuclease: nucleases that cleave rRNA, Shared:
proteins needed to make both SSU and LSU, RPA/B/C: subunits of RNA polymerase A/B/C, Rrn: regulators of RNA polymerase $A, \underline{\text { rDNAPs: }}$ proteins that colocalize with the rDNA filament. For identification of the subsets of AFs, see Table S1.

Figure S2

Figure S2 Predicted Disorder and Molecular Weight of Yeast and Human Assembly Factors

Assembly factors were grouped - as in Figure 3A - to illustrate the characteristics of those that associate with the 5 '-ETS, the pre-40S segment, or the pre-LSU segment. In each case, the central column of values includes all relevant AFs listed in Table S2. For the 5 '-ETS, the points to the left are SSU-F. For the pre-40S, the points to the left are SSU-F and the points to the right are SSU-In. For the pre-LSU, the points to the left are LSU-Ou and the points to the right are LSU-F. Human AFs are subgrouped according to the information for their yeast homologs.

Figure S3

Figure S3 Overlay Representation of Physical Properties for Subsets of Assembly Factors - related to the 2-dimensional plots of Figure 3B/C

All AFs present in the each of the tripartite domains are shown in gray.
(A) RNA-associated proteins. The AFs in the upper quadrants include those with RNA-binding motifs (RRMs, KH and pumilio domains). They have a mean IEP of pH 8.5 and mean size of $64 \mathrm{kDa}(\mathrm{pH} 8.5,64 \mathrm{kDa})$, $\mathrm{DExD} / \mathrm{H}$-box proteins ($\mathrm{pH} 8.7,77 \mathrm{kDa}$), the methyl transferases ($\mathrm{pH} 9.0,49 \mathrm{kDa}$), and Brix domain proteins ($\mathrm{pH} 9.8,41 \mathrm{kDa}$). snoRNP proteins, although not illustrated, have the following mean values (pH 10.0, 32 kDa).
(B) WD-repeat proteins. The AFs with WD repeats are found mostly in the lower two quadrants ($\mathrm{pH} 6.6,54 \mathrm{kDa}$).
(C) HEAT/ARM-repeat proteins. The AFs with HEAT repeats (pH 6.8, 107 kDa) and ARM repeats ($\mathrm{pH} 7.1,116 \mathrm{kDa}$) have broadly distributed IEPs.

Figure S4 Yeast vs Human Comparison of Physical Properties of Assembly Factors related to Figure 3

The comparative diagonal plots show isoelectric points, predicted disorder and molecular weights of (A) 5'-ETS, (B) pre-40S and (C) pre-LSU AFs. Colored margins indicate how far away yeast and human values are from each other, with green being 1 standard deviation, yellow being 2 standard deviations, and pink being 3 standard deviations. AF pairs were considered outliers if the difference between their yeast and human values (when compared to all AFs in their subset) was more than 2 standard deviations away from 0 . These are indicated with red arrows using yeast names.

From inner to outer
From outer to nucleoplasm

Figure S5 Vectorial 2-Phase Partitioning

On the left, in a typical T-diagram, we illustrate the progressive loading of AFs onto nascent rRNA within the inner compartment. At "start," no AFs have been added so the circle is empty. Due to arrival of latent AFs from the outer layer (vertical blue arrows) the nascent rRNPs progressively acquires AFs (red filling) and becomes phase compatible with the outer layer/volume. The nascent particles therefore shift in an energetically downhill fashion to the outer layer/volume. At the right, the further maturation of precursor particles that reside in the outer layer. Since multiple AFs that are conspicuous in the nucleoplasm are also found in the outer compartment, we propose that when they arrive in the outer layer (blue arrows) they bind to the surface of immature particles (represented by the blue surface on the red particles). Those particles therefore can diffuse in energetically neutral fashion into the nucleoplasmic volume. Our previous article [1] introduces the use of T-diagrams.

Literature Cited

1. Tartakoff, A.M., et al., The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases. Curr Biol, 2021. 31(12): p. 25072519 e4.
2. Giaever, G., et al., Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002. 418(6896): p. 387-91.
3. Bohnsack, K.E. and M.T. Bohnsack, Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J, 2019. 38(13): p. e100278.
4. Farley-Barnes, K.I., L.M. Ogawa, and S.J. Baserga, Ribosomopathies: Old Concepts, New Controversies. Trends Genet, 2019. 35(10): p. 754-767.
5. Ho, B., A. Baryshnikova, and G.W. Brown, Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome. Cell Syst, 2018. 6(2): p. 192205 e3.
6. Zhang, L., et al., Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev, 2016. 30(6): p. 718-32.
7. Chaker-Margot, M., et al., Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat Struct Mol Biol, 2015. 22(11): p. 920-3.
8. Espinar-Marchena, F.J., R. Babiano, and J. Cruz, Placeholder factors in ribosome biogenesis: please, pave my way. Microb Cell, 2017. 4(5): p. 144-168.
9. Chen, W., et al., Stepwise assembly of the earliest precursors of large ribosomal subunits in yeast. Nucleic Acids Res, 2017.
10. Hunziker, M., et al., Conformational switches control early maturation of the eukaryotic small ribosomal subunit. Elife, 2019. 8.
11. Ebersberger, I., et al., The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Res, 2014. 42(3): p. 1509-23.
