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Kamalaker Dadi1, Gaël Varoquaux1,2,3, Josselin Houenou4,5, Danilo
Bzdok1,3,6, Bertrand Thirion1 and Denis Engemann1,7,*

1Inria, CEA, Neurospin, Parietal team, Univ. Paris Saclay, 91120 Palaiseau, France and 2Montréal
Neurological Institute, McGill University, Montreal, Canada and 3Mila - Quebec Artificial Intelligence
Institute, Canada and 4CEA, NeuroSpin, Psychiatry Team, UNIACT Lab, Univ. Paris Saclay and 5APHP,
Mondor University Hospitals, Psychiatry Dept, INSERM U955 Team 15 "Translational Psychiatry", Créteil,
France and 6Department of Biomedical Engineering, Montreal Neurological Institute, Faculty of Medicine,
McGill University, Montreal, Canada and 7Department of Neurology, Max Planck Institute for Human
Cognitive and Brain Sciences, Germany
* denis-alexander.engeman@inria.fr

Abstract

Background Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. Instead, individual
differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These
constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful
interpretation. Could machine learning on large samples from the general population be used to build proxy measures of
these constructs that do not require human intervention? Results Here, we built proxy measures by applying machine
learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date:
the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were more
useful than the original measures for characterizing real-world health behavior (sleep, exercise, tobacco, alcohol
consumption). We observed this advantage of proxy measures over the original measures when modeling from brain
signals or sociodemographic data, capturing multiple health-related constructs. Conclusions Population modeling with
machine learning can derive measures of mental health from brain signals and questionnaire data, which may replace or
complement psychometric assessments in clinical populations.

Key words: Mental Health, Proxy Measures, Machine Learning, Sociodemographic Factors, Brain Imaging

Background

Quantitative measures of mental health remain challenging de-
spite substantial efforts [1]. The field has struggled with un-
stable diagnostic systems [2], small sample sizes [3], and re-
liance on case-control studies [4]. Perhaps most importantly,
mental health cannot be measured the same way diabetes can
be assessed through plasma levels of insulin or glucose. Psy-

chological constructs, e.g., intelligence or anxiety, can only be
probed indirectly through lengthy expert-built questionnaires
or structured examinations by a specialist. Though question-
naires often remain the best accessible option, their capacity
to measure a construct is limited [5]. In practice, as full neu-
ropsychological evaluation is not automated process but relies
on expert judgement to confront multiple answers and inter-
pret them in the context of the broader picture, such as cul-
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Key Points

• We applied machine learning on more than 10.000 individuals from the general population to define empirical approxima-
tions of health-related psychological measures that do not require human judgment.

• We found that machine-learning enriched the given psychological measures via approximation from brain and sociode-
mographic data: Resulting proxy measures related better to real-world health behavior than the original measures.

• Model comparisons showed that sociodemographic information contributed most to characterizing psychological traits
beyond aging.

tural background of the participant. While the field of psy-
chometrics has thoroughly studied the validity of psycholog-
ical constructs and their measure [6, 7, 8], the advent of new
biophysical measurements of the brain brings new promises
[9, 10, 11]. The growth of biobanks and advances in machine
learning open the door to large-scale validation of psycholog-
ical measures for mental health research [12], and the hope to
develop more generalizable models [13]. Yet, to be reliable, ma-
chine learning needs large labeled datasets [14]. Its application
tolearn imaging biomarkers of mental disorders is limited by
the availability of large cohorts with high-quality neuropsychi-
atric diagnosis [15].

By comparison, it is easier to collect data on the general pop-
ulation without information on clinical conditions. For brain
health, such data has lead to developing proxy measures that
quantifying biological aging [16, 17, 18, 11, 19, 20, 21, 22]. One
counterintuitive aspect of the methodology is that measures of
biological aging can be obtained by focusing on the age of a
person, which is known in advance and in itself not interest-
ing. Yet, by predicting the age, machine-learning can capture
the relevant signal. Based on a population of brain images, it
extracts the best guess for the age of a person, indirectly posi-
tioning that person within the population. Individual-specific
prediction errors therefore reflect deviations from what is sta-
tistically expected [23]. The brain of a person can look similar
to the brains commonly seen in older (or younger) people. The
resulting brain-predicted age reflects physical and cognitive
impairment in adults [24, 17, 16] and reveals neurodegenerative
processes [22, 25]. Can this strategy of biomarker-like proxy
measures be extended to other targets beyond the construct of
aging? Extrapolating from these successes, we propose to build
upon large datasets to extend the collection of health-related
proxy measures, probing mental traits.

One high-stake target is intelligence, which is measured
through socially administered tests and is one of the most ex-
tensively studied constructs in psychology. Fluid intelligence
refers to the putatively culture-free, heritable and physiologi-
cal component of intelligence [26, 27] and is a latent construct
designed to capture individual differences in cognitive capacity.
It has been robustly associated with neuronal maturation and is
typically reflected in cognitive-processing speed and working-
memory capacity [28]. Applied to psychiatric disorders, it may
help characterize psychosis, bipolar disorder, and substance
abuse [29, 30].

Neuroticism is a second promising target. As a key repre-
sentative of the extensively studied Big Five personality inven-
tory, neuroticism has a long-standing tradition in the psychol-
ogy of individual differences [31, 32]. Neuroticism is measured
using self-assessment questionnaires and conceptualized as
capturing dispositional negative emotionality including anxi-
ety and depressiveness [33]. It has been inter-culturally vali-
dated [26, 34] and population-genetics studies have repeatedly
linked neuroticism to shared genes [35, 36, 37]. Neuroticism
was shown useful in psychometric screening and supports pre-
dicting real-world behavior [38, 39].

Despite strong population-level heritability [40, 41], the
link between psychological constructs, brain function and ge-
netics is still being actively researched [42, 33]. Empowered
by emerging large-scale datasets, current attempts to predict
fluid intelligence or neuroticism from thousands of MRI scans
argue in favor of heterogeneity and weakly generalizing ef-
fects [43, 44]. This stands in contrast to the remarkable per-
formance obtained when predicting psychometric data from
language-based inputs captured by Twitter and Facebook user
data [45, 46]. As MRI acquisitions can be difficult to come by in
certain populations, the promises of social-media data are ap-
pealing. However, such data may lead to measurement and se-
lection biases difficult to control. Instead, background sociode-
mographic data may provide an easily accessible alternative for
contextualizing the heterogeneity of psychological traits [47].
Another challenge is that psychological traits are often mea-

sured using arbitrary non-physical units, e.g. education degree
or monthly income. In fact, society treats individual differ-
ences as categorical or continuous, depending on the practical
context. While personality has been proposed to span a con-
tinuum [48], psychiatrists treat certain people as patients and
not others [49]. Therefore, a measure that performs globally
poorly at a continuous scale can be sufficient to distinguish
subgroups as it may be informative around the boundary re-
gion between certain classes, e.g., pilots who should fly and
who should not. Choosing the granularity with which to gauge
psychological constructs is diffcult.
Confronting the promises of population phenotyping with

the challenges of measuring psychological traits raises the fol-
lowing questions: 1) How well can various constructs related
to mental health be approximated from general-purpose in-
puts not designed to measure specific latent constructs? 2) Can
the success of brain age be extended to other proxy measures
capturing complementary facets of mental health? 3) What
is the relative merit of brain imaging and sociodemographics?
We tackled these questions by using machine learning to craft
proxy measures in order to approximate well-characterized tar-
get measures from brain-imaging and sociodemographic data.
We studied age, fluid intelligence, and neuroticism – classical
targets which have been serving as proxy measures for mental
health in the first place. Figure 1 summarizes our approach.
Results suggest that, as with brain age, proxy measures can
bring value for the study of mental health that goes beyond
approximating an available measure.

Results: validity of proxy measures

Outperforming the original measures at characteriz-
ing real-life health-related habits

To approximate age, fluid intelligence and neuroticism, we ap-
plied random-forest regression on sociodemographic data and
brain images. The data was split into validation data for model
construction (see section Model Development and Generaliza-
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Figure 1. Methods overview: building and evaluating proxymeasuresWe com-
bined multiple brain-imaging modalities (A) with sociodemographic data (B)
to approximate health-related biomedical and psychological constructs (C), i.e.,
brain age (accessed through prediction of chronological age), cognitive capacity
(accessed through a fluid-intelligence test) and the tendency to report nega-
tive emotions (accessed through a neuroticism questionnaire). We included the
imaging data from the 10 000-subjects release of the UK biobank. Among imag-
ing data (A) we considered features related to cortical and subcortical volumes,
functional connectivity from rfMRI based on ICA networks, and white-matter
molecular tracts from diffusive directions (see Table 1 for an overview about the
multiple brain-imaging modalities). We then grouped the sociodemographic
data (B) into five different blocks of variables related to self-reported mood &
sentiment, primary demographics, lifestyle, education, and early-life events
(Table 2 lists the number of variables in each block). Subsequently, we sys-
tematically compared the approximations of all three targets based on either
brain images and sociodemographics in isolation or combined (C) to evaluate
the relative contribution of these distinct inputs. Models were developed on
50% of the data (randomly drawn) based on random forest regression guided
by Monte Carlo cross-validation with 100 splits (see section Model Develop-
ment and Generalization Testing). We assessed generalization using the other
50% of the data as fully independent out-of-sample evaluations (see section
Statistical Analysis).

tion Testing) and generalization data for statistical inference on
out-of-sample predictions with independent data (see section
Statistical Analysis). Our findings suggested that psychologi-
cal constructs can be approximated from brain images and so-
ciodemographic variables – inputs not tailored to specifically
measure these constructs. We then applied the derived proxy
measures on the left-out data to gauge how well they cap-
ture real-world behavior, e.g., sleep, physical exercise, alcohol
and tobacco consumption. To relate such health behaviors to
our proxy measures, we modeled them separately as weighted
sums of predicted brain-age delta, fluid intelligence and neu-
roticism using multiple linear regression (section Statistical
Analysis). To avoid circularity, we used the out-of-sample pre-
dictions for all proxy measures (section Model Development
and Generalization Testing).

The estimated regression coefficients (partial correlations),
revealed complementary associations between the proxy mea-
sures and health-related behavior (Figure 2). Similar patterns
arise when considering proxy measures in isolation (Figure 2
– Figure supplement 1). Compared to other proxy measures,
elevated brain-age delta was associated with increased alcohol
consumption (Figure 2, first row). Levels of physical exercise
were consistently associated with all three predicted targets,
suggesting additive effects (Figure 2, second row). For fluid in-
telligence, this result, counter-intuitive from the health stand-
point, could imply that higher test scores reveal a more seden-
tary life style. Increased sleep duration consistently went along
with elevated brain age, but lower levels of predicted neuroti-
cism (Figure 2, third row). No consistent effect emerged for
fluid intelligence. Numbers of cigarettes smoked was indepen-
dently associated with all predicted targets (Figure 2, last row):
Intensified smoking went along with elevated brain age delta
and neuroticism but lower fluid intelligence.

The question remains whether the proxymeasures bring ad-
ditional value compared to the original target measures they

were derived from. These original target measures showed
similar associations to health behavior, often, with the same
signs (Figure 2, B). However, the ensuing patterns were more
noisy, suggesting that empirically derived proxy measures in-
deed yield enhanced associations with health behavior.

The relative importance of brain and sociodemo-
graphic data depends on the target

In a second step, we investigated the relative performance of
proxy measures built from brain signals and distinct sociode-
mographic factors for the three targets: age, fluid intelligence
and neuroticism. Among the sociodemographic variables there
was one block for each target explaining most of the predic-
tion performance (Figure 3, dotted outlines). Combining all
sociodemographic variables did not lead to obvious enhance-
ments (Figure 3 – Figure supplement 2). For age prediction,
variables related to current life-style showed by far the high-
est performance. For fluid intelligence, education performed
by far best. For neuroticism, mood & sentiment clearly showed
the strongest performance.

Combining MRI and sociodemographics, enhanced age pre-
diction systematically on all four blocks of variables (Figure 3
solid outlines, and Table S1). The benefit of brain-imaging fea-
tures was less marked for prediction of fluid intelligence or
neuroticism. With fluid intelligence, brain-imaging data im-
proved the performance statistically significantly for all mod-
els, yet, with small effect sizes (Table S1). For neuroticism,
no systematic benefit of including brain images alongside so-
ciodemographics emerged (Table S1, bottom row). Neverthe-
less, brain data was sufficient for statistically significant ap-
proximation of the target measures in all three targets (Ta-
ble S3).

Psychological measures often come without physical scales
and units [51]. In practice, clinicians and educators use them
with specific thresholds for decision making. To investigate
empirically-defined proxy measures beyond continuous re-
gression, we performed binary classification of extreme groups
obtained from discretizing the targets using the 33rd and 66th
percentiles. Furthermore, we measured accuracy with the AUC
which is only sensitive to ranking, ignoring the scale of the
error. Classification performance visibly exceeded the chance
level (AUC > 0.5) for all models (Figure 4) and approached or
exceeded levels considered practically useful (AUC > 0.8) [49].
Across proxy measures, models including sociodemographics
performed best but the difference between purely sociodemo-
graphic and brain-based models was comparably weak, at the
order of 0.01-0.02 AUC points (Table S2). Using brain data only
led to worse performance, yet, still better than chance as re-
vealed by permutation testing (Table S4).

Discussion

Guided bymachine learning, we empirically derived proxymea-
sures that combine multiple sources of information to capture
extensively validated target measures from psychology. These
proxy measures all showed complementary associations with
real-world health indicators beyond the original targets. The
combination of brain imaging and target-specific sociodemo-
graphic inputs often improved approximation performance.



4 | GigaScience, 20xx, Vol. 0, No. 0

Brain Age Delta

# Cigarettes smoked
(Pack−Years)

Sleep duration (hours)

Metabolic Equivalent Task
(minutes/week)

# Alcoholic beverages

Age Observed NeuroticismObserved Fluid Intelligence

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

# Cigarettes smoked
(Pack−Years)

Sleep duration (hours)

Metabolic Equivalent Task
(minutes/week)

# Alcoholic beverages

βproxy ± bootstrap−based uncertainty estimates

Specific associations for proxy and target measures with health−related habits
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Figure 2. Proxy measures show systematic and complementary out-of-sample associations with health-related habits. We probed the external validity of all
three proxy measures (brain age, fluid intelligence, neuroticism) based on a combination of brain images and all sociodemographic factors (see Figure 1 and
Figure 3 for details). We investigated their out-of-sample associations with ecological indicators of mental health (sleep duration, time spent with physical
exercise, number of alcoholic beverages and cigarettes consumed). To tease apart complementary and redundant effects, we constructed multiple linear regression
models on out-of-sample predictions combining all three proxy measures (A). For comparison, we repeated the analysis using the actual target measures (B)
observed on the held-out data. Regression models are depicted rows-wise. Box plots summarize the uncertainty distribution of target-specific (color) regression
coefficients with whiskers indicating two-sided 95% uncertainty intervals (parametric bootstrap). Dots illustrate a random subset of 200 out of 10000 coefficient
draws. The average coefficient estimate is annotated for convenience. At least two distinct patterns emerged: either the health outcome was specifically associated
with one proxy measures (brain age delta and number of alcoholic beverages) or multiple measures showed additive associations with the outcome (e.g. number of
pack years smoked). Finally, target measures (B) show noisier associations than proxy measures (A), though none of the significant associations changed direction.
Figure 2 – Figure supplement 1 shows similar trends with marginal associations between proxy measures and health-related habits. Our results suggest that the
proxy measures capture well health-related habits, potentially better than the original target measures, and in a complementary way across the three measures.
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Figure 3. Approximation performance of proxy measures derived from sociodemographic data and MRI. We report the R2 metric to facilitate comparisons
across prediction targets. The cross-validation (CV) distribution (100 Monte Carlo splits) on the validation dataset is depicted by violins. Drawing style indicates
whether brain imaging (solid outlines of violins) was included in addition or not (dotted outlines of violins). Dots depict the average performance on the validation
data across CV-splits. Pyramids depict the performance of the average prediction (CV-bagging) on held-out generalization datasets. For convenience, the mean
performance on the validation set is annotated for each plot. Vertical dotted lines indicate the average performance of the full MRI model. The validation and
held-out datasets gave similar picture of approximation performance with no evidence for cross-validation bias [50]. For the averaged out-of-sample predictions,
the probability of the observed performance under the null-distribution and the uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S1). Corresponding statistics for the baseline performance of models solely based on brain imaging (vertical dotted
lines) are presented in Table S3. Figure 3 – Figure supplement 1 shows approximation results based on MRI. Figure 3 – Figure supplement 2 presents results
based on all sociodemographic factors.
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Figure 4. Classification analysis from imaging, sociodemographics and com-
bination of both data. For classification of extreme groups instead of contin-
uous regression, we split the data into low vs high groups based on 33rd and
66th percentiles. Visual conventions follow Figure 3. We report the accuracy
in AUC. Models including sociodemographics performed visibly better than
models purely based on brain imaging. Differences between brain-imaging
and sociodemographics appeared less pronounced as compared to the fully-
fledged regression analysis. For the average out-of-sample predictions, the
probability of the observed performance under the null-distribution and the
uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S2). Corresponding statistics for
the baseline performance of models solely based on brain imaging (vertical
dotted lines) are presented in Table S4. Overall, when moving from the more
difficult full-scale regression problem to extreme-group classification prob-
lem with purely ranking-based scores, the relative differences between brain-
based and sociodemographics-based prediction gradually faded away.

Empirically-derived proxy measures: validity and
practical utility

In our study, construct validity [6, 52, 7] of the corresponding
proxy measures was supported by the gain in prediction per-
formance brought by specific sociodemographic factors (Fig-
ure 3). Association with health-relevant habits added exter-
nal validity to the proxy measures (Figure 2). The comple-
mentary patterns related to traditional construct semantics:
High consumption of cigarettes is associated with neuroticism
[53], excessive drinking may lead to brain atrophy and cogni-
tive decline [54] – both common correlates of elevated brain
age [22, 55].

Can our empirically-derived proxy measures, thus, substi-
tute for specific psychometric instruments? A mental-health
professional may still prefer an established routine for clinical
assessment, relying on interviews and personality question-
naires while still applying implicit experience-based thresh-
olds. Inclusion of brain imaging may even seem to yield dimin-
ishing returns when approximating high-level psychological
traits. Yet, it could simply be a matter of time until more ef-
fective acquisition protocols will be discovered alongside useful
signal representations. Including brain imaging, rather seems
a “safe bet” as machine learning is often capable of selecting
relevant inputs [11, 56] and costs of MRI-acquisition can be
amortized by clinical usage. Empirically-derived proxy mea-
sures may open new doors where tailored assessment of latent
constructs is not applicable due to lack of specialized mental-
health workforce or sheer cost.

Constructs of mental-health can be accessed from
general-purpose data

Brain age has served as landmark in this study. It has been ar-
guably the most discussed candidate for a surrogate biomarker
in the brain imaging literature [16, 17, 24]. With mean absolute
errors around 4 years, up to 67% variance explained, and AUC-
scores up to 0.93 in the classification setting, our results com-

pare favorably to the recent brain-age literature within the UK
Biobank [19, 57] and in other datasets [22, 11], though we relied
on classical methods and not deep learning [58]. Applying the
same approach to psychological constructs (fluid intelligence,
neuroticism), we found that approximation from brain imaging
data or sociodemographic descriptors was generally harder.

It is important to recapitulate that approximation quality
on these differently measured targets has a different mean-
ing. Age is measured with meaningful physical units (years)
on a ratio scale [51] (Selma is twice as old as Bob). Psycho-
metric scores are unit-free, which may provoke ambiguity re-
garding the level of measurement [52]. Their implied scales
may be considered as interval (the difference between Bob’s and
Selma’s intelligence is -0.1 standard deviations) if not ordi-
nal (Bob’s intelligence was ranked below Selma’s) [51]. In
day-to-day psychological practice, these scores are often used
via practically-defined thresholds, e.g. school admission or pi-
lot candidate selection [59, 60]. In the classification setting,
all proxy measures approached or exceeded a performance of
0.80 deemed relevant in biomarker development [49], though
to be fair, they approximated established psychometric targets
(proxy measures themselves) and not a medical condition. Dif-
ferent proxy measures should, thus, be subjected to different
standards, depending on the granularity of the implied mea-
surement scale.

The out-of-sample associations of the approximated con-
structs with health-related habits (Figure 2) paint a more com-
plete picture. Compared to the traditional measures (Figure 2
B), the associations between proxy measures and real-world
behavior were less noisy and more consistent, regardless of
their approximation quality (Figure 2 A). This may seem sur-
prising at first, but the target measures are themselves noisy
and of imperfect validity. Our target measures correspond to
traditional tests which, in practice, must be interpreted by an
expert, actively confronting their output with broader informa-
tion on the individual. Conversely, the proxymeasures were as-
sembled via mapping the targets to rich sociodemographic and
brain data, implicitly contextualizing them and building a less
noisy measure in the process. In this sense, machine learning
could be seen as mimicking the work of a mental health expert
who carefully compares psychometric results with other facts
known about an individual and its reference population.

The benefits offered by brain data depend on the target
construct

All brain-derived approximations were statistically meaning-
ful. Yet, only for age prediction, imaging data by itself led
to convincing performance. For fluid intelligence and neuroti-
cism, sociodemographic factors were themost important deter-
minants of prediction success. The best-performing sociode-
mographic models were based on inputs semantically close
to these targets, i.e., education details or mood & sentiment.
While those results support construct validity, they may come
with a certain risk of circularity. The causal role of those pre-
dictors is not necessarily clear as better educational attain-
ment is heritable itself [61] and may reinforce existing cog-
nitive abilities. Similarly, prolonged emotional stress due to
life events may exacerbate existing dispositions to experience
negative emotions captured by neuroticism [62], traits which
commonly help accumulate stressful life events [38]. Never-
theless, for fluid intelligence but not neuroticism, brain imag-
ing added incremental value when combined with various so-
ciodemographic predictors. This may suggest that the cues for
neuroticism conveyed by brain imaging were already present
in sociodemographic predictors, hinting at common causes.
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Limitations

Additional constructs and psychometric tools could have been
visited. The broader construct of intelligence is often estimated
using a general factor model with multiple correlated tests.
While this is obviously useful for normative assessments, mea-
sures of fluid intelligence can also serve a situational fitness
signal [30]. There is a wealth of questionnaires for measuring
negative emotionality and neuroticism, specifically. Yet, we
could only study the EPQ scale provided by the UK Biobank. A
complementary approach would be to estimate latent factors by
pooling all non-imaging data semantically related to neuroti-
cism [63]. Here, we considered established target measures
“as is”, instead of derivatives.

It terms of mental-health research, this study falls short of
directly testing the clinical relevance of estimated proxy mea-
sures. Even in a very large general-population cohort such as
the UK Biobank, there are only a few hundred diagnosed cases
of mental disorders (ICD-10 mental-health diagnoses from the
F chapter) with brain-imaging data available. This challenge
highlights the practical importance of studying mental as a
continuous, in addition to diagnosed conditions.

Conclusion: Proxy measures may enhance the
validity of constructs gauging mental health

Empirical proxy measures of brain and mental health improve
upon traditional measures when studying real-world health
patterns. Understanding and improving mental health of pop-
ulations call for studying not only patients but also the con-
tinuity of psychological traits in the general population. In
addition, real-world evidence is increasingly seen as central
to developing treatment and prevention strategies [64]. This
is particularly important in mental health, whose proper as-
sessments demands considering the full context of individuals.
We believe that developing proxy measures for constructs that
are difficult to assess brings promises to this mental-health re-
search agenda: Proxy measures can provide enriched outcomes
facilitating the study of mental health and its underlying fac-
tors in a broader and more ecological way.

Methods

To facilitate reproduction, understanding, and reuse, we have
made all data analysis and visualization source code available
on Github: https://github.com/KamalakerDadi/proxy_measures_
2020.
To facilitate reproduction, understanding, and reuse, we

have made all data analysis and visualization source code
available on Github: https://github.com/KamalakerDadi/proxy_
measures_2020.

Dataset

The United Kingdom Biobank (UKBB) database is to date the
most extensive large-scale cohort aimed at studying the deter-
minants of the health outcomes in the general adult population.
The UKBB is openly accessible and has extensive data acquired
on 500000 individuals aged 40-70 years covering rich pheno-
types, health-related information, brain-imaging and genetic
data [12]. Participants were invited for repeated assessments,
some of which included MR imaging. For instance, cognitive
tests that were administered during an initial assessment were
also assessed during the follow-up visits. This has enabled
finding for many subjects at least one visit containing all het-
erogeneous input data needed to develop the proposed proxy

measures. The study was conducted using the UKBB Resource
Application 23827.

Participants

All participants gave informed consent. The UKBB study was
examined and approved by the North West Multi-centre Re-
search Ethics Committee. We considered participants who have
responded to cognitive tests, questionnaires, and have access
to their primary demographics and brain images [65]. Out
of the total size of UKBB populations, we found 11 175 partici-
pants who had repeated assessments overlapping with the first
brain imaging release [66]. The demographics are 51.6% fe-
male (5572) and 48.3%male (5403), and an age range between
40-70 years (with a mean of 55 years and standard deviation of
7.5 years). Out of the complete analysis set, 5 587 individuals
were used in the study to train the model and remaining sub-
jects were set aside as a held-out set for generalization testing
(see section ).
To establish specific comparisons between models based on

sociodemographics, brain data or their combinations we exclu-
sively considered the cases for which MRI scans were available.
The final sample sizes used for model construction and gener-
alization testing then depended on the availability of MRI: For
age and fluid intelligence, our random splitting procedure ()
yielded 4203 cases for model building and 4157 for generaliza-
tion. For cases with valid neuroticism assessment, fewer brain
images were available, which yielded 3550 cases for model
building and 3509 for generalization.

Data acquisition

Sociodemographic data (non-imaging) was collected with self-
report measures administered through touchscreen question-
naires, complemented by verbal interviews, physical measures,
biological sampling and imaging data. MRI data were ac-
quired with the Siemens Skyra 3T using a standard Siemens
32-channel RF receiver head coil [67]. We considered three MR
imagingmodalities as each of them potentially captures unique
neurobiological details: structural MRI (sMRI/T1), resting-
state functional MRI (rs-fMRI) and diffusion MRI (dMRI). For
technical details about the MR acquisition parameters, please
refer to [66]. We used image-derived phenotypes (IDPs) of
those distinct brain-imaging modalities, as they provide ac-
tionable summaries of the brain measurements and encourage
comparability across studies.

Target measures
As our target measures for brain age modeling, we use an
individual’s age at baseline recruitment (UKBB code “21022-
0.0”). Fluid intelligence, was assessed using a cognitive bat-
tery designed to measure an individual’s capacity to solve novel
problems that require logic and abstract reasoning. In the UK
Biobank, the fluid intelligence test (UKBB code “20016-2.0”)
comprises thirteen logic and reasoning questions that were ad-
ministered via the touchscreen to record a response within two
minutes for each question. Therefore, each correct answer is
scored as one point with 13 points in total1. Neuroticism (UKBB
code “20127-0.0”) was measured using a shorter version of the
revised Eysenck Personality Questionnaire (EPQ-N) comprised
of 12-items [32]. Neuroticism was assessed during Biobank’s
baseline visit. The summary of the individual’s scores ranges

1 A complete overview of the 13 individual fluid intelligence items can be
seen from this manual https://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/Fluidintelligence.pdf

https://github.com/KamalakerDadi/proxy_measures_2020
https://github.com/KamalakerDadi/proxy_measures_2020
https://github.com/KamalakerDadi/proxy_measures_2020
https://github.com/KamalakerDadi/proxy_measures_2020
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf


Dadi et al. | 7

from 0 to 12 that assess dispositional tendency to experience
negative emotions 2.

Sociodemographic data

In this work, we refer to non-imaging variables broadly as so-
ciodemographics excluding the candidate targets fluid intelli-
gence and neuroticism. To approximate latent constructs from
sociodemographics, we included 86 non-imaging inputs (Ta-
ble S5) which are the collection of variables reflecting each
participant’s demographic and social factors i.e., sex, age, date
and month of birth, body mass index, ethnicity, exposures at
early life –e.g. breast feeding, maternal smoking around birth,
adopted as a child– education, lifestyle-related variables –e.g.
occupation, household family income, household people living
at the same place, smoking habits–, and mental-health vari-
ables. All these data were self-reported. We then assigned
these 86 variables to five groups based on their relationships.
Based on our conceptual understanding of the variables, we
name assigned them to one out of five groups: 1) mood & sen-
timent, 2) primary demographics as age, sex, 3) lifestyle, 4)
education, 5) early life. We then investigated the intercorrela-
tion between all 86 variables to ensure that the proposed group-
ing is compatible with their empirical correlation structure Fig-
ure S1.
The sociodemographic groups had varying amounts of miss-

ing data. For e.g. the source of missingness is concerned with
the participants lifestyle habits such as smoking and mental
health issues [68]. To deal with this missingness in the data
using imputation [69], we used column-wise replacement of
missing information with the median value calculated from the
known part of the variable. We subsequently included an indi-
cator for the presence of imputed for down-stream analysis.
Such imputation is well suited to predictive models [70].

Image processing to derive phenotypes for machine
learning

MRI data preprocessing were carried out by UKBB imaging
team. The full technical details are described elsewhere [66,
67]. Below, we describe briefly the custom processing steps
that we used on top of the already preprocessed inputs.

Structural MRI
This type of data analysis on T1-weighted brain images are
concerned with morphometry of the gray matter areas i.e. the
quantification of size, volume of brain structures and tissue
types and their variations under neuropathologies or behavior
[71]. For example, volume changes in gray matter areas over
lifetime are associated with: brain aging [72], general intelli-
gence [73] and brain disease [74]. Such volumes are calculated
within pre-defined ROIs composed of cortical and sub-cortical
structures [75] and cerebellar regions [76]. We included 157
sMRI features consisting of volume of total brain and grey
matter along with brain subcortical structures3. All these fea-
tures are pre-extracted by UKBB brain imaging team [66] and
are part of data download. We concatenated all inputs along-
side custom-built fMRI features for predictive analysis (feature
union).

2 For a complete list of Neuroticism questionnaires can be seen
from this manual https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
MentalStatesDerivation.pdf

3 Regional grey matter volumes http://biobank.ctsu.ox.ac.uk/crystal/
label.cgi?id=1101 Subcortical volumes http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=1102

Diffusion weighted MRI
Diffusion MRI enables to identify white matter tracts along
principal diffusive direction of water molecules, as well as the
connections between different gray matter areas [77, 78]. The
study of these local anatomical connections through white mat-
ter are relevant to the understanding of neuropathologies and
functional organization [79]. We included 432 dMRI skeleton
features of FA (fractional anisotropy), MO (tensor mode) and
MD (mean diffusivity), ICVF (intra-cellular volume fraction),
ISOVF (isotropic volume fraction) and OD (orientation disper-
sion index) modeled on many brain white matter structures ex-
tracted from neuroanatomy4. For extensive technical details,
please refer to [80]. The skeleton features we included were
from category134 shipped by the UKBB brain-imaging team
and we used them without modification.

Functional MRI
Resting-state functional MR images capture low-frequency
fluctuations in blood oxygenation that can reveal ongoing neu-
ronal interactions in time forming distinct brain networks
[81]. Functional connectivity within these brain network can
be linked to clinical status [82], to behavior [66], or to psy-
chological traits [44]. We also included resting-state connec-
tivity features based on the time-series extracted from Inde-
pendent Component Analysis (ICA) with 55 components repre-
senting various brain networks extracted on UKBB rfMRI data
[66]. These included the default mode network, extended de-
fault mode network and cingulo-opercular network, executive
control and attention network, visual network, and sensorimo-
tor network. We measured functional connectivity in terms
of the between-network covariance. We estimated the covari-
ancematrices using Ledoit-Wolf shrinkage [83]. To account for
the fact that covariance matrices live on a particular manifold,
i.e., a curved non-Euclidean space, we used the tangent-space
embedding to transform the matrices into a Euclidean space
[84, 85] following recent recommendations [86, 87]. For pre-
dictive modeling, we then vectorized the covariancematrices to
1 485 features by taking the lower triangular part. These steps
were performed with NiLearn [88].

Comparing predictive models to approximate target
measures

Imaging-based models
First, we focused on purely imaging-based models based on
exhaustive combinations of the three types of MRI modalities
(see Table 1 for an overview). This allowed us to study poten-
tial overlap and complementarity between the MRI-modalities.
Preliminary analyses revealed that combining all MRI data gave
reasonable results with no evident disadvantage over particular
combinations of MRI modalities (Figure 3 – Figure supplement
1), hence, for simplicity, we only focused on the full MRI model
in subsequent analyses.

Sociodemographic models
We composed predictive models based on non-exhaustive com-
binations of different types of sociodemographic variables. To
investigate the relative importance of each class of sociodemo-
graphic inputs, we performed systematic model comparisons.
We were particularly interested in studying the relative contri-
butions of early-life factors as compared to factors related to
more recent life events such as education as well as factors re-
lated to current circumstances such as mood & sentiment and

4 Diffusion-MRI skeleton measurements http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=134

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
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Table 1. Imaging-based models.

In-
dex

Name # variables # groups

1 brain volumes (sMRI) 157 1
2 white matter (dMRI) 432 1
3 functional connectivity (fMRI) 1485 1
4 sMRI, dMRI 589 2
5 sMRI, fMRI 1642 2
6 dMRI, fMRI 1917 2
7 sMRI, dMRI, fMRI (full MRI) 2074 3

Table 2. Non-imaging baseline models or sociodemographic mod-
els based on single group. Variables in each group are described at
corresponding section: .

Index Name # variables

1 Mood & Sentiment (MS) 25
2 Age, Sex (AS) 5
3 Life style (LS) 45
4 Education (EDU) 2
5 Early Life (EL) 9

Table 3. Random forest hyperparameters and tuning with grid
search (5 fold cross-validation).

Hyperparameter Values

Impurity criterion Mean squared error
Maximum tree depth 5, 10, 20, 40, full depth
Fraction of features for split 1, 5, “log2”, “sqrt”, “complete”
Number of trees 250

life-style. The resulting models based on distinct groups of
predictors are listed in Table 2 (for additional details see Ta-
ble S5 and Figure S1).

Combined imaging and sociodemographic models

In the next step, we were interested in how brain-related infor-
mation would interact within each of these sociodemographic
models. For example, information such as the age of an indi-
vidual, or the level of education, may add important contextual
information to brain images. We therefore considered an alter-
native variant for each of the models in Table 2 that included all
MRI-related features (2074 additional features) as described at
section .

Predictive model

Linear models are recommended as default choice in neu-
roimaging research [86, 89] especially when datasets include
fewer than 1000 data points. In this study approximated tar-
gets generated by distinct underlying mechanisms based on
multiple classes of heterogenous input data with several thou-
sands of data points. We hence chose the non-parametric ran-
dom forest algorithm that can be readily applied on data of dif-
ferent units for non-linear regression and classification [90]
with mean squared error as impurity criterion. To improve
computation time we fixed tree-depth to 250 trees, a hyper-
parameter that is not usually not tuned but set to a generous
number as performance plateaus beyond a certain number of
trees [91, ch. 15]. Preliminary analyses suggested that addi-
tional trees would not have led to substantial improvements
in performance. We used nested cross-validation (5-fold grid
search) to tune the depth of the trees as well as the number of
variables considered for splitting (see Table 3 for a full list of
hyper-parameters considered).

Table 4. Number of samples for classification analysis (N).

# groups Age Fluid intelligence Neuroticism

1 1335 1108 1054
2 1200 898 1020

Classification analysis. We also performed classification anal-
ysis on the continuous targets. For this purpose, we discretized
the targets into extreme groups based on the 33rd and 66th per-
centiles (see Table 4 for the number of classification samples
per group). We were particularly interested in understanding
whether model performance would increase when moving to-
ward classifying extreme groups. For this analysis, we con-
sidered all three types of models (full MRI 2074 features from
imaging-basedmodels see section , all sociodemographics vari-
ables, total 86 variables see section ), combination of full MRI
and all sociodemographics, a total 2160 variables see section
. When predicting age, we excluded the age & sex sociodemo-
graphic block from all sociodemographic variables which then
yielded a total of 81 variables. To assess the performance for
classification analysis, we used the area under the curve (AUC)
of the receiver operator characteristic (ROC) as an evaluation
metric [89].

Model development and generalization testing

Before any empirical work, we generated two random parti-
tions of the data, one validation dataset for model construction
and one held-out generalization dataset for studying out-of-
sample associations using classical statistical analyses.
For cross-validation, we then subdivided the validation set

into 100 training- and testing splits following the Monte Carlo
resampling scheme (also referred to as shuffle-split) with 10%
of the data used for testing. To compare model performances
based on paired tests, we used the same splits across all mod-
els. Split-wise testing performance was extracted and car-
ried forward for informal inference using violin plots (Fig-
ure 3,Figure 4). For generalization testing, predictions on the
held-out data were generated from all 100 models from each
cross-validation split.
On the held-out set, unique subject-wise predictions were

obtained by averaging across folds and occasional duplicate pre-
dictions due toMonte Carlo sampling which could producemul-
tiple predictions per subject5. Such strategy is known as CV-
bagging [92] and can improve both performance and stability
of results6. The resulting averages were reported as point esti-
mates in Figures 3,4, and 3 – Figure supplement 1 and used as
proxy measures in the analysis of health-related behaviors Fig-
ure 2.

Statistical analysis

Resampling statistics for model comparisons on the held-out data
To assess the statistical significance of the observed model per-
formance and the differences in performance between themod-
els, we computed resampling statistics of the performancemet-
rics on the held-out generalization data not used for model
construction [93]. Once unique subject-wise predictions were
obtained on the held-out generalization data by averaging the

5 We ensured prior to computation that with 100 CV-splits, predictions
were available for all subjects.

6 The use of CV-bagging can explain why on figures 3,4, and 3 – Figure
supplement 1 the performance was sometimes slightly better on the held-
out set compared to the cross-validation on the validation test.
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Table 5. Extra health variables used for correlation analysis with subject-specific predicted scores.

Family eid Variables

Alcohol⇤ 1568-0.0 Average weekly red wine intake
1578-0.0 Average weekly champagne plus white wine intake
1588-0.0 Average weekly beer plus cider intake
1598-0.0 Average weekly spirits intake
1608-0.0 Average weekly fortified wine intake
5364-0.0 Average weekly intake of other alcoholic drinks

Physical activity 22040-0.0 Summed MET minutes per week for all activity
Smoking 20161-0.0 Pack years of smoking
Sleep 1160-0.0 Sleep duration

⇤We computed a compound drinking score by summing up all variables from the alcohol family

predictions emanating from each fold of the validation set (cv-
bagging), we computed null- and bootstrap-distributions of
the observed test statistic on the held-out data, i.e., R2 score
for regression and AUC score for classification.

Baseline comparisons. To obtain a p-value for baseline com-
parisons (could the prediction performance of a given model be ex-
plained chance?) on the held-out data, we permuted targets
10000 times and then recomputed the test statistic in each iter-
ation. P-values were then defined as the probability of the test
statistic under null distribution being larger than the observed
test statistic. To compute uncertainty intervals, we used boot-
strap, recomputing the test statistic after resampling 10000
times with replacement and reporting the 2.5 and 97.5 per-
centiles of the resulting distribution.

Pairwise comparisons between models. For model compar-
isons, we considered the out-of-sample difference in R2 or AUC
between any two models. To obtain a p-value for model com-
parisons (could the difference in prediction performance between
two given models be explained chance?) on the held-out data,
we permuted the scores predicted by model A and model B for
every single prediction 10000 times and then recomputed the
test statistic in each iteration. We omitted all cases for which
only predictions from one of the models under comparison was
present. P-values were then defined as the probability of the
absolute of the test statistic under null distribution being larger
than the absolute observed test statistic. The absolute was
considered to account for differences in both directions. Un-
certainty intervals were obtained from computing the 2.5 and
97.5 percentiles of the bootstrap distribution based on 10000
iterations. Here, predictions from model A and model B were
resampled using identical resampling indices to ensure amean-
ingful paired difference.

Out-of-sample association between proxy measures and health-
related habits

Computation of brain age delta and de-confounding. For associa-
tion with health-contributing habits (Table 5), we computed
the brain age delta as the difference between predicted age and
actual age:

BrainAge� = Agepredicted – Age (1)

As age prediction is rarely perfect, the residuals will still con-
tain age-related variance which commonly leads to brain age
bias when relating the brain age to an outcome of interest,
e.g., sleep duration [94]. To mitigate leakage of age-related
information into the statistical models, we employed a de-
confounding procedure in line with [95] and [11, eqs. 6-8]
consisting in residualizing a measure of interest (e.g. sleep du-
ration) with regard to age through multiple regression with
quadratic terms for age. To minimize computation on the
held-out data, we first trained a model relating the score
of interest to age on the validation set to then derive a de-

confounding predictor for the held-out generalization data.
The resulting de-confounding procedure for variables in the
held-out data amounts to computing an age-residualized pre-
dictor measureresid from the measure of interest (e.g. sleep du-
ration) by applying the following quadratic fit on the validation
data:

measurevalidation = agevalidation ⇥ �val1+

age2validation ⇥ �val2 + ✏
(2)

The de-confounding predictor was then obtained by evaluating
the weights �val1 and �val2 obtained from Equation 2 on the
generalization data:

measuredeconfounding = agegeneralization ⇥ �val1

+age2generalization ⇥ �val2

(3)

We performed this procedure for all target measures, to study
associations not driven by the effect of age.

Health-related habits regression. We then investigated the joint
association between proxy measures of interest and health-
related habits (Table 5) using multiple linear regression. For
simplicity, we combined all brain imaging and all sociodemo-
graphics variables (Figure 3, Figure 3 – Figure supplement
1, Figure 3 – Figure supplement 2). The ensuing model can
be denoted as

measure = measuredeconfounding ⇥ �1 + BrainAge� ⇥ �2

+PredFluidInt⇥ �3 + PredNeurot⇥ �4 + ✏,
(4)

where outcomeresid is given by Equation 2. Prior to model fit-
ting, rows with missing inputs were omitted. For comparabil-
ity, we then applied standard scaling on all outcomes and all
predictors.
The parametric bootstrap was a natural choice for uncer-

tainty estimation, as we used standard multiple linear regres-
sion which provides a well defined procedure for mathemati-
cally quantifying its implied probabilistic model. Computation
was carried out using sim function from the arm package as de-
scribed in [96, Ch.7,pp.142-143]. This procedure can be intu-
itively regarded as yielding draws from the posterior distribu-
tion of the multiple linear regression model under the assump-
tion of a uniform prior. For consistency with previous analyses,
we computed 10000 draws.

Software

Preprocessing and model building were carried out using
Python 3.7. The NiLearn library was used for processing MRI
inputs [88]. We used the scikit-learn library for machine
learning [97]. For statistical modeling and visualization we
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used the R-language [98] (version 3.5.3) and its ecosystem:
data.table for high-performance manipulation of tabular data,
ggplot [99, 100] for visualization and the arm package for para-
metric bootstrapping [101]. All data analysis code is shared
on GitHub: https://github.com/KamalakerDadi/proxy_measures_
2020.

Availability of source code and requirements

• Project name: “empirical_proxy_measures“
• Project home page: e.g. https://github.com/KamalakerDadi/

empirical_proxy_measures
• Operating system(s): e.g. Platform independent
• Programming language: e.g. Python and R
• Other requirements: e.g. Python 3.6.8 or higher, R 3.4.3 or
higher

• License: BSD-3

Availability of supporting data and materials

The data supporting the results and figures of this article
is available in the “empirical_proxy_measures“ repository,
https://github.com/KamalakerDadi/empirical_proxy_measures.
The input data is publicly available via the UK Biobank
http://www.ukbiobank.ac.uk.
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Dear Editors of GigaScience

Please, find for your consideration our latest manuscript entitled “Population modeling with

machine learning can enhance measures of mental health”.

In this work, we investigate the challenging problem of measuring psychological constructs

across individuals in mental-health research. While brain health has seen recent success to

measure individual aging by applying machine-learning models to brain scans, mental health

must capture high-level psychological constructs, such as intelligence or neuroticism. These

constructs are much harder to derive from brain imaging data. Rather, they are assessed

by specialized workforce through tailored questionnaires and tests. Here, we capture such

constructs by applying machine learning on rich sociodemographic information and multi-

modal MR images from the largest brain-imaging cohort to date: the UK Biobank. On

about n = 10k persons sampled from the general population, we show that the successes

of proxy measures for individual aging can be extended to these more elusive constructs:

the derived proxy measures provide quantitative phenotypes that are more consistently as-

sociated with real-world health behaviors than the original measures. In other words, the

target modeled by machine learning can be more informative than the actual psychological

measure. The resulting empirical proxy measures capture the original target constructs

well, yielding measures that do not rely on human judgment. Our results have the potential

to transform the current practice in psychology, behavioral sciences, and related fields in

at least two ways: First, by providing a framework for population-derived measurement of

mental traits; second, by encouraging to look beyond imaging data into general-purpose

sociodemographic inputs to characterize complex high-level mental traits. Our work is of

clear interest for researchers studying diverse behavioral, social, or clinical endpoints based

on heterogeneous data. Related disciplines include psychology of individual differences,

education sciences, demography, neuroscience and psychiatry.

This work is not under consideration elsewhere and we believe that GigaScience with its

interdisciplinary and innovation-driven culture would be our preferred outlet to disseminate

this work.
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