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Results  Here, we built proxy measures by applying machine learning on multimodal
MR images and rich sociodemographic information from the largest biomedical cohort
to date: the UK Biobank. Objective model comparisons revealed that all proxies
captured the target constructs and were as useful, and sometimes more useful than
the original measures for characterizing real-world health behavior (sleep, exercise,
tobacco, alcohol consumption). We observed this complementarity of proxy measures
and original measures when modeling from brain signals or sociodemographic data,
capturing multiple health-related constructs. 
Conclusions  Population modeling with machine learning can derive measures of
mental health from brain signals and questionnaire data, which may complement or
even substitute for psychometric assessments in clinical populations.
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Response to Reviewers: ## Summary

**Please note that a fully formatted and more readable version of the response to the
reviewers (including coloured highlights and the new figures and tables in context) is
available as PDF among the submitted files.**
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**Please note that we could not fully control the order in which the files were included
by the submission system**

We would like to thank the editor and the reviewers for the thoughtful feedback and
constructive criticism on our work. We have taken the revisions as an important
opportunity to improve our manuscript and would like to highlight two points that both
reviewers and the editor have emphasized:

1. both reviewers had concerns regarding the far-reaching conclusion: the **findings
suggested that psychological constructs can be approximated from brain images and
sociodemographic variables.** Considering these concerns, we added methodological
and conceptual clarifications, discussed our findings more carefully and revised the
general conclusions to express greater nuance.

1. both reviewers also pointed out that the phenotype **age / brain age** is different
from the other measurements. We conducted multiple control analysis to investigate
this point and clarify the differences, both, conceptually and statistically. The wealth of
results and related discussion points are fully reported in the revised manuscript.

This required substantial reanalysis demanding several weeks of computation time and
led us to including 6 new supplementary figures and 2 new supplementary tables. A
detailed display of the changes in the manuscript is available in the file `diff-with-
original-submission.pdf` enclosed with the resubmission.

_Please note that, where appropriate, replies are organized by bundles of related
concerns, sometimes involving concerns raised by both reviewers._

## Reviewer 1

#### R1.1

The manuscript describes an application of Machine Learning (ML) models for the
quantification of psychological constructs, e.g., fluid intelligence and neuroticism, using
multi-model MRI data from a large population cohort, the UK biobank data. They show
that the proxy measures of these psychological constructs are more useful compared
to the original constructs for characterizing health behaviors. Overall, the manuscript is
well written. The research questions are clearly stated and are of practical importance.
However, the reviewer has following concerns.

**Reply to R1.1:** We thank the reviewer for the positive appreciation of our work.

#### R1.2

Major Concerns:

1) In page 3 (left, lines 3-6 of the main text), the author claims that Our findings
suggested that psychological constructs can be approximated from brain images and
sociodemographic variables - inputs not tailored to specifically measure these
constructs.. The reviewer has concerns about this claim. Although Figure 3 shows the
models performance in predicting age, fluid intelligence and neuroticism using
neuroimaging data and different areas of sociodemographic data, the performance of
the models in predicting the psychological constructs, fluid intelligences and
neuroticism, may not be good enough to support such a claim.

**Reply to R1.2** : We thank the reviewer for pointing out the potential ambiguity of the
wording. An approximation can be understood as an almost perfect prediction but also
as a crude guess. In fact, we did not intend to suggest that the approximations are
perfect. We have now rephrased the above sentence accordingly and, moreover,
carefully edited other parts of the main text to help avoid this misunderstanding.

**Changes**

In abstract (instead of advantage):
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We observed this complementarity of proxy measures and original measures when
modeling from brain signals or sociodemographic data, capturing multiple health-
related constructs.

In results section title (instead of outperforming):

Complementing the original measures at characterizing real-life health-related habits

In results section:

Our findings suggested that some information on psychological constructs can be
assembled from general inputs not specifically tailored to measure these constructs,
such as brain images and sociodemographic variables. The resulting proxy measures
may be regarded as crude approximations of the psychological measures, but they can
nonetheless capture essential aspects of the target constructs. To probe the external
validity of the proxy-measures, we investigated their link with real-world behavior, e.g.,
sleep, physical exercise, alcohol and tobacco consumption on left-out data.

#### R1.3

2) In Figure 2, the proxy measure and original measure show similar associations with
the health phenotypes for fluid intelligence (center plot) and neuroticism (right plot), but
not for the brain age delta. The main reason seems to be when doing the association
analysis, the measures of the health phenotypes are de-confounded for their
dependence for age (In the subsection Out-of-sample association between proxy
measures and health-related habits of the statistical analysis section). However, it
seems the same procedure is not applied for the association analysis of fluid
intelligence and neuroticism. The estimated brain age or brain age gap depends on the
age. Thus, we need to either correct the brain age or brain age gap for its dependence
on the age, or de-confounded the health phenotypes dependence on age. If the author
wants to derive the proxy measure of the psychological construct in the same as the
brain age (or biological age), same procedure should be used to correct the proxy
measures dependence on the original measure.

AND

#### R1.4

3) Based on Figure 2, the author claims that the proxy measures have enhanced
association with health behavior compared to the original measures. If we only focus
on the central and right part of the Figure 2, the difference is not that obvious. We do
not know if the difference is significant or not. A better approach maybe is that correct
the predicted fluid intelligence and predicted fluid intelligence for their dependence on
the original measures or de-confounded the original measures effects on the health
behaviors.

**Reply to R1.3-R1.4:** We thank the reviewer for giving us the opportunity for
clarifying our conceptual view and substantially extending the analysis in response to
these thoughtful concerns. Note that concerns **R2.2-2.4** by reviewer 2 were highly
related. Therefore, the following reply is intended to address the same issue raised by
both reviewers **.**

First of all, we believe that the three measures under study are fundamentally distinct
and lead to different statistical behaviors, which is the reason for which we included
them in this study. Age is a metric measure, related to physical units on which intervals
of the same size express the same distance. A delta can thus be a meaningful
summary, which, in the case of brain age, has a straight-forward interpretation. For the
other measures, ordinal or categorical scales apply; the delta is less convincing as a
proxy measure metric here and may have no meaning.

Rather, in our view, what is important is that the predicted measure contains
information -- in the widest sense -- beyond the actual measure. Therefore, the popular
brain age delta is not necessary here. A multivariate analysis linking both chronological
age and predicted age to the outcome of interest can capture the same information
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(see new figure-2 supplements 2-4). On the other hand, when inspecting the other
proxy measures, we found it important to use an age deconfounder, to confirm that
effects were not driven by age, as age shows pervasive correlations with nearly any
biobehavioral entity. This de-confounding is important to interpret results as indeed
driven by the construct of interest, but associations hold without it or when adding
specific deconfounders to all proxies, as we show in new analyses below (see new
figure-2 supplements 3-4).

These considerations explain why we have initially processed the proxies in different
ways (age-decorrelation for all proxies, delta for brain age only). We understand,
however, that rational arguments alone may feel unsatisfying from a readers
perspective. We have taken the opportunity to extend our analysis. To probe the
robustness of our analysis to these different options we have run several checks which
we have included in the supplements (described below).

While implementing these extra checks, we realized that in figure 2B, we had kept the
age-deconfounder active when modeling the link between age and the health
descriptors, which was not ideal as it may destroy the effect. We have corrected this
accordingly and removed the age-deconfounder subsequently from the target measure
analyses (see corrected figure 2 below).

New figure 2 after removing the age deconfounder for the target measures (lower
panel).

(See formatted reply to the reviewers among submitted files)

**New** Supplementary analyses.

**Figure 2 supplement 2:** We ran the same analysis for figure 2 using the brain-
predicted age as such, not the delta as the proxy measure. Outputs are virtually
identical.

**Figure 2 supplement 3:** We then added de-confounders for fluid intelligence and
neuroticism and repeated the analysis for figure 2. Outputs were highly similar.

**Figure 2 supplement 4:** To provide a more rigorous comparison between proxies
and targets as stimulated in **R1.4** and assess statistical significance of possible
differences between proxies and targets, we have composed a big regression model
including both the proxies and the targets as predictors. Across health outcomes, we
found two frequent scenarios: 1) the proxies were found statistically significant, not the
actual measures, suggesting that the proxies show improved SNR over the actual
measures. 2) proxies and actual measures were found statistically significant, pointing
at true additive effects. The overall picture depended on the health outcome.

**Table S3:** Detailed statistical inferences for the comprehensive proxy-target models
are listed in this new table.

**Table S4** : In this context, the intrinsic link between proxies and targets may imply
multicollinearity. Too much multicollinearity could potentially render the statistical
testing procedure invalid. To test for multicollinearity we computed variance inflation
factors (VIF) across the different models, which intuitively quantify how well each
predictor can be approximated by a linear combination of the other predictors. The VIF
is defined as 1 / (1 - R^2\_i), where R^2\_i is the coefficient of determination for the
model that approximates the predictor i from all remaining predictors. A VIFs 1-5
counts as low to moderate (see extensive review and discussion in Obrien 2007,
_Quality &amp; Quantity_ 41, 673-690). The observed VIFs were mostly around 1. The
highest VIF was found for age and brain age with values around 3, which suggests that
age and brain age are linked to the other proxy measures. This is implicitly justifying
our previous intuition of keeping age-deconfounders for the other proxy measures.
More importantly, these control analyses suggest that the significance tests are not
impacted by multicollinearity, which is also in line with reasonable standard errors
produced by the big models from S3.

Based on these new analyses, we have updated the results section and have
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highlighted the theoretical considerations regarding asymmetries between the proxy
measures.

**Changes**

In the introduction, the asymmetry has been emphasized:

Extrapolating from these successes, we propose to build upon large datasets to extend
the collection of health-related proxy measures, probing mental traits.For this end, we
focused on constructs fundamentally different in terms of content and methodology.

In the main text, result section, a novel paragraph has been added to address the
conceptual difference of the measures and consequences for the analysis:

The three proxy measures are difficult to compare on an equal footing as a delta was
considered for brain age only (the difference between predicted and actual age) and
aging- specific deconfounding was applied. The brain-age delta is indeed the standard
practice, theoretically justified as age is on a metric scale [50] for which the difference
between the predicted and the measured value has a clear meaning. Such a difference
is less obvious for variables with ordinal scales as implied by psychometric measures.
Second, age has a pervasive influence on virtually any biomedical entity, which
motivates controlling for its effect on proxy measures. To rule out that differences in
proxy measures associations to health-related behavior are driven by this
methodological asymmetry, we repeated the main analysis from Figure 2, first, using
the predicted age without computing the delta (Figure 2 – Figure supplement 2) and,
second, introducing additional deconfounders for fluid intelligence and neuroticism
(Figure 2 – Figure supplement 3). The resulting patterns were virtually unchanged,
confirming that interpretations are robust.

In the main text, result section, a paragraph on big-picture statistical differences
between proxies and targets has been generously expanded:

A question that remains is whether the proxy measures bring additional value
compared to the original target measures they were derived from. These original target
measures showed similar associations to health behavior, with the same signs in most
cases (Figure 2, B). At the same time, the ensuing patterns were more noisy,
suggesting that empirically derived proxy measures yielded enhanced associations
with health behavior. This inference may be difficult as differences between targets and
proxies were not always easy to pinpoint visually. To implement a more rigorous
statistical approach, we built comprehensive models of each respective health-related
habit in which we used all proxies (predicted age, predicted fluid intelligence, predicted
neuroticism) and all targets (age, fluid intelligence, neuroticism) simultaneously as
predictors (Figure 2 – Figure supplement 4). The results show systematic additive
effects of proxies and targets across the three target domains and the four health-
habits. These trends are well-captured by the hypothesis tests of the respective linear
models (Table S3). As targets and proxies may be systematically intercorrelated,
multicollinearity may corrupt these inferences. Inspection of variance inflation factors
(VIF)— a measure that reveals how well a given predictor can be approximated by a
linear combi- nation of the other predictors— argued in favor of low to moderate levels
of multicollinearity (Table S4). Indeed, all VIF values fell between 3 and 1, whereas,
classically, values above 5 or 10 are considered as thresholds [51] for pathological
collinearity. This suggests that the model inferences are statistically sound.

In the main text, method section, health-related habits regression, a passage has been
added describing the additional models (see blue highlight in screenshot).

(See formatted reply to the reviewers among submitted files)

The following items have been added to the supplement:

(See formatted reply to the reviewers among submitted files)

**Figure 2 supplement 2:** Conditional associations between proxy measures and
health-related habits without explicit brain age delta. Conditional estimates using
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multivariate regression. Instead of the brain age delta, the brain-predicted age is
included alongside an age-deconfounder as used in the main analysis. Same visual
conventions as in Figure 2.

(See formatted reply to the reviewers among submitted files)

**Figure 2 supplement 3** Conditional associations between proxy measures and
health-related habits with-proxy-specific deconfounding. Conditional estimates using
multivariate regression. Instead of the brain age delta, the brain-predicted age is
included alongside an age-deconfounder as used in the main analysis. Moreover,
predicted fluid intelligence and neuroticism are deconfounded for the target values at
training time, analogous to the brain age predictions. Same visual conventions as in
Figure 2.

(See formatted reply to the reviewers among submitted files)

**Figure 2 supplement 4** Joint modeling of health-related habits from proxy and target
measures. Conditional estimates using multivariate regression. Every health-related
habit (double rows) is modeled simultaneously from multiple proxies and targets. Same
visual conventions as in Figure 2. Across health-habits, additive effects emerged not
only for proxies and targets within the same measure (e.g. age) but also across
measures (e.g. age and fluid intelligence).

For illustration, we shall consider two examples. Regarding alcohol consumption, age
was the most important measure and opposite conditional effects were observed for
the proxy and the target: Across the age range, people with higher brain age tended to
drink more and across the brain-age range, older people tended to drink less. For
smoking, the proxy measures were the most important variables with clear non-zero
coefficients, pointing in different directions across target domains. Holding fluid
intelligence and neuroticism constant (targets and proxies), people with higher brain
age tended to have been smoking for a longer time. At the same time, those who
scored lower on predicted fluid intelligence across the entire range of age, predicted
age, measured fluid intelligence, predicted neuroticism and neuroticism, have been
smoking for a longer time. Finally, those who scored higher on predicted neuroticism
tended to smoke more across the ranges of all other measures.

**Supplementary table 3**

(See formatted reply to the reviewers among submitted files)

**Supplementary table 4**

(See formatted reply to the reviewers among submitted files)

Minor concerns:

#### R1.5

1) In page 1 (two lines before reference 15), it seems that to learn is mis-spelled into
tolearn.

**Reply R1.5:** We thank the reviewer for having found this typo. We have corrected it.

#### R1.6

2) The author stated that there are repeated measures for subjects in UK biobank data.
How the author tackles this issue in their data preprocessing? Using the last one or the
first one or something else?

**Reply R1.6** We thank reviewers for having raised this concern whose clarification
may, indeed, help the reader.

Out of 500 000 participants, only a fraction has visited for repeated assessments. For
instance, 10 000 participants were included in the first brain imaging release (Miller K
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et al. Nat. Neuroscience 2016; Thomas J. Littlejohns et al. Nat. Communications 2020).
The visits are categorized as: initial assessment visit, repeated initial assessment,
imaging visit and soon. These visits are coded as 0, 1, 2 and soon. In this paper, we
relied mostly on assessments overlapping with imaging visit _i.e._ variables coded as
2.0 as can be seen from Table S5, _Appendix_ 2.

Some variables used in the analysis display code 0, _e.g._ for target variables like age
(21022-0.0), neuroticism (20127-0.0) or external validity variables. The reason for this
is that these variables were not assessed during the follow up visits. We, therefore,
relied on primary visit information.

Moreover, we explicitly checked that there is no overlap of the subjects between the
validation and the generalization set.

**Changes** To clarify this point, we extended the subsection _Participants_.

(...) we found 11175 participants who had repeated assessments overlapping with the
first brain imaging release. Note that the features (sociodemographic variables) that we
included in the analysis are measures that are self-reported during a follow-up imaging
visit. (...) We made sure that the subjects used for model construction and
generalization were strictly non-overlapping.

#### R1.7

3) The selection 5,587 out of all the 10,975 subjects for the modeling, while the left part
is for the out-of-sample association analysis. The selection seems arbitrary. Can the
author also show a learning curve, in which x is the sample size and y is the models
performance, to justify their choice is enough to train an accurate ML model?

**R1.7** We thank reviewers for allowing us to clarify how we composed the training
dataset.

First, we selected a percentage of training samples based on the random split half
method from the scikit-learn package. As sample size differed across three targets,
e.g., fewer brain images available for neuroticism prediction (see second paragraph at
the subsection _Participants_) testing the out-of-sample associations on 50% of
gathered samples was a pragmatic approach for obtaining sufficient data for model
training and subsequent statistical inference, two complementary and distinct
objectives in this investigation. Moreover, this is in line with evidence arguing in favor of
larger test sets for mitigating optimism bias in estimation of out-of-sample performance
(Flint et al 2021, Nat. Neuropsychopharmacology, Varoquaux et al. 2017,
NeuroImage).

To explore the implications of our training and testing splits, as suggested in, we
computed learning curves (displayed below). Across all targets, the results suggest
that generalization performance started saturating around 1000 training samples, well
below the final training samples. Adding more samples should not substantially
improve generalization performance.

**Changes** To clarify this point, we have included a new figure as a supplement to
the concept figure 1 and extended the method section on participants.

In the main text, methods, section Participants:

The demographics are $51.6\%$ female (5\,572) and $48.3\%$ male (5\,403) and an
age range between 40-70 years (with a mean of 55 years and standard deviation of 7.5
years). The data for model training were selected using a randomized split-half
procedure yielding 5\,587 individuals. The remaining subjects were set aside as a held-
out set for generalization testing (see section _Model development and generalization
testing_). We made sure that the subjects used for model training and generalization
testing were strictly non-overlapping. Learning curves documented that the training
split was sufficiently large for constructing stable prediction models (Figure 1 -
supplement 1) with profiles of performance similar to latest benchmarks on model
complexity in the UK Biobank (Schulz et al 2020). Moreover, simulations and empirical
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findings suggest that larger testing sets are more effective at mitigating optimistic
performance estimates (Flint et al 2021, Varoquaux et al. 2017). Together, this
provided a pragmatic solution to the inference-prediction dilemma (Bzdok et al 2020;
Bzdok et al., 2018) given the two objectives of the present investigation to obtain
reasonably good predictive models, while at the same time performing parameter
inference of statistical models developed on the left-out data.

(See formatted reply to the reviewers among submitted files)

**Figure 1 supplement 1** Learning curves on the random split-half validation used for
model building. To facilitate comparisons, we evaluated predictions of age, fluid
intelligence and neuroticism from a complete set of socio-demographic variables
without brain imaging using the coefficient of determination $R^2$ metric (y-axis) to
compare results obtained from 100 to 3000 training samples (x-axis). The cross-
validation (CV) distribution was obtained from 100 Monte Carlo splits. Across targets,
performance started to plateau after around 1000 training samples with scores virtually
identical to the final model used in subsequent analyses. These benchmarks suggest
that inclusion of additional training samples would not have led to substantial
improvements in performance.

#### R1.8

4) In the first paragraph of the Methods section, there are duplications.

Reply **R1.8:** We thank the reviewer for having pointed out the duplications. We
have found and removed them.

#### R1.9

5) In the subsection of Data acquisition part, under the target measures paragraph, the
age at the baseline recruitment is used as the outcome. However, in general, there is a
gap between the age at baseline and the age when the MRI images were acquired.
Does this matter for the data analysis in this manuscript.

**Reply R1.9:** We thank the reviewer for this thoughtful remark as we had not
considered this issue in the first place. To investigate this age gap, we computed a
distribution of the individual differences between the age at recruitment and the age at
MRI-scan time. As expected, the difference was strictly positive, meaning that the MRI
scan was always acquired after the first visit. The individual differences were highly
rank-stable, suggesting that the age variables at recruitment and scan-time were
equivalent from a statistical perspective. We subsequently fitted the prediction models
from the main analysis using age at the time of the MRI-scan and directly compared
the individual-specific predictions. As hypothesized, they were virtually identical. We
have now made this point explicit in the main text and added a supplementary figure.

**Changes**

In methods, data acquisition, target measures:

In the course of this work, a question that emerged concerned the size of the gap
between age at baseline recruitment and MRI-scan time and its potential impact on the
analysis. Supplementary checks indicated that the age gap was at least 5 years for
most participants. Yet, from a statistical perspective, the two age measures turned out
highly interchangeable (Figure S2) and global conclusions remained unchanged
(Figure S3).

(See formatted reply to the reviewers among submitted files)

**Figure S2** Investigating the age gap between the first visit and the MRI-visit time
point. **(A)** Individual gap between age at first visit and MRI-scan time. MRI scans
never happened at the first visit, leading to a strictly positive gap greater than five years
for most participants. Pearsons correlation coefficient indicates high rank stability,
suggesting that, from a statistical perspective, age at first visit and age at scan time
are, essentially, interchangeable. **(B)** Direct comparison of individual-specific age
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predictions from brain images and sociodemographic data. Same model as in the main
analysis (Figure 2). The emerging pattern of association summarized by Pearsons
correlation coefficient suggests that predictions from models either trained on age at
the first visit or at MRI-scan time are equivalent.

(See formatted reply to the reviewers among submitted files)

**Figure S3** Proxy measures show systematic and complementary out-of-sample
associations with health-related habits using age at MRI-scan time. The patterns
observed in Figure 2 and global conclusions remain unchanged.

#### R1.10

6) For the classification analysis (paragraph Classification analysis in the subsection of
Comparing predictive models to approximate target measures, and the paragraph
above the Discussion section), the thresholds selected to discretize the outcome
variables are kind of arbitrary.

**Reply R1.10:** The division into groups follows the practical recommendations by
Gelman and Hill 2007 for dichotomizing variables. The idea is to avoid having too
many cases near the median boundary (where differences should be very subtle). We
have now explained the idea and referenced Gelman and Hills book.

**Changes**

In results, the relative importance of brain and sociodemographic data depends on the
target:

To investigate empirically-defined proxy measures beyond continuous regression, we
performed binary classification of extreme groups obtained from discretizing the targets
using the 33rd and 66th percentiles, following the recommendations by Gelman and
Hill (2006) regarding discrete variable encoding strategies.

In method section, predictive model, classification analysis:

We also performed classification analysis on the continuous targets. Adapting
recommendations from Gelman and Hill 2005, we performed discrete variable
encoding of the targets leading to extreme groups based on the 33rd and 66th
percentiles (see

Table 4) for the number of classification samples per group). This choice avoids
including samples near the average outcome for which the input data may be indistinct.

## Reviewer 2

All in all, this is a scientifically interesting study, but I think the presentation could be
improved, by more clearly stating the aims of it, and by giving more insight in certain
aspects of the proxy modeling.

We thank the reviewer for the positive appreciation of our work and the constructive
criticism. In response to this concern, we have carefully edited the main text, extended
the discussion and taken efforts to make our theoretical standpoint more explicit.

#### R2.1

This manuscript reports on the results of a study that can be split into two parts. For
this, it should be noted that the authors consider three categories of quantities. The first
category are the input data, or predictors: (a) variables derived from MRI scans and (b)
rich sociodemographic variables. The second category, or target variables, as the
authors call them, include: (a) age, (b) fluid intelligence and (c) neuroticism. In the first
part of the study, using machine learning, predictive models are built to predict the
target variables from the input variables. The resulting predictions are called proxy
measures. For the second stage, a third category of variables is included, the real
world health behaviours, such as alcohol use and physical activity. The authors now
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set out to predict these measures of behaviour based on the measures of the second
category, either the real ones or the proxies. Thus, the question is, can alcohol use be
better predicted by neuroticism determined from a questionnaire, or by the neuroticism
proxy derived from MRI and sociodemographics? The main results are presented in
Figure 2, and the conclusion made by the authors is that the proxies perform better
than the real measures.The authors carry out additional analyses, including the study
of the relative importance of MRI and sociodemographics. The authors suggest that
these proxies may have clinical use in the future.

At first sight it may seem surprising that proxies perform better then the real measure in
capturing the associations, but, as the authors mention, the real measures suffer from
(measurement) noise and non-objectivity. However, the proxies are biased (in the
sense of being to simple) and are thus less capable of modeling the (true) individual
variation. I would have expected a more in depth discussion about this.

**Reply to R2.1:** We thank the reviewer for sharing this thoughtful impression with us.
We now realize that the current wording of the paper may have led to the impression
that we see the proxies as a drop-in-replacement for the actual targets (see also
**R1.2** and **R1.4).** Instead, we propose that the proxies can be flexibly used to
complement the original measures or act as replacements when the original measures
are not available. Of note, in the context of machine learning, biased models often lead
to better predictions as it can reduce uncertainty as in the classical bias/variance
tradeoff. We have now extended the main text to make our perspective clearer to the
reader and avoid this kind of misunderstanding and extended the discussion to better
explain the potential mechanism by which proxy measures function.

**Changes**

In the discussion:

A more complete view on how the proxy measures capture mental-health constructs
emerges from their associations with real-world behavior (Figure 2). Indeed, the
associations with proxy measures (Figure 2 A) were less noisy and more consistent
than with the target measures (Figure 2 B), regardless of their approximation quality.
This may seem surprising at first, but the target measures are themselves noisy and of
imperfect validity. These measures correspond to traditional tests which, in practice,
must be interpreted by an expert, actively confronting their output with broader
information on the individual. For instance, IQ scores are typically normalized across
age groups. However, extending such a normalization approach to many factors
(socio-economic status, culture, gender) poses fundamental high-dimensional statistics
challenges. Conversely, using machine learning to assemble proxy measures by
mapping the targets to rich sociodemographic and brain data implicitly contextualizes
them. In this respect, the resulting measures capture more general signal than the
original tests. Here, machine learning could be seen as mimicking the work of a mental
health expert who carefully compares psychometric results with other facts known
about an individual and its reference population.

Conclusion:

In population studies of mental health, individual traits are captured via lengthy
assessments, tailored to specific brain and psychological constructs. We have shown
that proxy measures built empirically from general-purpose data can capture these
constructs and can improve upon traditional measures when studying real-world health
patterns. Proxy measures can make psychological constructs available to broader,
more ecological studies building on large epidemiological cohorts or real-world
evidence. This can make the difference where psychological constructs are central to
developing treatment and prevention strategies, but direct measures have not been
collected.

**Related changes reported above in response to R 1.2**

In abstract (instead of advantage):

We observed this complementarity of proxy measures and original measures when
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modeling from brain signals or sociodemographic data, capturing multiple health-
related constructs.

In results section title (instead of outperforming):

Complementing the original measures at characterizing real-life health-related habits

In results section:

Our findings suggested that some information on psychological constructs can be
assembled from general inputs not specifically tailored to measure these constructs,
such as brain images and sociodemographic variables. The resulting proxy measures
may be regarded as crude approximations of the psychological measures, but they can
nonetheless capture essential aspects of the target constructs. To probe the external
validity of the proxy-measures, we investigated their link with real-world behavior, e.g.,
sleep, physical exercise, alcohol and tobacco consumption on left-out data.

#### R2.2

Apart from this, there is an asymmetry in the way age is treated as compared to the
other two target variables, intelligence and neuroticism. Age is a very hard measure,
without any measurement error, and independent of the brain.

AND

#### R2.3

The other two targets, intelligence and neuroticism, are softer measures, and directly
related to the brain. How does this influence the analyses and the results?

AND

#### R2.4

Indeed, not predicted age is used as proxy, but brain age delta. I would have liked to
see more explanation and discussion about this.

Reply to **R2.2-2.4:** We thank the reviewer for sharing these thoughtful concerns.
The reviewer is absolutely right that we have treated the target variables differently, as
they are fundamentally different in terms of data generating mechanisms and
measurement scale. The difference between target and proxy, e.g., the delta, can
make sense where one deals with physical units (e.g. years for time) but may make
less sense for ordinal or categorical variables (the effective measurement scale for
intelligence and neuroticism is less clear; it is only clear that there are no physical
units).

These points have also been brought up by reviewer 1 and that the reply, the edits on
the manuscript and the additional analyses in response **R1.3-1.4** were explicitly
designed to also address concerns **R2.2-2.4**.

Moreover, we have revised the main text to make this asymmetry even more explicit,
borrowing the proposed terminology of hard and soft measures. Finally, we have
presented evidence in the main text that the proposed framework is flexible enough to
handle these intrinsic differences. It turned out that very similar results are obtained
even when the three measures are not treated asymmetrically but identically.

**New** Supplementary analyses.

**Figure 2 supplement 2:** We ran the same analysis for figure 2 using the brain-
predicted age as such, not the delta as the proxy measure. Outputs are virtually
identical.

**Figure 2 supplement 3:** We then added de-confounders for fluid intelligence and
neuroticism and repeated the analysis for figure 2. Outputs were highly similar.
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**Figure 2 supplement 4:** To provide a more rigorous comparison between proxies
and targets as stimulated in **R1.4** and assess statistical significance of possible
differences between proxies and targets, we have composed a big regression model
including both the proxies and the targets as predictors. Across health outcomes, we
found two frequent scenarios: 1) the proxies were found statistically significant, not the
actual measures, suggesting that the proxies show improved SNR over the actual
measures. 2) proxies and actual measures were found statistically significant, pointing
at true additive effects. The overall picture depended on the health outcome.

**Table S3:** Detailed statistical inferences for the comprehensive proxy-target models
are listed in this new table.

**Table S4** : In this context, the intrinsic link between proxies and targets may imply
multicollinearity. Too much multicollinearity could potentially render the statistical
testing procedure invalid. To test for multicollinearity we computed variance inflation
factors (VIF) across the different models, which intuitively quantify how well each
predictor can be approximated by a linear combination of the other predictors. The VIF
is defined as 1 / (1 - R^2\_i), where R^2\_i is the coefficient of determination for the
model that approximates the predictor i from all remaining predictors. A VIFs 1-5
counts as low to moderate (see extensive review and discussion in Obrien 2007,
_Quality &amp; Quantity_ 41, 673-690). The observed VIFs were mostly around 1. The
highest VIF was found for age and brain age with values around 3, which suggests that
age and brain age are linked to the other proxy measures. This is implicitly justifying
our previous intuition of keeping age-deconfounders for the other proxy measures.
More importantly, these control analyses suggest that the significance tests are not
impacted by multicollinearity, which is also in line with reasonable standard errors
produced by the big models from S3.

Based on these new analyses, we have updated the results section and have
highlighted the theoretical considerations regarding asymmetries between the proxy
measures.

**Related changes reported above in response to reviewer 1**

In the interest of a concise reply, only related changes to the text are reprinted below.
For the related figures and tables, please consider the reply to points **R1.3-1.4**
above.

In the introduction, the asymmetry has been emphasized:

Extrapolating from these successes, we propose to build upon large datasets to extend
the collection of health-related proxy measures, probing mental traits.For this end, we
focused on constructs fundamentally different in terms of content and methodology.

In the main text, result section, a novel paragraph has been added to address the
conceptual asymmetry of the measures and consequences for the analysis:

The three proxy measures are difficult to compare on an equal footing as a delta was
considered for brain age only (the difference between predicted and actual age) and
aging-specific deconfounding was applied. The brain-age delta is in- deed the standard
practice, theoretically justified as age is on a metric scale [50] for which the difference
between the predicted and the measured value has a clear meaning. Such a difference
is less obvious for variables with ordinal scales as im- plied by psychometric measures.
Second, age has a pervasive influence on virtually any biomedical entity, which
motivates controlling for its effect on proxy measures. To rule out that differences in
proxy measures associations to health-related behavior are driven by this
methodological asymmetry, we repeated the main analysis from Figure 2, first, using
the predicted age without computing the delta (Figure 2 – Figure supplement 2) and,
second, introducing additional deconfounders for fluid intelligence and neuroticism
(Figure 2 – Figure supplement 3). The resulting patterns were virtually unchanged,
confirming that our interpretations are robust.

In the main text, result section, a paragraph on big-picture statistical differences
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between proxies and targets has been generously expanded:

A question that remains is whether the proxy measures bring additional value
compared to the original target measures they were derived from. These original target
measures showed similar associations to health behavior, with the same signs in most
cases (Figure 2, B). At the same time, the ensuing patterns were more noisy,
suggesting that empirically derived proxy measures yielded enhanced associations
with health behavior. This inference may be difficult as differences between targets and
proxies were not always easy to pinpoint visually. To implement a more rigorous
statistical approach, we built comprehensive models of each respective health-related
habit in which we used all proxies (predicted age, predicted fluid intelligence, predicted
neuroticism) and all targets (age, fluid intelligence, neuroticism) simultaneously as
predictors (Figure 2 – Figure supplement 4). The results show systematic additive
effects of proxies and targets across the three target domains and the four health-
habits. These trends are well-captured by the hypothesis tests of the respective linear
models (Table S3). As targets and proxies may be systematically intercorrelated,
multicollinearity may corrupt these inferences. Inspection of variance inflation factors
(VIF)— a measure that reveals how well a given predictor can be approximated by a
linear combination of the other predictors— argued in favor of low to moderate levels of
multicollinearity (Table S4). Indeed, all VIF values fell between 3 and 1, whereas,
classically, values above 5 or 10 are considered as thresholds [51] for pathological
collinearity. This suggests that the model inferences are statistically sound.

#### R2.5

Finally, the suggested clinical use of the proxies is not supported well enough in my
opinion. Maybe the authors could add more this discussion to this point as well.

We thank the reviewer for this suggestion. We absolutely agree with this impression.
Unfortunately, relevant clinical data have not been available in the UK-Biobank. At the
same time, the focus here is a public health perspective targeting individual differences
in health, not pathology. We believe that, beyond the exact measures studied here, the
framework, theory and methods proposed in this work can be readily applied with other
measures and applied in the clinical setting, which is something that needs to be done
in forthcoming studies. We have extended the discussion acknowledging this limitation
in the dedicated section.

**Changes**

In limitations:

In terms of mental-health research, this study falls short of directly testing the clinical
relevance of estimated proxy measures. Even in a very large general-population cohort
such as the UK Biobank, there are only a few hundred diagnosed cases of mental
disorders (ICD-10 mental-health diagnoses from the F chapter) with brain-imaging data
available. As a result, we could not directly assess the performance of proxy measures
in clinical populations.

The low number of diagnosed mental disorders in UK Biobank highlights the practical
importance of studying mental health as a continuous, in addition to diagnosed
conditions. Indeed, a public health perspective calls for targeting individual differences
in health, not only pathology. Psychological constructs such as IQ and neuroticism are
important factors of the epidemiology of psychiatric disorders [38, 30, 29, 67], and
accelerated brain aging is associated with various neurological conditions [18, 17, 25].
Yet, few cohorts come with extensive neuropsychological testing. Validated proxies of
these constructs open the door to including them in epidemiological studies as
secondary outcomes or additional explanatory variables.

**Related changes reported above in earlier response to related concerns by reviewer
1**

In the discussion:

A more complete view on how the proxy measures capture mental-health constructs
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emerges from their associations with real-world behavior (Figure 2). Indeed, the
associations with proxy measures (Figure 2 B) were less noisy and more consistent
then with the target measures (Figure 2 A), regardless of their approximation quality.
This may seem surprising at first, but the target measures are themselves noisy and of
imperfect validity. These measures correspond to traditional tests which, in practice,
must be interpreted by an expert, actively confronting their output with broader
information on the individual. For instance, IQ scores are typically normalized across
age groups. Extending such normalization approach to many factors (socio-economic
status, culture, gender) poses however fundamental challenges of high-dimensional
statistics. Conversely, using machine learning to assemble proxy measures by
mapping the targets to rich sociodemographic and brain data implicitly contextualizes
them. In this respect, the resulting measure captures more general signal than the
original tests. Here, machine learning could be seen as mimicking the work of a mental
health expert who carefully compares psychometric results with other facts known
about an individual and its reference population.

Conclusion:

In population studies of mental health, individual traits are captured via lengthy
assessments, tailored to specific brain and psychological constructs. We have shown
that proxy measures built empirically from general-purpose data can capture these
constructs and can improve upon traditional measures when studying real-world health
patterns. Proxy measures can make psychological constructs available to broader
more ecological studies building on large epidemiological cohorts or real-world
evidence. This can make the difference where psychological constructs are central to
developing treatment and prevention strategies, but direct measures have not been
collected.
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Abstract

Background Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. Instead, individual
differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These
constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful
interpretation. Could machine learning on large samples from the general population be used to build proxy measures of
these constructs that do not require human intervention? Results Here, we built proxy measures by applying machine
learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date:
the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful,
and sometimes more useful than the original measures for characterizing real-world health behavior (sleep, exercise,
tobacco, alcohol consumption). We observed this complementarity of proxy measures and original measures when
modeling from brain signals or sociodemographic data, capturing multiple health-related constructs. Conclusions
Population modeling with machine learning can derive measures of mental health from brain signals and questionnaire
data, which may complement or even substitute for psychometric assessments in clinical populations.

Key words: Mental Health, Proxy Measures, Machine Learning, Sociodemographic Factors, Brain Imaging

Background

Quantitative measures of mental health remain challenging de-
spite substantial efforts [1]. The field has struggled with un-
stable diagnostic systems [2], small sample sizes [3], and re-
liance on case-control studies [4]. Perhaps most importantly,
mental health cannot be measured the same way diabetes can
be assessed through plasma levels of insulin or glucose. Psy-

chological constructs, e.g., intelligence or anxiety, can only be
probed indirectly through lengthy expert-built questionnaires
or structured examinations by a specialist. Though question-
naires often remain the best accessible option, their capacity
to measure a construct is limited [5]. In practice, as full neu-
ropsychological evaluation is not automated process but relies
on expert judgement to confront multiple answers and inter-
pret them in the context of the broader picture, such as cul-
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Key Points

• We applied machine learning on more than 10.000 individuals from the general population to define empirical approxima-
tions of health-related psychological measures that do not require human judgment.

• We found that machine-learning enriched the given psychological measures via approximation from brain and sociodemo-
graphic data: Resulting proxy measures related as well or better to real-world health behavior than the original measures.

• Model comparisons showed that sociodemographic information contributed most to characterizing psychological traits
beyond aging.

tural background of the participant. While the field of psy-
chometrics has thoroughly studied the validity of psycholog-
ical constructs and their measure [6, 7, 8], the advent of new
biophysical measurements of the brain brings new promises
[9, 10, 11]. The growth of biobanks and advances in machine
learning open the door to large-scale validation of psycholog-
ical measures for mental health research [12], and the hope to
develop more generalizable models [13]. Yet, to be reliable, ma-
chine learning needs large labeled datasets [14]. Its application
to learn imaging biomarkers of mental disorders is limited by
the availability of large cohorts with high-quality neuropsychi-
atric diagnosis [15].

By comparison, it is easier to collect data on the general pop-
ulation without information on clinical conditions. For brain
health, such data has lead to developing proxy measures that
quantify biological aging [16, 17, 18, 11, 19, 20, 21, 22]. One
counterintuitive aspect of the methodology is that measures of
biological aging can be obtained by focusing on the age of a
person, which is known in advance and in itself not interest-
ing. Yet, by predicting the age, machine-learning can capture
the relevant signal. Based on a population of brain images, it
extracts the best guess for the age of a person, indirectly posi-
tioning that person within the population. Individual-specific
prediction errors therefore reflect deviations from what is sta-
tistically expected [23]. The brain of a person can look similar
to the brains commonly seen in older (or younger) people. The
resulting brain-predicted age reflects physical and cognitive
impairment in adults [24, 17, 16] and reveals neurodegenerative
processes [22, 25]. Can this strategy of biomarker-like proxy
measures be extended to other targets beyond the construct of
aging? Extrapolating from these successes, we propose to build
upon large datasets to extend the collection of health-related
proxymeasures, probing mental traits. For this end, we focused
on constructs fundamentally different in terms of content and
methodology.

One high-stake target is intelligence, which is measured
through socially administered tests and is one of the most ex-
tensively studied constructs in psychology. Fluid intelligence
refers to the putatively culture-free, heritable and physiologi-
cal component of intelligence [26, 27] and is a latent construct
designed to capture individual differences in cognitive capacity.
It has been robustly associated with neuronal maturation and is
typically reflected in cognitive-processing speed and working-
memory capacity [28]. Applied to psychiatric disorders, it may
help characterize psychosis, bipolar disorder, and substance
abuse [29, 30].

Neuroticism is a second promising target. As a key repre-
sentative of the extensively studied Big Five personality inven-
tory, neuroticism has a long-standing tradition in the psychol-
ogy of individual differences [31, 32]. Neuroticism is measured
using self-assessment questionnaires and conceptualized as
capturing dispositional negative emotionality including anxi-
ety and depressiveness [33]. It has been inter-culturally vali-
dated [26, 34] and population-genetics studies have repeatedly
linked neuroticism to shared genes [35, 36, 37]. Neuroticism

was shown useful in psychometric screening and supports pre-
dicting real-world behavior [38, 39].

Despite strong population-level heritability [40, 41], the
link between psychological constructs, brain function and ge-
netics is still being actively researched [42, 33]. Empowered
by emerging large-scale datasets, current attempts to predict
fluid intelligence or neuroticism from thousands of MRI scans
argue in favor of heterogeneity and weakly generalizing ef-
fects [43, 44]. This stands in contrast to the remarkable per-
formance obtained when predicting psychometric data from
language-based inputs captured by Twitter and Facebook user
data [45, 46]. As MRI acquisitions can be difficult to come by in
certain populations, the promises of social-media data are ap-
pealing. However, such data may lead to measurement and se-
lection biases difficult to control. Instead, background sociode-
mographic data may provide an easily accessible alternative for
contextualizing the heterogeneity of psychological traits [47].

Another challenge is that psychological traits are often mea-
sured using arbitrary non-physical units, e.g. education degree
or monthly income. In fact, society treats individual differ-
ences as categorical or continuous, depending on the practical
context. While personality has been proposed to span a con-
tinuum [48], psychiatrists treat certain people as patients and
not others [49]. Therefore, a measure that performs globally
poorly at a continuous scale can be sufficient to distinguish
subgroups as it may be informative around the boundary re-
gion between certain classes, e.g., pilots who should fly and
who should not. Choosing the granularity with which to gauge
psychological constructs is diffcult.

Confronting the promises of population phenotyping with
the challenges of measuring psychological traits raises the fol-
lowing questions: 1) How well can various constructs related
to mental health be approximated from general-purpose in-
puts not designed to measure specific latent constructs? 2) Can
the success of brain age be extended to other proxy measures
capturing complementary facets of mental health? 3) What
is the relative merit of brain imaging and sociodemographics?
We tackled these questions by using machine learning to craft
proxy measures in order to approximate well-characterized tar-
get measures from brain-imaging and sociodemographic data.
We studied age, fluid intelligence, and neuroticism. These tar-
gets have been, traditionally, considered as proxies for mental
health and are fundamentally different in terms of scope and
nature. Figure 1 summarizes our approach. Results suggest
that, as with brain age, proxy measures can bring value for
the study of mental health that goes beyond approximating an
available measure.

Results: validity of proxy measures



Dadi et al. | 3

0 10

Neuroticism (questionnaire)

c

40 50 60 70

Age (physical)

a

0 10

Fluid intelligence (test)

b

Structural volumes

Functional
connectivity

Diffusion tracts

Brain imaging

Sociodemographics

Machine learning combines various
classes of inputs to approximate
target measures

ProxymeasuresCA

B
Mood & Sentiment
Frequency of tenseness, low mood, ...

Age, sex
Life style
Status of current employment, ...

Education
Qualifications, ...

Early life
Country of birth, adopted as child ...

Target measures

Figure 1. Methods overview: building and evaluating proxymeasuresWe com-
bined multiple brain-imaging modalities (A) with sociodemographic data (B)
to approximate health-related biomedical and psychological constructs (C), i.e.,
brain age (accessed through prediction of chronological age), cognitive capacity
(accessed through a fluid-intelligence test) and the tendency to report nega-
tive emotions (accessed through a neuroticism questionnaire). We included the
imaging data from the 10 000-subjects release of the UK biobank. Among imag-
ing data (A) we considered features related to cortical and subcortical volumes,
functional connectivity from rfMRI based on ICA networks, and white-matter
molecular tracts from diffusive directions (see Table 1 for an overview about the
multiple brain-imaging modalities). We then grouped the sociodemographic
data (B) into five different blocks of variables related to self-reported mood &
sentiment, primary demographics, lifestyle, education, and early-life events
(Table 2 lists the number of variables in each block). Subsequently, we sys-
tematically compared the approximations of all three targets based on either
brain images and sociodemographics in isolation or combined (C) to evaluate
the relative contribution of these distinct inputs. Models were developed on
50% of the data (randomly drawn) based on random forest regression guided
by Monte Carlo cross-validation with 100 splits (see section Model Develop-
ment and Generalization Testing). We assessed generalization using the other
50% of the data as fully independent out-of-sample evaluations (see section
Statistical Analysis). Learning curves suggested that this split-half approach
provided sufficient data for model construction (Figure 1 – Figure supplement
1).

Complementing the original measures at characteriz-
ing real-life health-related habits

To approximate age, fluid intelligence and neuroticism, we ap-
plied random-forest regression on sociodemographic data and
brain images. The data was split into validation data for model
construction (see section Model Development and Generaliza-
tion Testing) and generalization data for statistical inference on
out-of-sample predictions with independent data (see section
Statistical Analysis). Our findings suggested that some infor-
mation on psychological constructs can be assembled from gen-
eral inputs not specifically tailored tomeasure these constructs,
such as brain images and sociodemographic variables. The re-
sulting proxy measures may be regarded as crude approxima-
tions of the psychological measures, but they can nonetheless
capture essential aspects of the target constructs. To probe
the external validity of the proxy measures, we investigated
their link with real-world behavior, e.g., sleep, physical ex-
ercise, alcohol and tobacco consumption on left-out data. To
probe the external validity of the proxy-measures, we investi-
gated their link with real-world behavior, e.g., sleep, physical
exercise, alcohol and tobacco consumption on left-out data. To
relate such health behaviors to our proxy measures, we mod-
eled them separately as weighted sums of predicted brain-age
delta, fluid intelligence and neuroticism using multiple linear
regression (section Statistical Analysis). To avoid circularity,
we used the out-of-sample predictions for all proxy measures
(section Model Development and Generalization Testing).
The estimated regression coefficients (partial correlations),

revealed complementary associations between the proxy mea-
sures and health-related behavior (Figure 2). Similar patterns
arise when considering proxy measures in isolation (Figure 2
– Figure supplement 1). Compared to other proxy measures,
elevated brain-age delta was associated with increased alcohol

consumption (Figure 2, first row). Levels of physical exercise
were consistently associated with all three predicted targets,
suggesting additive effects (Figure 2, second row). For fluid in-
telligence, this result, counter-intuitive from the health stand-
point, could imply that higher test scores reveal a more seden-
tary life style. Increased sleep duration consistently went along
with elevated brain age delta, but lower levels of predicted
neuroticism (Figure 2, third row). This may seem counter-
intuitive, but is conditional on neuroticism showing a nega-
tive link with sleep duration. No consistent effect emerged for
fluid intelligence. Numbers of cigarettes smoked was indepen-
dently associated with all predicted targets (Figure 2, last row):
Intensified smoking went along with elevated brain age delta
and neuroticism but lower fluid intelligence.
The three proxy measures are difficult to compare on an

equal footing as a delta was considered for brain age only
(the difference between predicted and actual age) and aging-
specific deconfounding was applied. The brain-age delta is in-
deed the standard practice, theoretically justified as age is on
a metric scale [50] for which the difference between the pre-
dicted and the measured value has a clear meaning. Such a
difference is less obvious for variables with ordinal scales as im-
plied by psychometric measures. Second, age has a pervasive
influence on virtually any biomedical entity, which motivates
controlling for its effect on proxy measures. To rule out that
differences in proxy measures’ associations to health-related
behavior are driven by this methodological asymmetry, we re-
peated the main analysis from Figure 2, first, using the pre-
dicted age without computing the delta (Figure 2 – Figure sup-
plement 2) and, second, introducing additional deconfounders
for fluid intelligence and neuroticism (Figure 2 – Figure sup-
plement 3). The resulting patterns were virtually unchanged,
confirming that interpretations are robust.
A question that remains is whether the proxy measures

bring additional value compared to the original target mea-
sures they were derived from. These original target measures
showed similar associations to health behavior, with the same
signs in most cases (Figure 2, B). At the same time, the ensuing
patterns were more noisy, suggesting that empirically derived
proxy measures yielded enhanced associations with health be-
havior. This inference may be difficult as differences between
targets and proxies were not always easy to pinpoint visually.
To implement a more rigorous statistical approach, we built
comprehensive models of each respective health-related habit
in which we used all proxies (predicted age, predicted fluid in-
telligence, predicted neuroticism) and all targets (age, fluid in-
telligence, neuroticism) simultaneously as predictors (Figure 2
– Figure supplement 4). The results show systematic additive
effects of proxies and targets across the three target domains
and the four health-habits. These trends are well-captured by
the hypothesis tests of the respective linear models (Table S3).
As targets and proxies may be systematically intercorrelated,
multicollinearity may corrupt these inferences. Inspection of
variance inflation factors (VIF)— a measure that reveals how
well a given predictor can be approximated by a linear combina-
tion of the other predictors— argued in favor of low to moder-
ate levels of multicollinearity (Table S4). Indeed, all VIF values
fell between 3 and 1, whereas, classically, values above 5 or 10
are considered as thresholds [51] for pathological collinearity.
This suggests that the model inferences are statistically sound.

The relative importance of brain and sociodemo-
graphic data depends on the target

In a second step, we investigated the relative performance of
proxy measures built from brain signals and distinct sociode-
mographic factors for the three targets: age, fluid intelligence
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Age Observed NeuroticismObserved Fluid Intelligence

Specific associations for proxy and target measures with health−related habits
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Figure 2. Proxy measures show systematic and complementary out-of-sample associations with health-related habits. We probed the external validity of all
three proxy measures (brain age, fluid intelligence, neuroticism) based on a combination of brain images and all sociodemographic factors (see Figure 1 for
details). We investigated their out-of-sample associations with ecological indicators of mental health (sleep duration, time spent with physical exercise, number
of alcoholic beverages and cigarettes consumed). To tease apart complementary and redundant effects, we constructed multiple linear regression models on
out-of-sample predictions combining all three proxy measures (A). For comparison, we repeated the analysis using the actual target measures (B) observed on
the held-out data. Regression models are depicted rows-wise. Box plots summarize the uncertainty distribution of target-specific (color) regression coefficients
with whiskers indicating two-sided 95% uncertainty intervals (parametric bootstrap). Dots illustrate a random subset of 200 out of 10000 coefficient draws. The
average coefficient estimate is annotated for convenience. At least two distinct patterns emerged: either the health outcome was specifically associated with one
proxy measures (brain age delta and number of alcoholic beverages) or multiple measures showed additive associations with the outcome (e.g. number of pack years
smoked). For target measures (B), associations with health habits were often noisier or less pronounced compared to the target measures (A) and even a a change
in direction was observed for brain age and metabolic activity. Figure 2 – Figure supplement 1 shows highly similar trends with marginal associations between
proxy measures and health-related habits. Our results suggest that the proxy measures capture well health-related habits, potentially better than the original
target measures, and in a complementary way across the three measures. The same patterns emerged as brain-predicted age rather than the brain age delta is
used as a proxy measure (Figure 2 – Figure supplement 2). As proxy-specific deconfounding is applied, this pattern is preserved (Figure 2 – Figure supplement 3).
Modeling of health-related habits jointly from proxy and target measures simultaneously revealed specific complementari. ty between proxy and target measures
across multiple domains i.e. age, fluid intelligence, neuroticism (Figure 2 – Figure supplement 4).

and neuroticism. Among the sociodemographic variables there
was one block for each target explaining most of the predic-
tion performance (Figure 3, dotted outlines). Combining all
sociodemographic variables did not lead to obvious enhance-
ments (Figure 3 – Figure supplement 2). For age prediction,
variables related to current life-style showed by far the high-
est performance. For fluid intelligence, education performed
by far best. For neuroticism, mood & sentiment clearly showed
the strongest performance.

Combining MRI and sociodemographics, enhanced age pre-
diction systematically on all four blocks of variables (Figure 3
solid outlines, and Table S1). The benefit of brain-imaging fea-
tures was less marked for prediction of fluid intelligence or
neuroticism. With fluid intelligence, brain-imaging data im-
proved the performance statistically significantly for all mod-
els, yet, with small effect sizes (Table S1). For neuroticism,
no systematic benefit of including brain images alongside so-
ciodemographics emerged (Table S1, bottom row). Neverthe-
less, brain data was sufficient for statistically significant ap-
proximation of the target measures in all three targets (Ta-
ble S5).

Psychological measures often come without physical scales
and units [50]. In practice, clinicians and educators use them
with specific thresholds for decision making. To investigate
empirically-defined proxy measures beyond continuous re-
gression, we performed binary classification of extreme groups
obtained from discretizing the targets using the 33rd and 66th
percentiles, following the recommendations by Gelman and
Hill 2006 regarding discrete variable encoding strategies. Fur-

thermore, we measured accuracy with the area under the clas-
sification accuracy curve (AUC) which is only sensitive to rank-
ing, ignoring the scale of the error. Classification performance
visibly exceeded the chance level (AUC > 0.5) for all models
(Figure 4) and approached or exceeded levels considered prac-
tically useful (AUC > 0.8) [49]. Across proxy measures, models
including sociodemographics performed best but the difference
between purely sociodemographic and brain-basedmodels was
comparably weak, at the order of 0.01-0.02 AUC points (Ta-
ble S2). Using brain data only led to worse performance, yet,
still better than chance as revealed by permutation testing (Ta-
ble S6).

Discussion

Guided bymachine learning, we empirically derived proxymea-
sures that combine multiple sources of information to capture
extensively validated target measures from psychology. These
proxy measures all showed complementary associations with
real-world health indicators beyond the original targets. The
combination of brain imaging and target-specific sociodemo-
graphic inputs often improved approximation performance.

Empirically-derived proxy measures: validity and
practical utility

In our study, construct validity [6, 54, 7] of the corresponding
proxy measures was supported by the gain in prediction per-
formance brought by specific sociodemographic factors (Fig-
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adopted as a child, ...

validation
generalization

Figure 3. Approximation performance of proxy measures derived from sociodemographic data and MRI. We report the R2 metric to facilitate comparisons
across prediction targets. The cross-validation (CV) distribution (100 Monte Carlo splits) on the validation dataset is depicted by violins. Drawing style indicates
whether brain imaging (solid outlines of violins) was included in addition or not (dotted outlines of violins). Dots depict the average performance on the validation
data across CV-splits. Pyramids depict the performance of the average prediction (CV-bagging) on held-out generalization datasets. For convenience, the mean
performance on the validation set is annotated for each plot. Vertical dotted lines indicate the average performance of the full MRI model. The validation and
held-out datasets gave similar picture of approximation performance with no evidence for cross-validation bias [52]. For the averaged out-of-sample predictions,
the probability of the observed performance under the null-distribution and the uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S1). Corresponding statistics for the baseline performance of models solely based on brain imaging (vertical dotted
lines) are presented in Table S5. Figure 3 – Figure supplement 1 shows approximation results based on MRI. Figure 3 – Figure supplement 2 presents results
based on all sociodemographic factors.
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derived from sociodemographics and brain imaging

Figure 4. Classification analysis from imaging, sociodemographics and com-
bination of both data. For classification of extreme groups instead of contin-
uous regression, we split the data into low vs high groups based on 33rd and
66th percentiles. Visual conventions follow Figure 3. We report the accuracy
in AUC. Models including sociodemographics performed visibly better than
models purely based on brain imaging. Differences between brain-imaging
and sociodemographics appeared less pronounced as compared to the fully-
fledged regression analysis. For the average out-of-sample predictions, the
probability of the observed performance under the null-distribution and the
uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S2). Corresponding statistics for
the baseline performance of models solely based on brain imaging (vertical
dotted lines) are presented in Table S6. Overall, when moving from the more
difficult full-scale regression problem to extreme-group classification prob-
lem with purely ranking-based scores, the relative differences between brain-
based and sociodemographics-based prediction gradually faded away.

ure 3). Association with health-relevant habits added exter-
nal validity to the proxy measures (Figure 2). The comple-
mentary patterns related to traditional construct semantics:
High consumption of cigarettes is associated with neuroticism

[55], excessive drinking may lead to brain atrophy and cogni-
tive decline [56] – both common correlates of elevated brain
age [22, 57].
Can our empirically-derived proxy measures, thus, substi-

tute for specific psychometric instruments? A mental-health
professional may still prefer an established routine for clin-
ical assessment, relying on interviews and personality ques-
tionnaires with implicit experience-based thresholds. Inclu-
sion of brain imaging may even seem to yield diminishing re-
turns when approximating high-level psychological traits. Yet,
it could simply be a matter of time until more effective acquisi-
tion protocols will be discovered alongside useful signal repre-
sentations. Including brain imaging, rather seems a “safe bet”
as machine learning is often capable of selecting relevant in-
puts [11, 58] and costs of MRI-acquisition can be amortized by
clinical usage. Empirically-derived proxy measures may open
new doors where tailored assessment of latent constructs is not
applicable due to lack of specialized mental-health workforce
or sheer cost.

Constructs of mental-health can be accessed from
general-purpose data

Brain age has served as landmark in this study. It has been ar-
guably the most discussed candidate for a surrogate biomarker
in the brain imaging literature [16, 17, 24]. With mean abso-
lute errors around 4 years, up to 67% variance explained, and
AUC-scores up to 0.93 in the classification setting, our results
compare favorably to the recent brain-age literature within the
UK Biobank [19, 59] and in other datasets [22, 11], though we
relied on off-the-shelf methods and not custom deep learn-
ing methods [60]. Applying the same approach to psychologi-
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cal constructs (fluid intelligence, neuroticism), we found that
approximation from brain imaging data or sociodemographic
descriptors was generally harder.
It is important to recapitulate that approximation quality

on these differently measured targets has a different meaning.
Age is measured with meaningful physical units (years) on a
ratio scale [50] (Selma is twice as old as Bob). Psychometric
scores are unit-free, which may provoke ambiguity regarding
the level of measurement [54]. Their implied scales may be
considered as interval (the difference between Bob’s and Selma’s
intelligence is -0.1 standard deviations) if not ordinal (Bob’s in-
telligence was ranked below Selma’s) [50]. In day-to-day psy-
chological practice, these scores are often used via practically-
defined thresholds, e.g. school admission or pilot candidate se-
lection [61, 62]. In the classification setting, all proxymeasures
approached or exceeded a performance of 0.80 deemed relevant
in biomarker development [49], though to be fair, they approxi-
mated established psychometric targets (proxymeasures them-
selves) and not a medical condition. Different proxy measures
should, thus, be subjected to different standards, depending on
the granularity of the implied measurement scale.
A more complete view on how the proxy measures cap-

ture mental-health constructs emerges from their associations
with real-world behavior (Figure 2). Indeed, the associations
with proxy measures (Figure 2 B) were less noisy and more
consistent then with the target measures (Figure 2 A), regard-
less of their approximation quality. This may seem surprising
at first, but the target measures are themselves noisy and of
imperfect validity. These measures correspond to traditional
tests which, in practice, must be interpreted by an expert, ac-
tively confronting their output with broader information on
the individual. For instance, IQ scores are typically normal-
ized across age groups. However, extending such a normaliza-
tion approach to many factors (socio-economic status, culture,
gender) poses fundamental high-dimensional statistics chal-
lenges. Conversely, using machine learning to assemble proxy
measures by mapping the targets to rich sociodemographic and
brain data implicitly contextualizes them. In this respect, the
resulting measures capture more general signal than the orig-
inal tests. Here, machine learning could be seen as mimicking
the work of a mental health expert who carefully compares psy-
chometric results with other facts known about an individual
and its reference population.

The benefits offered by brain data depend on the target
construct

All brain-derived approximations were statistically meaning-
ful. Yet, only for age prediction, imaging data by itself led
to convincing performance. For fluid intelligence and neuroti-
cism, sociodemographic factors were themost important deter-
minants of prediction success. The best-performing sociode-
mographic models were based on inputs semantically close
to these targets, i.e., education details or mood & sentiment.
While those results support construct validity, they may come
with a certain risk of circularity. The causal role of those pre-
dictors is not necessarily clear as better educational attain-
ment is heritable itself [63] and may reinforce existing cog-
nitive abilities. Similarly, prolonged emotional stress due to
life events may exacerbate existing dispositions to experience
negative emotions captured by neuroticism [64], traits which
commonly help accumulate stressful life events [38]. Neverthe-
less, for fluid intelligence but not neuroticism, brain imaging
added incremental value when combined with various sociode-
mographic predictors. This may suggest that the cues for neu-
roticism conveyed by brain imaging were already present in
sociodemographic predictors, hinting at common causes. Off

note, in the specific context of aging, the empirical distinction
between brain age and cognitive age is reflecting a similar in-
tuition [65].

Limitations

Additional constructs and psychometric tools could have been
visited. The broader construct of intelligence is often estimated
using a general factor model with multiple correlated tests.
While this is obviously useful for normative assessments, mea-
sures of fluid intelligence can also serve a situational fitness
signal [30]. There is a wealth of questionnaires for measuring
negative emotionality and neuroticism, specifically. Yet, we
could only study the EPQ scale provided by the UK Biobank. A
complementary approach would be to estimate latent factors by
pooling all non-imaging data semantically related to neuroti-
cism [66]. Here, we considered established target measures
“as is”, instead of derivatives.

It terms of mental-health research, this study falls short of
directly testing the clinical relevance of estimated proxy mea-
sures. Even in a very large general-population cohort such
as the UK Biobank, there are only a few hundred diagnosed
cases of mental disorders (ICD-10 mental-health diagnoses
from the F chapter) with brain-imaging data available. As a
result, we could not directly assess the performance of proxy
measures in clinical populations. The low number of diagnosed
mental disorders in UK Biobank highlights the practical impor-
tance of studying mental health as a continuous, in addition
to diagnosed conditions. Indeed, a public health perspective
calls for targeting individual differences in health, not only
pathology. Psychological constructs such as IQ and neuroticsm
are important factors of the epidemiology of psychiatric dis-
orders [38, 30, 29, 67], and accelerated brain aging is associ-
ated with various neurological conditions [18, 17, 25]. Yet, few
cohorts come with extensive neuropsychological testing. Val-
idated proxies of these constructs open the door to including
them in epidemiological studies as secondary outcomes or ad-
ditional explanatory variables.

Conclusion: Proxy measures may enhance the
validity of constructs gauging mental health

In population studies of mental health, individual traits are
captured via lengthy assessments, tailored to specific brain and
psychological constructs. We have shown that proxy measures
built empirically from general-purpose data can capture these
constructs and can improve upon traditional measures when
studying real-world health patterns. Proxymeasures canmake
psychological constructs available to broader, more ecological
studies building on large epidemiological cohorts or real-world
evidence. This can make the difference where psychological
constructs are central to developing treatment and prevention
strategies, but direct measures have not been collected.

Methods

To facilitate reproduction, understanding, and reuse, we have
made all data analysis and visualization source code avail-
able on Github: https://github.com/KamalakerDadi/empirical_
proxy_measures.

Dataset

The United Kingdom Biobank (UKBB) database is to date the
most extensive large-scale cohort aimed at studying the deter-

https://github.com/KamalakerDadi/empirical_proxy_measures
https://github.com/KamalakerDadi/empirical_proxy_measures
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minants of the health outcomes in the general adult population.
The UKBB is openly accessible and has extensive data acquired
on 500000 individuals aged 40-70 years covering rich pheno-
types, health-related information, brain-imaging and genetic
data [12]. Participants were invited for repeated assessments,
some of which included MR imaging. For instance, cognitive
tests that were administered during an initial assessment were
also assessed during the follow-up visits. This has enabled
finding for many subjects at least one visit containing all het-
erogeneous input data needed to develop the proposed proxy
measures. The study was conducted using the UKBB Resource
Application 23827.

Participants

All participants gave informed consent. The UKBB study was
examined and approved by the North West Multi-centre Re-
search Ethics Committee. We considered participants who have
responded to cognitive tests, questionnaires, and have access
to their primary demographics and brain images [68]. Out of
the total size of UKBB populations, we found 11 175 participants
who had repeated assessments overlapping with the first brain
imaging release [69]. Note that the features (sociodemographic
variables) that we included in the analysis are measures that
are self-reported during a follow-up imaging visit. The demo-
graphics are 51.6% female (5572) and 48.3% male (5403), and
an age range between 40-70 years (with a mean of 55 years and
standard deviation of 7.5 years). The data for model training
were selected using a randomized split-half procedure yield-
ing 5587 individuals. The remaining subjects were set aside
as a held-out set for generalization testing (see section Model
development and generalization testing). We made sure that
the subjects used for model training and generalization testing
were strictly non-overlapping.
Learning curves documented that the training split was suf-

ficiently large for constructing stable prediction models Fig-
ure 1 – Figure supplement 1 with profiles of performance
similar to latest benchmarks on model complexity in the UK
Biobank [70]. Moreover, simulations and empirical findings
suggest that larger testing sets are more effective at miti-
gating optimistic performance estimates [71, 52]. Together,
this provided a pragmatic solution to the inference-prediction
dilemma [58, 72] given the two objectives of the present in-
vestigation to obtain reasonably good predictive models, while
at the same time performing parameter inference of statistical
models developed on the left-out data.
To establish specific comparisons between models based on

sociodemographics, brain data or their combinations we exclu-
sively considered the cases for which MRI scans were available.
The final sample sizes used for model construction and gener-
alization testing then depended on the availability of MRI: For
age and fluid intelligence, our randomized split-half procedure
(see section Model development and generalization testing)
yielded 4203 cases for model building and 4157 for generaliza-
tion. For cases with valid neuroticism assessment, fewer brain
images were available, which yielded 3550 cases for model
building and 3509 for generalization.

Data acquisition

Sociodemographic data (non-imaging) was collected with self-
report measures administered through touchscreen question-
naires, complemented by verbal interviews, physical measures,
biological sampling and imaging data. MRI data were ac-
quired with the Siemens Skyra 3T using a standard Siemens
32-channel RF receiver head coil [73]. We considered three MR
imagingmodalities as each of them potentially captures unique

neurobiological details: structural MRI (sMRI/T1), resting-
state functional MRI (rs-fMRI) and diffusion MRI (dMRI). For
technical details about the MR acquisition parameters, please
refer to [69]. We used image-derived phenotypes (IDPs) of
those distinct brain-imaging modalities, as they provide ac-
tionable summaries of the brain measurements and encourage
comparability across studies.

Target measures
As our target measures for brain age modeling, we use an
individual’s age at baseline recruitment (UKBB code “21022-
0.0”). Fluid intelligence, was assessed using a cognitive bat-
tery designed to measure an individual’s capacity to solve novel
problems that require logic and abstract reasoning. In the UK
Biobank, the fluid intelligence test (UKBB code “20016-2.0”)
comprises thirteen logic and reasoning questions that were ad-
ministered via the touchscreen to record a response within two
minutes for each question. Therefore, each correct answer is
scored as one point with 13 points in total1. Neuroticism (UKBB
code “20127-0.0”) was measured using a shorter version of the
revised Eysenck Personality Questionnaire (EPQ-N) comprised
of 12-items [32]. Neuroticism was assessed during Biobank’s
baseline visit. The summary of the individual’s scores ranges
from 0 to 12 that assess dispositional tendency to experience
negative emotions 2.
In the course of this work, a question that emerged con-

cerned the size of the gap between age at baseline recruit-
ment and MRI-scan time and its potential impact on the anal-
ysis. Supplementary checks indicated that the age gap was
at least 5 years for most participants. Yet, from a statisti-
cal perspective, the two age measures turned out highly inter-
changeable (Figure S2) and global conclusions remained un-
changed (Figure S3).

Sociodemographic data

In this work, we refer to non-imaging variables broadly as so-
ciodemographics excluding the candidate targets fluid intelli-
gence and neuroticism. To approximate latent constructs from
sociodemographics, we included 86 non-imaging inputs (Ta-
ble S7) which are the collection of variables reflecting each
participant’s demographic and social factors i.e., sex, age, date
and month of birth, body mass index, ethnicity, exposures at
early life –e.g. breast feeding, maternal smoking around birth,
adopted as a child– education, lifestyle-related variables –e.g.
occupation, household family income, household people living
at the same place, smoking habits–, and mental-health vari-
ables. All these data were self-reported. We then assigned
these 86 variables to five groups based on their relationships.
Based on our conceptual understanding of the variables, we
name assigned them to one out of five groups: 1) mood & sen-
timent, 2) primary demographics as age, sex, 3) lifestyle, 4)
education, 5) early life. We then investigated the intercorrela-
tion between all 86 variables to ensure that the proposed group-
ing is compatible with their empirical correlation structure Fig-
ure S1.
The sociodemographic groups had varying amounts of miss-

ing data. For e.g. the source of missingness is concerned with
the participants lifestyle habits such as smoking and mental
health issues [74]. To deal with this missingness in the data

1 A complete overview of the 13 individual fluid intelligence items can be
seen from this manual https://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/Fluidintelligence.pdf

2 For a complete list of Neuroticism questionnaires can be seen
from this manual https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
MentalStatesDerivation.pdf

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
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using imputation [75], we used column-wise replacement of
missing information with the median value calculated from the
known part of the variable. We subsequently included an indi-
cator for the presence of imputed for down-stream analysis.
Such imputation is well suited to predictive models [76].

Image processing to derive phenotypes for machine
learning

MRI data preprocessing were carried out by UKBB imaging
team. The full technical details are described elsewhere [69,
73]. Below, we describe briefly the custom processing steps
that we used on top of the already preprocessed inputs.

Structural MRI
This type of data analysis on T1-weighted brain images are
concerned with morphometry of the gray matter areas i.e. the
quantification of size, volume of brain structures and tissue
types and their variations under neuropathologies or behavior
[77]. For example, volume changes in gray matter areas over
lifetime are associated with: brain aging [78], general intel-
ligence [79] and brain disease [80]. Such volumes are calcu-
lated within pre-defined ROIs composed of cortical and sub-
cortical structures [81] and cerebellar regions [82]. We included
157 sMRI features consisting of volume of total brain and grey
matter along with brain subcortical structures3. All these fea-
tures are pre-extracted by UKBB brain imaging team [69] and
are part of data download. We concatenated all inputs along-
side custom-built fMRI features for predictive analysis (feature
union).

Diffusion weighted MRI
Diffusion MRI enables to identify white matter tracts along
principal diffusive direction of water molecules, as well as the
connections between different gray matter areas [83, 84]. The
study of these local anatomical connections through white mat-
ter are relevant to the understanding of neuropathologies and
functional organization [85]. We included 432 dMRI skeleton
features of FA (fractional anisotropy), MO (tensor mode) and
MD (mean diffusivity), ICVF (intra-cellular volume fraction),
ISOVF (isotropic volume fraction) and OD (orientation disper-
sion index) modeled on many brain white matter structures ex-
tracted from neuroanatomy4. For extensive technical details,
please refer to [86]. The skeleton features we included were
from category134 shipped by the UKBB brain-imaging team
and we used them without modification.

Functional MRI
Resting-state functional MR images capture low-frequency
fluctuations in blood oxygenation that can reveal ongoing neu-
ronal interactions in time forming distinct brain networks
[87]. Functional connectivity within these brain network can
be linked to clinical status [88], to behavior [69], or to psy-
chological traits [44]. We also included resting-state connec-
tivity features based on the time-series extracted from Inde-
pendent Component Analysis (ICA) with 55 components repre-
senting various brain networks extracted on UKBB rfMRI data
[69]. These included the default mode network, extended de-
fault mode network and cingulo-opercular network, executive
control and attention network, visual network, and sensorimo-
tor network. We measured functional connectivity in terms

3 Regional grey matter volumes http://biobank.ctsu.ox.ac.uk/crystal/
label.cgi?id=1101 Subcortical volumes http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=1102

4 Diffusion-MRI skeleton measurements http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=134

Table 1. Imaging-based models.

In-
dex

Name # variables # groups

1 brain volumes (sMRI) 157 1
2 white matter (dMRI) 432 1
3 functional connectivity (fMRI) 1485 1
4 sMRI, dMRI 589 2
5 sMRI, fMRI 1642 2
6 dMRI, fMRI 1917 2
7 sMRI, dMRI, fMRI (full MRI) 2074 3

Table 2. Non-imaging baseline models or sociodemographic mod-
els based on single group. Variables in each group are described at
corresponding section sociodemographic data

Index Name # variables

1 Mood & Sentiment (MS) 25
2 Age, Sex (AS) 5
3 Life style (LS) 45
4 Education (EDU) 2
5 Early Life (EL) 9

of the between-network covariance. We estimated the covari-
ance matrices using Ledoit-Wolf shrinkage [89]. To account
for the fact that covariance matrices live on a particular man-
ifold, i.e., a curved non-Euclidean space, we used the tangent-
space embedding to transform the matrices into a Euclidean
space [90, 91] following recent recommendations [92, 93]. For
predictive modeling, we then vectorized the covariance matri-
ces to 1485 features by taking the lower triangular part. These
steps were performed with NiLearn [94].

Comparing predictive models to approximate target
measures

Imaging-based models
First, we focused on purely imaging-based models based on
exhaustive combinations of the three types of MRI modalities
(see Table 1 for an overview). This allowed us to study poten-
tial overlap and complementarity between the MRI-modalities.
Preliminary analyses revealed that combining all MRI data gave
reasonable results with no evident disadvantage over particular
combinations of MRI modalities (Figure 3 – Figure supplement
1), hence, for simplicity, we only focused on the full MRI model
in subsequent analyses.

Sociodemographic models
We composed predictive models based on non-exhaustive com-
binations of different types of sociodemographic variables. To
investigate the relative importance of each class of sociodemo-
graphic inputs, we performed systematic model comparisons.
We were particularly interested in studying the relative contri-
butions of early-life factors as compared to factors related to
more recent life events such as education as well as factors re-
lated to current circumstances such as mood & sentiment and
life-style. The resulting models based on distinct groups of
predictors are listed in Table 2 (for additional details see Ta-
ble S7 and Figure S1).

Combined imaging and sociodemographic models
In the next step, we were interested in how brain-related infor-
mation would interact within each of these sociodemographic
models. For example, information such as the age of an indi-
vidual, or the level of education, may add important contextual
information to brain images. We therefore considered an alter-

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
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Table 3. Random forest hyperparameters and tuning with grid
search (5 fold cross-validation).

Hyperparameter Values

Impurity criterion Mean squared error
Maximum tree depth 5, 10, 20, 40, full depth
Fraction of features for split 1, 5, “log2”, “sqrt”, “complete”
Number of trees 250

Table 4. Number of samples for classification analysis (N).

# groups Age Fluid intelligence Neuroticism

1 1335 1108 1054
2 1200 898 1020

native variant for each of the models in Table 2 that included all
MRI-related features (2074 additional features) as described
at section image processing to derive phenotypes for machine
learning.

Predictive model
Linear models are recommended as default choice in neu-
roimaging research [92, 95] especially when datasets include
fewer than 1000 data points. In this study approximated tar-
gets generated by distinct underlying mechanisms based on
multiple classes of heterogenous input data with several thou-
sands of data points. We hence chose the non-parametric ran-
dom forest algorithm that can be readily applied on data of dif-
ferent units for non-linear regression and classification [96]
with mean squared error as impurity criterion. To improve
computation time we fixed tree-depth to 250 trees, a hyper-
parameter that is not usually not tuned but set to a generous
number as performance plateaus beyond a certain number of
trees [97, ch. 15]. Preliminary analyses suggested that addi-
tional trees would not have led to substantial improvements
in performance. We used nested cross-validation (5-fold grid
search) to tune the depth of the trees as well as the number of
variables considered for splitting (see Table 3 for a full list of
hyper-parameters considered).
Classification analysis. We also performed classification anal-

ysis on the continuous targets. Adapting recommendations
from Gelman and Hill [53], we performed discrete variable
encoding of the targets leading to extreme groups based on
the 33rd and 66th percentiles (see Table 4 for the number of
classification samples per group). This choice avoids includ-
ing samples near the average outcome for which the input
data may be indistinct. We were particularly interested in un-
derstanding whether model performance would increase when
moving toward classifying extreme groups. For this analysis,
we considered all three types of models (full MRI 2074 fea-
tures from imaging-based models, all sociodemographics vari-
ables, total 86 variables see section, combination of full MRI
and all sociodemographics, a total 2160 variables see section
(See section Comparing predictive models to approximate tar-
get measures). When predicting age, we excluded the age & sex
sociodemographic block from all sociodemographic variables
which then yielded a total of 81 variables. To assess the perfor-
mance for classification analysis, we used the area under the
curve (AUC) of the receiver operator characteristic (ROC) as an
evaluation metric [95].

Model development and generalization testing

Before any empirical work, we generated two random parti-
tions of the data, one validation dataset for model construction

and one held-out generalization dataset for studying out-of-
sample associations using classical statistical analyses.
For cross-validation, we then subdivided the validation set

into 100 training- and testing splits following the Monte Carlo
resampling scheme (also referred to as shuffle-split) with 10%
of the data used for testing. To compare model performances
based on paired tests, we used the same splits across all mod-
els. Split-wise testing performance was extracted and car-
ried forward for informal inference using violin plots (Fig-
ure 3,Figure 4). For generalization testing, predictions on the
held-out data were generated from all 100 models from each
cross-validation split.
On the held-out set, unique subject-wise predictions were

obtained by averaging across folds and occasional duplicate
predictions due to Monte Carlo sampling which could produce
multiple predictions per subject5. Such strategy is known as
CV-bagging [98, 99] and can improve both performance and
stability of results6. The resulting averages were reported as
point estimates in Figures 3,4, and 3 – Figure supplement 1
and used as proxy measures in the analysis of health-related
behaviors Figure 2.

Statistical analysis

Resampling statistics for model comparisons on the held-out data
To assess the statistical significance of the observed model per-
formance and the differences in performance between themod-
els, we computed resampling statistics of the performancemet-
rics on the held-out generalization data not used for model
construction [100]. Once unique subject-wise predictions were
obtained on the held-out generalization data by averaging the
predictions emanating from each fold of the validation set (cv-
bagging), we computed null- and bootstrap-distributions of
the observed test statistic on the held-out data, i.e., R2 score
for regression and AUC score for classification.
Baseline comparisons. To obtain a p-value for baseline com-

parisons (could the prediction performance of a given model be ex-
plained by chance?) on the held-out data, we permuted targets
10000 times and then recomputed the test statistic in each iter-
ation. P-values were then defined as the probability of the test
statistic under null distribution being larger than the observed
test statistic. To compute uncertainty intervals, we used boot-
strap, recomputing the test statistic after resampling 10000
times with replacement and reporting the 2.5 and 97.5 per-
centiles of the resulting distribution.
Pairwise comparisons between models. For model compar-

isons, we considered the out-of-sample difference in R2 or AUC
between any two models. To obtain a p-value for model com-
parisons (could the difference in prediction performance between
two given models be explained chance?) on the held-out data,
we permuted the scores predicted by model A and model B for
every single prediction 10000 times and then recomputed the
test statistic in each iteration. We omitted all cases for which
only predictions from one of the models under comparison was
present. P-values were then defined as the probability of the
absolute of the test statistic under null distribution being larger
than the absolute observed test statistic. The absolute was
considered to account for differences in both directions. Un-
certainty intervals were obtained from computing the 2.5 and
97.5 percentiles of the bootstrap distribution based on 10000
iterations. Here, predictions from model A and model B were

5 We ensured prior to computation that with 100 CV-splits, predictions
were available for all subjects.

6 The use of CV-bagging can explain why on figures 3,4, and 3 – Figure
supplement 1 the performance was sometimes slightly better on the held-
out set compared to the cross-validation on the validation test.
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Table 5. Extra health variables used for correlation analysis with subject-specific predicted scores.

Family eid Variables

Alcohol⇤ 1568-0.0 Average weekly red wine intake
1578-0.0 Average weekly champagne plus white wine intake
1588-0.0 Average weekly beer plus cider intake
1598-0.0 Average weekly spirits intake
1608-0.0 Average weekly fortified wine intake
5364-0.0 Average weekly intake of other alcoholic drinks

Physical activity 22040-0.0 Summed MET minutes per week for all activity
Smoking 20161-0.0 Pack years of smoking
Sleep 1160-0.0 Sleep duration

⇤We computed a compound drinking score by summing up all variables from the alcohol family

resampled using identical resampling indices to ensure amean-
ingful paired difference.

Out-of-sample association between proxy measures and health-
related habits

Computation of brain age delta and de-confounding. For associa-
tion with health-contributing habits (Table 5), we computed
the brain age delta as the difference between predicted age and
actual age:

BrainAge� = Agepredicted – Age (1)

As age prediction is rarely perfect, the residuals will still con-
tain age-related variance which commonly leads to brain age
bias when relating the brain age to an outcome of interest,
e.g., sleep duration [101]. To mitigate leakage of age-related
information into the statistical models, we employed a de-
confounding procedure in line with [102] and [11, eqs. 6-8]
consisting in residualizing a measure of interest (e.g. sleep du-
ration) with regard to age through multiple regression with
quadratic terms for age. To minimize computation on the
held-out data, we first trained a model relating the score
of interest to age on the validation set to then derive a de-
confounding predictor for the held-out generalization data.
The resulting de-confounding procedure for variables in the
held-out data amounts to computing an age-residualized pre-
dictor measureresid from the measure of interest (e.g. sleep du-
ration) by applying the following quadratic fit on the validation
data:

measurevalidation = agevalidation ⇥ �val1+

age2validation ⇥ �val2 + ✏
(2)

The de-confounding predictor was then obtained by evaluating
the weights �val1 and �val2 obtained from Equation 2 on the
generalization data:

deconfounder = agegeneralization ⇥ �val1

+age2generalization ⇥ �val2

(3)

We performed this procedure for all target measures, to study
associations not driven by the effect of age. For supplemen-
tary analyses presented in figure Figure 2 – Figure supplement
3, the same procedure was applied, substituting age for fluid
intelligence and neuroticism, respectively.

Health-related habits regression. We then investigated the joint
association between proxy measures of interest and health-
related habits (Table 5) using multiple linear regression. For
simplicity, we combined all brain imaging and all sociodemo-
graphics variables (Figure 3, Figure 3 – Figure supplement
1, Figure 3 – Figure supplement 2). The ensuing model can

be denoted as

measure = deconfounder ⇥ �1 + BrainAge� ⇥ �2

+PredFluidInt⇥ �3 + PredNeurot⇥ �4 + ✏,
(4)

where deconfounder is given by Equation 2. Prior to model fit-
ting, rows with missing inputs were omitted. For comparabil-
ity, we then applied standard scaling on all outcomes and all
predictors.
The parametric bootstrap was a natural choice for uncer-

tainty estimation, as we used standard multiple linear regres-
sion which provides a well defined procedure for mathemati-
cally quantifying its implied probabilistic model. Computation
was carried out using sim function from the arm package as de-
scribed in [53, Ch.7,pp.142-143]. This procedure can be intu-
itively regarded as yielding draws from the posterior distribu-
tion of the multiple linear regression model under the assump-
tion of a uniform prior. For consistency with previous analyses,
we computed 10000 draws.
For supplementary analysis in Figure 2 – Figure supplement

2, the brain-predicted age instead of the delta was used:

measure = deconfounder ⇥ �1 + BrainAge⇥ �2+

PredFluidInt⇥ �3 + PredNeurot⇥ �4 + ✏,
(5)

For supplementary analysis in Figure 2 – Figure supplement
3, additional deconfounders were introduced.

measure = deconfounderage ⇥ �1+

BrainAge⇥ �2 + deconfounderFI ⇥ beta3 + PredFluidInt⇥ �4+

deconfounderN +�5 + PredNeurot⇥ �6 + ✏,
(6)

where deconfounderFI is the deconfounder for fluid intelligence
and deconfounderN the deconfounder for neuroticsm following
the procedure described in Equation 2 and Equation 3.
For supplementary analysis in Figure 2 – Figure supplement

4, proxies and targets were analyzed simultaneously.

measure = Age⇥ �1 + BrainAge⇥ �2 + FluidIntelligence⇥ beta3+

PredFluidInt⇥ �4+

Neuroticism +�5 + PredNeurot⇥ �6 + ✏,
(7)

Software

Preprocessing and model building were carried out using
Python 3.7. The NiLearn library was used for processing
MRI inputs [94]. We used the scikit-learn library for ma-
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chine learning [103]. For statistical modeling and visualiza-
tion we used the R-language [104] (version 3.5.3) and its
ecosystem: data.table for high-performance manipulation of
tabular data, ggplot [105, 106] for visualization and the arm
package for parametric bootstrapping [107]. All data analysis
code is shared on GitHub: https://github.com/KamalakerDadi/
empirical_proxy_measures.

Availability of source code and requirements

• Project name: “empirical_proxy_measures“
• Project home page: e.g. https://github.com/KamalakerDadi/

empirical_proxy_measures
• Operating system(s): e.g. Platform independent
• Programming language: e.g. Python and R
• Other requirements: e.g. Python 3.6.8 or higher, R 3.4.3 or
higher

• License: BSD-3

Availability of supporting data and materials

The data supporting the results and figures of this article
is available in the “empirical_proxy_measures“ repository,
https://github.com/KamalakerDadi/empirical_proxy_measures.
The input data is publicly available via the UK Biobank
http://www.ukbiobank.ac.uk.
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Summary 
We would like to thank the editor and the reviewers for the thoughtful feedback and constructive criticism 
on our work. We have taken the revisions as an important opportunity to improve our manuscript and would 
like to highlight two points that both reviewers and the editor have emphasized: 
 

1. both reviewers had concerns regarding the far-reaching conclusion: the “findings suggested that 
psychological constructs can be approximated from brain images and sociodemographic 
variables.'' Considering these concerns, we added methodological and conceptual clarifications, 
discussed our findings more carefully and revised the general conclusions to express greater 
nuance. 

 
2. both reviewers also pointed out that the phenotype “age / brain age'' is different from the other 

measurements. We conducted multiple control analysis to investigate this point and clarify the 
differences, both, conceptually and statistically. The wealth of results and related discussion points 
are fully reported in the revised manuscript.  

 
This required substantial reanalysis demanding several weeks of computation time and led us to including 
6 new supplementary figures and 2 new supplementary tables. A detailed display of the changes in the 
manuscript is available in the file `diff-with-original-submission.pdf` enclosed with the resubmission. 
 
Please note that, where appropriate, replies are organized by bundles of related concerns, sometimes 
involving concerns raised by both reviewers. 

Reviewer 1 

R1.1 
 
The manuscript describes an application of Machine Learning (ML) models for the quantification of 
psychological constructs, e.g., fluid intelligence and neuroticism, using multi-model MRI data from a large 
population cohort, the UK biobank data. They show that the proxy measures of these psychological 
constructs are more useful compared to the original constructs for characterizing health behaviors. Overall, 
the manuscript is well written. The research questions are clearly stated and are of practical importance. 
However, the reviewer has following concerns. 
 
Reply to R1.1: We thank the reviewer for the positive appreciation of our work.  

R1.2 
 
Major Concerns:   
1) In page 3 (left, lines 3-6 of the main text), the author claims that "Our findings suggested that 
psychological constructs can be approximated from brain images and sociodemographic variables - inputs 
not tailored to specifically measure these constructs.". The reviewer has concerns about this claim. 
Although Figure 3 shows the model's performance in predicting age, fluid intelligence and neuroticism using 

Reply to the Reviewers Click here to access/download;Manuscript;reply-to-the-
reviewers.pdf

https://www.editorialmanager.com/giga/download.aspx?id=116957&guid=ca8c7f4e-42da-4429-b213-5c307962cf69&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=116957&guid=ca8c7f4e-42da-4429-b213-5c307962cf69&scheme=1
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neuroimaging data and different areas of sociodemographic data, the performance of the models in 
predicting the psychological constructs, fluid intelligences and neuroticism, may not be good enough to 
support such a claim. 
 
Reply to R1.2: We thank the reviewer for pointing out the potential ambiguity of the wording. An 
approximation can be understood as an “almost perfect prediction” but also as a “crude guess”. In fact, we 
did not intend to suggest that the approximations are perfect. We have now rephrased the above sentence 
accordingly and, moreover, carefully edited other parts of the main text to help avoid this misunderstanding. 
 
Changes 
 
In abstract (instead of advantage): 
 
 

We observed this complementarity of proxy measures and original measures when modeling from 
brain signals or sociodemographic data, capturing multiple health-related constructs.  

 
In results section title (instead of outperforming): 
 
 Complementing the original measures at characterizing real-life health-related habits 
 
In results section: 
 

Our findings suggested that some information on psychological constructs can be assembled from 
general inputs not specifically tailored to measure these constructs, such as brain images and 
sociodemographic variables. The resulting proxy measures may be regarded as crude 
approximations of the psychological measures, but they can nonetheless capture essential aspects 
of the target constructs. To probe the external validity of the proxy-measures, we investigated their 
link with real-world behavior, e.g., sleep, physical exercise, alcohol and tobacco consumption on 
left-out data. 

R1.3 
 
2) In Figure 2, the proxy measure and original measure show similar associations with the health 
phenotypes for fluid intelligence (center plot) and neuroticism (right plot), but not for the brain age delta. 
The main reason seems to be when doing the association analysis, the measures of the health phenotypes 
are de-confounded for their dependence for age (In the subsection "Out-of-sample association between 
proxy measures and health-related habits" of the "statistical analysis" section). However, it seems the same 
procedure is not applied for the association analysis of fluid intelligence and neuroticism. The estimated 
brain age or brain age gap depends on the age. Thus, we need to either correct the brain age or brain age 
gap for its dependence on the age, or de-confounded the health phenotype's dependence on age. If the 
author wants to derive the proxy measure of the psychological construct in the same as the brain age (or 
biological age), same procedure should be used to correct the proxy measure's dependence on the original 
measure. 
 
AND 
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R1.4 
 
3) Based on Figure 2, the author claims that the proxy measures have enhanced association with health 
behavior compared to the original measures. If we only focus on the central and right part of the Figure 2, 
the difference is not that obvious. We do not know if the difference is significant or not. A better approach 
maybe is that correct the predicted fluid intelligence and predicted fluid intelligence for their dependence 
on the original measures or de-confounded the original measures' effects on the health behaviors. 
 
 
Reply to R1.3-R1.4: We thank the reviewer for giving us the opportunity for clarifying our conceptual view 
and substantially extending the analysis in response to these thoughtful concerns. Note that concerns R2.2-
2.4 by reviewer 2 were highly related. Therefore, the following reply is intended to address the same issue 
raised by both reviewers.  
  

First of all, we believe that the three measures under study are fundamentally distinct and lead to 
different statistical behaviors, which is the reason for which we included them in this study. Age is a metric 
measure, related to physical units on which intervals of the same size express the same distance. A delta 
can thus be a meaningful summary, which, in the case of brain age, has a straight-forward interpretation. 
For the other measures, ordinal or categorical scales apply; the delta is less convincing as a proxy measure 
metric here and may have no meaning.  

 
Rather, in our view, what is important is that the predicted measure contains information -- in the 

widest sense -- beyond the actual measure. Therefore, the popular brain age delta is not necessary here. 
A multivariate analysis linking both chronological age and predicted age to the outcome of interest can 
capture the same information (see new figure-2 supplements 2-4).  On the other hand, when inspecting the 
other proxy measures, we found it important to use an age deconfounder, to confirm that effects were not 
driven by age, as age shows pervasive correlations with nearly any biobehavioral entity. This de-
confounding is important to interpret results as indeed driven by the construct of interest, but associations 
hold without it or when adding specific deconfounders to all proxies, as we show in new analyses below 
(see new figure-2 supplements 3-4). 

These considerations explain why we have initially processed the proxies in different ways (age-
decorrelation for all proxies, delta for brain age only). We understand, however, that rational arguments 
alone may feel unsatisfying from a reader’s perspective. We have taken the opportunity to extend our 
analysis. To probe the robustness of our analysis to these different options we have run several checks 
which we have included in the supplements (described below).  

While implementing these extra checks, we realized that in figure 2B, we had kept the age-
deconfounder active when modeling the link between age and the health descriptors, which was not ideal 
as it may destroy the effect. We have corrected this accordingly and removed the age-deconfounder 
subsequently from the target measure analyses (see corrected figure 2 below). 
 
New figure 2 after removing the age deconfounder for the target measures (lower panel). 
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New Supplementary analyses.  
 
Figure 2 supplement 2: We ran the same analysis for figure 2 using the brain-predicted age as such, not 
the delta as the proxy measure. Outputs are virtually identical.  
 
Figure 2 supplement 3: We then added de-confounders for fluid intelligence and neuroticism and repeated 
the analysis for figure 2. Outputs were highly similar. 
 
Figure 2 supplement 4: To provide a more rigorous comparison between proxies and targets as stimulated 
in R1.4 and assess statistical significance of possible differences between proxies and targets, we have 
composed a big regression model including both the proxies and the targets as predictors. Across health 
outcomes, we found two frequent scenarios: 1) the proxies were found statistically significant, not the actual 
measures, suggesting that the proxies show improved SNR over the actual measures. 2) proxies and actual 
measures were found statistically significant, pointing at true additive effects. The overall picture depended 
on the health outcome. 
 
Table S3: Detailed statistical inferences for the comprehensive proxy-target models are listed in this new 
table. 
 
Table S4: In this context, the intrinsic link between proxies and targets may imply multicollinearity. Too 
much multicollinearity could potentially render the statistical testing procedure invalid. To test for 
multicollinearity we computed variance inflation factors (VIF) across the different models, which intuitively 
quantify how well each predictor can be approximated by a linear combination of the other predictors. The 
VIF is defined as 1 / (1 - R^2_i), where R^2_i is the coefficient of determination for the model that 
approximates the predictor i from all remaining predictors. A VIFs 1-5 counts as low to moderate (see 
extensive review and discussion in O’brien 2007, Quality & Quantity 41, 673-690). The observed VIFs were 
mostly around 1. The highest VIF was found for age and brain age with values around 3, which suggests 
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that age and brain age are linked to the other proxy measures. This is implicitly justifying our previous 
intuition of keeping age-deconfounders for the other proxy measures. More importantly, these control 
analyses suggest that the significance tests are not impacted by multicollinearity, which is also in line with 
reasonable standard errors produced by the big models from S3. 
 
Based on these new analyses, we have updated the results section and have highlighted the theoretical 
considerations regarding asymmetries between the proxy measures. 
 
Changes  
 
In the introduction, the asymmetry has been emphasized: 
 

Extrapolating from these successes, we propose to build upon large datasets to extend the 
collection of health-related proxy measures, probing mental traits. For this end, we focused on 
constructs fundamentally different in terms of content and methodology. 

 
In the main text, result section, a novel paragraph has been added to address the conceptual difference of 
the measures and consequences for the analysis: 
 

The three proxy measures are difficult to compare on an equal footing as a delta was considered 
for brain age only (the difference between predicted and actual age) and aging- specific 
deconfounding was applied. The brain-age delta is indeed the standard practice, theoretically 
justified as age is on a metric scale [50] for which the difference between the predicted and the 
measured value has a clear meaning. Such a difference is less obvious for variables with ordinal 
scales as implied by psychometric measures. Second, age has a pervasive influence on virtually 
any biomedical entity, which motivates controlling for its effect on proxy measures. To rule out that 
differences in proxy measures’ associations to health-related behavior are driven by this 
methodological asymmetry, we repeated the main analysis from Figure 2, first, using the predicted 
age without computing the delta (Figure 2 – Figure supplement 2) and, second, introducing 
additional deconfounders for fluid intelligence and neuroticism (Figure 2 – Figure supplement 3). 
The resulting patterns were virtually unchanged, confirming that interpretations are robust. 

 
 
In the main text, result section, a paragraph on big-picture statistical differences between proxies and 
targets has been generously expanded: 
 

A question that remains is whether the proxy measures bring additional value compared to the 
original target measures they were derived from. These original target measures showed similar 
associations to health behavior, with the same signs in most cases (Figure 2, B). At the same time, 
the ensuing patterns were more noisy, suggesting that empirically derived proxy measures yielded 
enhanced associations with health behavior. This inference may be difficult as differences between 
targets and proxies were not always easy to pinpoint visually. To implement a more rigorous 
statistical approach, we built comprehensive models of each respective health-related habit in 
which we used all proxies (predicted age, predicted fluid intelligence, predicted neuroticism) and 
all targets (age, fluid intelligence, neuroticism) simultaneously as predictors (Figure 2 – Figure 
supplement 4). The results show systematic additive effects of proxies and targets across the three 
target domains and the four health-habits. These trends are well-captured by the hypothesis tests 
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of the respective linear models (Table S3). As targets and proxies may be systematically 
intercorrelated, multicollinearity may corrupt these inferences. Inspection of variance inflation 
factors (VIF)— a measure that reveals how well a given predictor can be approximated by a linear 
combi- nation of the other predictors— argued in favor of low to moderate levels of multicollinearity 
(Table S4). Indeed, all VIF values fell between 3 and 1, whereas, classically, values above 5 or 10 
are considered as thresholds [51] for pathological collinearity. This suggests that the model 
inferences are statistically sound. 
 
 

In the main text, method section, health-related habits regression, a passage has been added describing 
the additional models (see blue highlight in screenshot). 
 

 
 

 
The following items have been added to the supplement: 
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Figure 2 supplement 2: Conditional associations between proxy measures and health-related habits 
without explicit brain age delta. Conditional estimates using multivariate regression. Instead of the brain 
age delta, the brain-predicted age is included alongside an age-deconfounder as used in the main analysis. 
Same visual conventions as in Figure 2. 
 
 

 
Figure 2 supplement 3 Conditional associations between proxy measures and health-related habits with-
proxy-specific deconfounding. Conditional estimates using multivariate regression. Instead of the brain age 
delta, the brain-predicted age is included alongside an age-deconfounder as used in the main analysis. 
Moreover, predicted fluid intelligence and neuroticism are deconfounded for the target values at training 
time, analogous to the brain age predictions. Same visual conventions as in Figure 2. 
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Figure 2 supplement 4 Joint modeling of health-related habits from proxy and target measures. 
Conditional estimates using multivariate regression. Every health-related habit (double rows) is modeled 
simultaneously from multiple proxies and targets. Same visual conventions as in Figure 2. Across health-
habits, additive effects emerged not only for proxies and targets within the same measure (e.g. age) but 
also across measures (e.g. age and fluid intelligence). 
For illustration, we shall consider two examples. Regarding alcohol consumption, age was the most 
important measure and opposite conditional effects were observed for the proxy and the target: Across the 
age range, people with higher brain age tended to drink more and across the brain-age range, older people 
tended to drink less. For smoking, the proxy measures were the most important variables with clear non-
zero coefficients, pointing in different directions across target domains. Holding fluid intelligence and 
neuroticism constant (targets and proxies), people with higher brain age tended to have been smoking for 
a longer time. At the same time, those who scored lower on predicted fluid intelligence across the entire 
range of age, predicted age, measured fluid intelligence, predicted neuroticism and neuroticism, have been 
smoking for a longer time. Finally, those who scored higher on predicted neuroticism tended to smoke more 
across the ranges of all other measures. 
 
Supplementary table 3 
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Supplementary table 4 

 
Minor concerns: 
 

R1.5 
 
1) In page 1 (two lines before reference 15), it seems that "to learn" is mis-spelled into "tolearn". 
 
Reply R1.5: We thank the reviewer for having found this typo. We have corrected it. 
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R1.6 
 
2) The author stated that there are repeated measures for subjects in UK biobank data. How the author 
tackles this issue in their data preprocessing? Using the last one or the first one or something else? 
 
Reply R1.6 We thank reviewers for having raised this concern whose clarification may, indeed, help the 
reader. 

Out of 500 000 participants, only a fraction has visited for repeated assessments. For instance, 10 000 
participants were included in the first brain imaging release (Miller K et al. Nat. Neuroscience 2016; Thomas 
J. Littlejohns et al. Nat. Communications 2020). The visits are categorized as: initial assessment visit, 
repeated initial assessment, imaging visit and soon. These visits are coded as 0, 1, 2 and soon. In this 
paper, we relied mostly on assessments overlapping with imaging visit i.e. variables coded as 2.0 as can 
be seen from Table S5, Appendix 2. 

Some variables used in the analysis display code 0, e.g. for target variables like age (21022-0.0), 
neuroticism (20127-0.0) or external validity variables. The reason for this is that these variables were not 
assessed during the follow up visits. We, therefore, relied on primary visit information. 

Moreover, we explicitly checked that there is no overlap of the subjects between the validation and 
the generalization set.  

Changes To clarify this point, we extended the subsection Participants.  

(...) we found 11175 participants who had repeated assessments overlapping with the first brain 
imaging release. Note that the features (sociodemographic variables) that we included in the 
analysis are measures that are self-reported during a follow-up imaging visit. (...) We made sure 
that the subjects used for model construction and generalization were strictly non-overlapping. 

 
 

R1.7 
 
3) The selection 5,587 out of all the 10,975 subjects for the modeling, while the left part is for the out-of-
sample association analysis. The selection seems arbitrary. Can the author also show a learning curve, in 
which x is the sample size and y is the model's performance, to justify their choice is enough to train an 
accurate ML model? 
 
R1.7 We thank reviewers for allowing us to clarify how we composed the training dataset. 

First, we selected a percentage of training samples based on the random split half method from the scikit-
learn package. As sample size differed across three targets, e.g., fewer brain images available for 
neuroticism prediction (see second paragraph at the subsection Participants) testing the out-of-sample 
associations on 50% of gathered samples was a pragmatic approach for obtaining sufficient data for model 
training and subsequent statistical inference, two complementary and distinct objectives in this 
investigation. Moreover, this is in line with evidence arguing in favor of larger test sets for mitigating 
optimism bias in estimation of out-of-sample performance (Flint et al 2021, Nat. 
Neuropsychopharmacology, Varoquaux et al. 2017, NeuroImage).  
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To explore the implications of our training and testing splits, as suggested in, we computed learning curves 
(displayed below). Across all targets, the results suggest that generalization performance started saturating 
around 1000 training samples, well below the final training samples. Adding more samples should not 
substantially improve generalization performance.  

Changes To clarify this point, we have included a new figure as a supplement to the concept figure 1 and 
extended the method section on participants. 

In the main text, methods, section Participants: 

 
The demographics are $51.6\%$ female (5\,572) and $48.3\%$ male (5\,403) and an age range 
between 40-70 years (with a mean of 55 years and standard deviation of 7.5 years). The data for 
model training were selected using a randomized split-half procedure yielding 5\,587 individuals. 
The remaining subjects were set aside as a held-out set for generalization testing (see section 
Model development and generalization testing). We made sure that the subjects used for model 
training and generalization testing were strictly non-overlapping. Learning curves documented that 
the training split was sufficiently large for constructing stable prediction models (Figure 1 - 
supplement 1) with profiles of performance similar to latest benchmarks on model complexity in the 
UK Biobank (Schulz et al 2020). Moreover, simulations and empirical findings suggest that larger 
testing sets are more effective at mitigating optimistic performance estimates (Flint et al 2021, 
Varoquaux et al. 2017). Together, this provided a pragmatic solution to the inference-prediction 
dilemma (Bzdok et al 2020; Bzdok et al., 2018) given the two objectives of the present investigation 
to obtain reasonably good predictive models, while at the same time performing parameter 
inference of statistical models developed on the left-out data.  

 

Figure 1 supplement 1 Learning curves on the random split-half validation used for model building. To 
facilitate comparisons, we evaluated predictions of age, fluid intelligence and neuroticism from a complete 
set of socio-demographic variables without brain imaging using the coefficient of determination $R^2$ 
metric (y-axis) to compare results obtained from 100 to 3000 training samples (x-axis). The cross-validation 
(CV) distribution was obtained from 100 Monte Carlo splits. Across targets, performance started to plateau 
after around 1000 training samples with scores virtually identical to the final model used in subsequent 
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analyses. These benchmarks suggest that inclusion of additional training samples would not have led to 
substantial improvements in performance. 
 

R1.8 
 
4) In the first paragraph of the "Methods" section, there are duplications. 
 
Reply R1.8: We thank the reviewer for having pointed out the duplications. We have found and removed 
them.  
 

R1.9 
 
5) In the subsection of "Data acquisition" part, under the "target measures" paragraph, the age at the 
baseline recruitment is used as the outcome. However, in general, there is a gap between the age at 
baseline and the age when the MRI images were acquired. Does this matter for the data analysis in this 
manuscript. 
 
Reply R1.9: We thank the reviewer for this thoughtful remark as we had not considered this issue in the 
first place. To investigate this age gap, we computed a distribution of the individual differences between the 
age at recruitment and the age at MRI-scan time. As expected, the difference was strictly positive, meaning 
that the MRI scan was always acquired after the first visit. The individual differences were highly rank-
stable, suggesting that the age variables at recruitment and scan-time were equivalent from a statistical 
perspective. We subsequently fitted the prediction models from the main analysis using age at the time of 
the MRI-scan and directly compared the individual-specific predictions. As hypothesized, they were virtually 
identical. We have now made this point explicit in the main text and added a supplementary figure. 
 
Changes  
 
In methods, data acquisition, target measures: 
 

In the course of this work, a question that emerged concerned the size of the gap between age at 
baseline recruitment and MRI-scan time and its potential impact on the analysis. Supplementary 
checks indicated that the age gap was at least 5 years for most participants. Yet, from a statistical 
perspective, the two age measures turned out highly interchangeable (Figure S2) and global 
conclusions remained unchanged (Figure S3). 
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Figure S2 Investigating the age gap between the first visit and the MRI-visit time point. (A) Individual gap 
between age at first visit and MRI-scan time. MRI scans never happened at the first visit, leading to a strictly 
positive gap greater than five years for most participants. Pearson's correlation coefficient indicates high 
rank stability, suggesting that, from a statistical perspective, age at first visit and age at scan time are, 
essentially, interchangeable. (B) Direct comparison of individual-specific age predictions from brain images 
and sociodemographic data. Same model as in the main analysis (Figure 2). The emerging pattern of 
association summarized by Pearson's correlation coefficient suggests that predictions from models either 
trained on age at the first visit or at MRI-scan time are equivalent.  
 

 
Figure S3 Proxy measures show systematic and complementary out-of-sample associations with health-
related habits using age at MRI-scan time. The patterns observed in Figure 2 and global conclusions 
remain unchanged. 
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R1.10  
 
6) For the classification analysis (paragraph "Classification analysis" in the subsection of "Comparing 
predictive models to approximate target measures", and the paragraph above the "Discussion" section), 
the thresholds selected to discretize the outcome variables are kind of arbitrary. 
 
Reply R1.10: The division into groups follows the practical recommendations by Gelman and Hill 2007 for 
dichotomizing variables. The idea is to avoid having too many cases near the median boundary (where 
differences should be very subtle). We have now explained the idea and referenced Gelman and Hill’s 
book. 
 
Changes  
 
In results, the relative importance of brain and sociodemographic data depends on the target: 

 
To investigate empirically-defined proxy measures beyond continuous regression, we performed 
binary classification of extreme groups obtained from discretizing the targets using the 33rd and 
66th percentiles, following the recommendations by Gelman and Hill (2006) regarding discrete 
variable encoding strategies. 

 
In method section, predictive model, classification analysis: 
 

We also performed classification analysis on the continuous targets. Adapting recommendations 
from Gelman and Hill 2005, we performed discrete variable encoding of the targets leading to 
extreme groups based on the 33rd and 66th percentiles (see 
Table 4) for the number of classification samples per group). This choice avoids including samples 
near the average outcome for which the input data may be indistinct. 

 

Reviewer 2 
 
All in all, this is a scientifically interesting study, but I think the presentation could be improved, by more 
clearly stating the aims of it, and by giving more insight in certain aspects of the 'proxy modeling'.  
 
We thank the reviewer for the positive appreciation of our work and the constructive criticism. In response 
to this concern, we have carefully edited the main text, extended the discussion and taken efforts to make 
our theoretical standpoint more explicit. 
 

R2.1 
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This manuscript reports on the results of a study that can be split into two parts. For this, it should be noted 
that the authors consider three categories of quantities. The first category are the input data, or 'predictors': 
(a) variables derived from MRI scans and (b) rich sociodemographic variables. The second category, or 
'target variables', as the authors call them, include: (a) age, (b) fluid intelligence and (c) neuroticism. In the 
first part of the study, using machine learning, predictive models are built to predict the target variables from 
the input variables. The resulting predictions are called 'proxy measures'. For the second stage, a third 
category of variables is included, the 'real world health behaviours', such as alcohol use and physical 
activity. The authors now set out to predict these measures of behaviour based on the measures of the 
second category, either the 'real ones' or the 'proxies'. Thus, the question is, can alcohol use be better 
predicted by neuroticism determined from a questionnaire, or by the neuroticism proxy derived from MRI 
and sociodemographics? The main results are presented in Figure 2, and the conclusion made by the 
authors is that the proxies perform better than the real measures.The authors carry out additional analyses, 
including the study of the relative importance of MRI and sociodemographics. The authors suggest that 
these proxies may have clinical use in the future. 
At first sight it may seem surprising that proxies perform better then the real measure in capturing the 
associations, but, as the authors mention, the real measures suffer from (measurement) noise and non-
objectivity. However, the proxies are biased (in the sense of being to simple) and are thus less capable of 
modeling the (true) individual variation. I would have expected a more in depth discussion about this.  
 
Reply to R2.1: We thank the reviewer for sharing this thoughtful impression with us. We now realize that 
the current wording of the paper may have led to the impression that we see the proxies as a drop-in-
replacement for the actual targets (see also R1.2 and R1.4). Instead, we propose that the proxies can be 
flexibly used to complement the original measures or act as replacements when the original measures are 
not available.  Of note, in the context of machine learning, biased models often lead to better predictions 
as it can reduce uncertainty as in the classical bias/variance tradeoff.  We have now extended the main 
text to make our perspective clearer to the reader and avoid this kind of misunderstanding and extended 
the discussion to better explain the potential mechanism by which proxy measures function. 
 
Changes 
 
In the discussion: 

 
A more complete view on how the proxy measures capture mental-health constructs emerges from 
their associations with real-world behavior (Figure 2). Indeed, the associations with proxy measures 
(Figure 2 A) were less noisy and more consistent than with the target measures (Figure 2 B), 
regardless of their approximation quality. This may seem surprising at first, but the target measures 
are themselves noisy and of imperfect validity. These measures correspond to traditional tests 
which, in practice, must be interpreted by an expert, actively confronting their output with broader 
information on the individual. For instance, IQ scores are typically normalized across age groups. 
However, extending such a normalization approach to many factors (socio-economic status, 
culture, gender) poses fundamental high-dimensional statistics challenges. Conversely, using 
machine learning to assemble proxy measures by mapping the targets to rich sociodemographic 
and brain data implicitly contextualizes them. In this respect, the resulting measures capture more 
general signal than the original tests. Here, machine learning could be seen as mimicking the work 
of a mental health expert who carefully compares psychometric results with other facts known about 
an individual and its reference population. 
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Conclusion: 
 

In population studies of mental health, individual traits are captured via lengthy assessments, 
tailored to specific brain and psychological constructs. We have shown that proxy measures built 
empirically from general-purpose data can capture these constructs and can improve upon 
traditional measures when studying real-world health patterns. Proxy measures can make 
psychological constructs available to broader, more ecological studies building on large 
epidemiological cohorts or real-world evidence. This can make the difference where psychological 
constructs are central to developing treatment and prevention strategies, but direct measures have 
not been collected. 
 

Related changes reported above in response to R 1.2 
 
In abstract (instead of advantage): 
 
 

We observed this complementarity of proxy measures and original measures when modeling from 
brain signals or sociodemographic data, capturing multiple health-related constructs.  

 
In results section title (instead of outperforming): 
 
 Complementing the original measures at characterizing real-life health-related habits 
 
In results section: 
 

Our findings suggested that some information on psychological constructs can be assembled from 
general inputs not specifically tailored to measure these constructs, such as brain images and 
sociodemographic variables. The resulting proxy measures may be regarded as crude 
approximations of the psychological measures, but they can nonetheless capture essential aspects 
of the target constructs. To probe the external validity of the proxy-measures, we investigated their 
link with real-world behavior, e.g., sleep, physical exercise, alcohol and tobacco consumption on 
left-out data. 

 

R2.2 
 
Apart from this, there is an asymmetry in the way age is treated as compared to the other two target 
variables, intelligence and neuroticism. Age is a very hard measure, without any measurement error, and 
independent of the brain. 
 
AND 
 

R2.3 
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The other two targets, intelligence and neuroticism, are softer measures, and directly related to the brain. 
How does this influence the analyses and the results? 
 
AND 
 

R2.4 
 
Indeed, not 'predicted age' is used as proxy, but 'brain age delta'. I would have liked to see more explanation 
and discussion about this.  
 
Reply to R2.2-2.4: We thank the reviewer for sharing these thoughtful concerns. The reviewer is absolutely 
right that we have treated the target variables differently, as they are fundamentally different in terms of 
data generating mechanisms and measurement scale. The difference between target and proxy, e.g., the 
delta, can make sense where one deals with physical units (e.g. years for time) but may make less sense 
for ordinal or categorical variables (the effective measurement scale for intelligence and neuroticism is less 
clear; it is only clear that there are no physical units). 
 
These points have also been brought up by reviewer 1 and that the reply, the edits on the manuscript and 
the additional analyses in response R1.3-1.4 were explicitly designed to also address concerns R2.2-2.4. 
Moreover, we have revised the main text to make this asymmetry even more explicit, borrowing the 
proposed terminology of hard and soft measures. Finally, we have presented evidence in the main text that 
the proposed framework is flexible enough to handle these intrinsic differences. It turned out that very 
similar results are obtained even when the three measures are not treated asymmetrically but identically. 
 
New Supplementary analyses.  
 
Figure 2 supplement 2: We ran the same analysis for figure 2 using the brain-predicted age as such, not 
the delta as the proxy measure. Outputs are virtually identical.  
 
Figure 2 supplement 3: We then added de-confounders for fluid intelligence and neuroticism and repeated 
the analysis for figure 2. Outputs were highly similar. 
 
Figure 2 supplement 4: To provide a more rigorous comparison between proxies and targets as stimulated 
in R1.4 and assess statistical significance of possible differences between proxies and targets, we have 
composed a big regression model including both the proxies and the targets as predictors. Across health 
outcomes, we found two frequent scenarios: 1) the proxies were found statistically significant, not the actual 
measures, suggesting that the proxies show improved SNR over the actual measures. 2) proxies and actual 
measures were found statistically significant, pointing at true additive effects. The overall picture depended 
on the health outcome. 
 
Table S3: Detailed statistical inferences for the comprehensive proxy-target models are listed in this new 
table. 
 
Table S4: In this context, the intrinsic link between proxies and targets may imply multicollinearity. Too 
much multicollinearity could potentially render the statistical testing procedure invalid. To test for 
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multicollinearity we computed variance inflation factors (VIF) across the different models, which intuitively 
quantify how well each predictor can be approximated by a linear combination of the other predictors. The 
VIF is defined as 1 / (1 - R^2_i), where R^2_i is the coefficient of determination for the model that 
approximates the predictor i from all remaining predictors. A VIFs 1-5 counts as low to moderate (see 
extensive review and discussion in O’brien 2007, Quality & Quantity 41, 673-690). The observed VIFs were 
mostly around 1. The highest VIF was found for age and brain age with values around 3, which suggests 
that age and brain age are linked to the other proxy measures. This is implicitly justifying our previous 
intuition of keeping age-deconfounders for the other proxy measures. More importantly, these control 
analyses suggest that the significance tests are not impacted by multicollinearity, which is also in line with 
reasonable standard errors produced by the big models from S3. 
 
Based on these new analyses, we have updated the results section and have highlighted the theoretical 
considerations regarding asymmetries between the proxy measures. 
 
Related changes reported above in response to reviewer 1  
In the interest of a concise reply, only related changes to the text are reprinted below. For the related figures 
and tables, please consider the reply to points R1.3-1.4 above. 
 
In the introduction, the asymmetry has been emphasized: 
 

Extrapolating from these successes, we propose to build upon large datasets to extend the 
collection of health-related proxy measures, probing mental traits. For this end, we focused on 
constructs fundamentally different in terms of content and methodology. 

 
In the main text, result section, a novel paragraph has been added to address the conceptual asymmetry 
of the measures and consequences for the analysis: 
 

The three proxy measures are difficult to compare on an equal footing as a delta was considered 
for brain age only (the difference between predicted and actual age) and aging-specific 
deconfounding was applied. The brain-age delta is in- deed the standard practice, theoretically 
justified as age is on a metric scale [50] for which the difference between the predicted and the 
measured value has a clear meaning. Such a difference is less obvious for variables with ordinal 
scales as im- plied by psychometric measures. Second, age has a pervasive influence on virtually 
any biomedical entity, which motivates controlling for its effect on proxy measures. To rule out that 
differences in proxy measures’ associations to health-related behavior are driven by this 
methodological asymmetry, we repeated the main analysis from Figure 2, first, using the predicted 
age without computing the delta (Figure 2 – Figure supplement 2) and, second, introducing 
additional deconfounders for fluid intelligence and neuroticism (Figure 2 – Figure supplement 3). 
The resulting patterns were virtually unchanged, confirming that our interpretations are robust. 

 
 
In the main text, result section, a paragraph on big-picture statistical differences between proxies and 
targets has been generously expanded: 
 

A question that remains is whether the proxy measures bring additional value compared to the 
original target measures they were derived from. These original target measures showed similar 
associations to health behavior, with the same signs in most cases (Figure 2, B). At the same time, 
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the ensuing patterns were more noisy, suggesting that empirically derived proxy measures yielded 
enhanced associations with health behavior. This inference may be difficult as differences between 
targets and proxies were not always easy to pinpoint visually. To implement a more rigorous 
statistical approach, we built comprehensive models of each respective health-related habit in 
which we used all proxies (predicted age, predicted fluid intelligence, predicted neuroticism) and 
all targets (age, fluid intelligence, neuroticism) simultaneously as predictors (Figure 2 – Figure 
supplement 4). The results show systematic additive effects of proxies and targets across the three 
target domains and the four health-habits. These trends are well-captured by the hypothesis tests 
of the respective linear models (Table S3). As targets and proxies may be systematically 
intercorrelated, multicollinearity may corrupt these inferences. Inspection of variance inflation 
factors (VIF)— a measure that reveals how well a given predictor can be approximated by a linear 
combination of the other predictors— argued in favor of low to moderate levels of multicollinearity 
(Table S4). Indeed, all VIF values fell between 3 and 1, whereas, classically, values above 5 or 10 
are considered as thresholds [51] for pathological collinearity. This suggests that the model 
inferences are statistically sound. 

 

R2.5  
 
Finally, the suggested clinical use of the proxies is not supported well enough in my opinion. Maybe the 
authors could add more this discussion to this point as well. 
 
We thank the reviewer for this suggestion. We absolutely agree with this impression. Unfortunately, relevant 
clinical data have not been available in the UK-Biobank. At the same time, the focus here is a public health 
perspective targeting individual differences in health, not pathology. We believe that, beyond the exact 
measures studied here, the framework, theory and methods proposed in this work can be readily applied 
with other measures and applied in the clinical setting, which is something that needs to be done in 
forthcoming studies. We have extended the discussion acknowledging this limitation in the dedicated 
section. 
 
Changes  
 
In limitations: 
 

In terms of mental-health research, this study falls short of directly testing the clinical relevance of 
estimated proxy measures. Even in a very large general-population cohort such as the UK Biobank, 
there are only a few hundred diagnosed cases of mental disorders (ICD-10 mental-health 
diagnoses from the F chapter) with brain-imaging data available. As a result, we could not directly 
assess the performance of proxy measures in clinical populations.  
The low number of diagnosed mental disorders in UK Biobank highlights the practical importance 
of studying mental health as a continuous, in addition to diagnosed conditions. Indeed, a public 
health perspective calls for targeting individual differences in health, not only pathology. 
Psychological constructs such as IQ and neuroticism are important factors of the epidemiology of 
psychiatric disorders [38, 30, 29, 67], and accelerated brain aging is associated with various 
neurological conditions [18, 17, 25]. Yet, few cohorts come with extensive neuropsychological 
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testing. Validated proxies of these constructs open the door to including them in epidemiological 
studies as secondary outcomes or additional explanatory variables.” 

 
Related changes reported above in earlier response to related concerns by reviewer 1 
 
In the discussion: 

 
A more complete view on how the proxy measures capture mental-health constructs emerges from 
their associations with real-world behavior (Figure 2). Indeed, the associations with proxy measures 
(Figure 2 B) were less noisy and more consistent then with the target measures (Figure 2 A), 
regardless of their approximation quality. This may seem surprising at first, but the target measures 
are themselves noisy and of imperfect validity. These measures correspond to traditional tests 
which, in practice, must be interpreted by an expert, actively confronting their output with broader 
information on the individual. For instance, IQ scores are typically normalized across age groups. 
Extending such normalization approach to many factors (socio-economic status, culture, gender) 
poses however fundamental challenges of high-dimensional statistics. Conversely, using machine 
learning to assemble proxy measures by mapping the targets to rich sociodemographic and brain 
data implicitly contextualizes them. In this respect, the resulting measure captures more general 
signal than the original tests. Here, machine learning could be seen as mimicking the work of a 
mental health expert who carefully compares psychometric results with other facts known about an 
individual and its reference population. 

 
Conclusion: 
 

In population studies of mental health, individual traits are captured via lengthy assessments, 
tailored to specific brain and psychological constructs. We have shown that proxy measures built 
empirically from general-purpose data can capture these constructs and can improve upon 
traditional measures when studying real-world health patterns. Proxy measures can make 
psychological constructs available to broader more ecological studies building on large 
epidemiological cohorts or real-world evidence. This can make the difference where psychological 
constructs are central to developing treatment and prevention strategies, but direct measures have 
not been collected. 
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Abstract

Background Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. Instead, individual
differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These
constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful
interpretation. Could machine learning on large samples from the general population be used to build proxy measures of
these constructs that do not require human intervention? Results Here, we built proxy measures by applying machine
learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date:
the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful,
and sometimes more useful than the original measures for characterizing real-world health behavior (sleep, exercise,
tobacco, alcohol consumption). We observed this advantage complementarity of proxy measures over the and original
measures when modeling from brain signals or sociodemographic data, capturing multiple health-related constructs.
Conclusions Population modeling with machine learning can derive measures of mental health from brain signals and
questionnaire data, which may replace or complement complement or even substitute for psychometric assessments in
clinical populations.
Key words: Mental Health, Proxy Measures, Machine Learning, Sociodemographic factorsFactors, Brain Imaging

Background

Quantitative measures of mental health remain challenging de-
spite substantial efforts [1]. The field has struggled with un-
stable diagnostic systems [2], small sample sizes [3], and re-
liance on case-control studies [4]. Perhaps most importantly,
mental health cannot be measured the same way diabetes can

be assessed through plasma levels of insulin or glucose. Psy-
chological constructs, e.g., intelligence or anxiety, can only be
probed indirectly through lengthy expert-built questionnaires
or structured examinations by a specialist. Though question-
naires often remain the best accessible option, their capacity
to measure a construct is limited [5]. In practice, as full neu-
ropsychological evaluation is not automated process but relies
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Key Points

• We applied machine learning on more than 10.000 individuals from the general population to define empirical approxima-
tions of health-related psychological measures that do not require human judgment.

• We found that machine-learning enriched the given psychological measures via approximation from brain and sociodemo-
graphic data: Resulting proxy measures related as well or better to real-world health behavior than the original measures.

• Model comparisons showed that sociodemographic information contributed most to characterizing psychological traits
beyond aging.

on expert judgement to confront multiple answers and inter-
pret them in the context of the broader picture, such as cultural
background of the participant. While the field of psychometrics
has thoroughly studied the validity of psychological constructs
and their measure [6, 7, 8], the advent of new biophysical mea-
surements of the brain brings new promises [9, 10, 11]. The
growth of biobanks and advances in machine learning open
the door to large-scale validation of psychological measures
for mental health research [12], and the hope to develop more
generalizable models [13]. Yet, to be reliable, machine learn-
ing needs large labeled datasets [14]. Its application tolearn to
learn imaging biomarkers of mental disorders is limited by the
availability of large cohorts with high-quality neuropsychiatric
diagnosis [15].

By comparison, it is easier to collect data on the general
population without information on clinical conditions. For
brain health, such data has lead to developing proxy measures
that quantifying quantify biological aging [16, 17, 18, 11, 19,
20, 21, 22]. One counterintuitive aspect of the methodology
is that measures of biological aging can be obtained by focus-
ing on the age of a person, which is known in advance and
in itself not interesting. Yet, by predicting the age, machine-
learning can capture the relevant signal. Based on a popula-
tion of brain images, it extracts the best guess for the age of
a person, indirectly positioning that person within the popula-
tion. Individual-specific prediction errors therefore reflect de-
viations from what is statistically expected [23]. The brain of a
person can look similar to the brains commonly seen in older
(or younger) people. The resulting brain-predicted age reflects
physical and cognitive impairment in adults [24, 17, 16] and re-
veals neurodegenerative processes [22, 25]. Can this strategy
of biomarker-like proxy measures be extended to other tar-
gets beyond the construct of aging? Extrapolating from these
successes, we propose to build upon large datasets to extend
the collection of health-related proxymeasures, probing mental
traits. For this end, we focused on constructs fundamentally
different in terms of content and methodology.

One high-stake target is intelligence, which is measured
through socially administered tests and is one of the most ex-
tensively studied constructs in psychology. Fluid intelligence
refers to the putatively culture-free, heritable and physiologi-
cal component of intelligence [26, 27] and is a latent construct
designed to capture individual differences in cognitive capacity.
It has been robustly associated with neuronal maturation and is
typically reflected in cognitive-processing speed and working-
memory capacity [28]. Applied to psychiatric disorders, it may
help characterize psychosis, bipolar disorder, and substance
abuse [29, 30].

Neuroticism is a second promising target. As a key repre-
sentative of the extensively studied Big Five personality inven-
tory, neuroticism has a long-standing tradition in the psychol-
ogy of individual differences [31, 32]. Neuroticism is measured
using self-assessment questionnaires and conceptualized as
capturing dispositional negative emotionality including anxi-
ety and depressiveness [33]. It has been inter-culturally vali-

dated [26, 34] and population-genetics studies have repeatedly
linked neuroticism to shared genes [35, 36, 37]. Neuroticism
was shown useful in psychometric screening and supports pre-
dicting real-world behavior [38, 39].

Despite strong population-level heritability [40, 41], the
link between psychological constructs, brain function and ge-
netics is still being actively researched [42, 33]. Empowered
by emerging large-scale datasets, current attempts to predict
fluid intelligence or neuroticism from thousands of MRI scans
argue in favor of heterogeneity and weakly generalizing ef-
fects [43, 44]. This stands in contrast to the remarkable per-
formance obtained when predicting psychometric data from
language-based inputs captured by Twitter and Facebook user
data [45, 46]. As MRI acquisitions can be difficult to come by in
certain populations, the promises of social-media data are ap-
pealing. However, such data may lead to measurement and se-
lection biases difficult to control. Instead, background sociode-
mographic data may provide an easily accessible alternative for
contextualizing the heterogeneity of psychological traits [47].

Another challenge is that psychological traits are often mea-
sured using arbitrary non-physical units, e.g. education degree
or monthly income. In fact, society treats individual differ-
ences as categorical or continuous, depending on the practical
context. While personality has been proposed to span a con-
tinuum [48], psychiatrists treat certain people as patients and
not others [49]. Therefore, a measure that performs globally
poorly at a continuous scale can be sufficient to distinguish
subgroups as it may be informative around the boundary re-
gion between certain classes, e.g., pilots who should fly and
who should not. Choosing the granularity with which to gauge
psychological constructs is diffcult.

Confronting the promises of population phenotyping with
the challenges of measuring psychological traits raises the fol-
lowing questions: 1) How well can various constructs related
to mental health be approximated from general-purpose in-
puts not designed to measure specific latent constructs? 2) Can
the success of brain age be extended to other proxy measures
capturing complementary facets of mental health? 3) What
is the relative merit of brain imaging and sociodemographics?
We tackled these questions by using machine learning to craft
proxy measures in order to approximate well-characterized tar-
get measures from brain-imaging and sociodemographic data.
We studied age, fluid intelligence, and neuroticism– classical
targets which have beenserving as proxy measures . These tar-
gets have been, traditionally, considered as proxies for men-
tal health in the first placeand are fundamentally different in
terms of scope and nature. Figure 1 summarizes our approach.
Results suggest that, as with brain age, proxy measures can
bring value for the study of mental health that goes beyond
approximating an available measure.

Results: validity of proxy measures
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Figure 1. Methods overview: building and evaluating proxy measures We com-
bined multiple brain-imaging modalities (A) with sociodemographic data (B)
to approximate health-related biomedical and psychological constructs (C), i.e.,
brain age (accessed through prediction of chronological age), cognitive capacity
(accessed through a fluid-intelligence test) and the tendency to report nega-
tive emotions (accessed through a neuroticism questionnaire). We included the
imaging data from the 10 000-subjects release of the UK biobank. Among imag-
ing data (A) we considered features related to cortical and subcortical volumes,
functional connectivity from rfMRI based on ICA networks, and white-matter
molecular tracts from diffusive directions (see Table 1 for an overview about the
multiple brain-imaging modalities). We then grouped the sociodemographic
data (B) into five different blocks of variables related to self-reported mood &
sentiment, primary demographics, lifestyle, education, and early-life events
(Table 2 lists the number of variables in each block). Subsequently, we sys-
tematically compared the approximations of all three targets based on either
brain images and sociodemographics in isolation or combined (C) to evaluate
the relative contribution of these distinct inputs. Models were developed on
50% of the data (randomly drawn) based on random forest regression guided
by Monte Carlo cross-validation with 100 splits (see section Model Develop-
ment and Generalization Testing). We assessed generalization using the other
50% of the data as fully independent out-of-sample evaluations (see section
Statistical Analysis). Learning curves suggested that this split-half approach
provided sufficient data for model construction (Figure 1 – Figure supplement
1).

Outperforming Complementing the original measures
at characterizing real-life health-related habits

To approximate age, fluid intelligence and neuroticism, we ap-
plied random-forest regression on sociodemographic data and
brain images. The data was split into validation data for model
construction (see section Model Development and Generaliza-
tion Testing) and generalization data for statistical inference
on out-of-sample predictions with independent data (see sec-
tion Statistical Analysis). Our findings suggested that some
information on psychological constructs can be approximated
from brain images and sociodemographic variables – inputs
not tailored to specifically assembled from general inputs not
specifically tailored to measure these constructs. We then
applied the derived proxy measureson the , such as brain im-
ages and sociodemographic variables. The resulting proxy mea-
sures may be regarded as crude approximations of the psycho-
logical measures, but they can nonetheless capture essential as-
pects of the target constructs. To probe the external validity of
the proxy measures, we investigated their link with real-world
behavior, e.g., sleep, physical exercise, alcohol and tobacco con-
sumption on left-out datato gauge how well they capture . To
probe the external validity of the proxy-measures, we investi-
gated their link with real-world behavior, e.g., sleep, physical
exercise, alcohol and tobacco consumption on left-out data. To
relate such health behaviors to our proxy measures, we mod-
eled them separately as weighted sums of predicted brain-age
delta, fluid intelligence and neuroticism using multiple linear
regression (section Statistical Analysis). To avoid circularity,
we used the out-of-sample predictions for all proxy measures
(section Model Development and Generalization Testing).

The estimated regression coefficients (partial correlations),
revealed complementary associations between the proxy mea-
sures and health-related behavior (Figure 2). Similar patterns

arise when considering proxy measures in isolation (Figure 2
– Figure supplement 1). Compared to other proxy measures,
elevated brain-age delta was associated with increased alcohol
consumption (Figure 2, first row). Levels of physical exercise
were consistently associated with all three predicted targets,
suggesting additive effects (Figure 2, second row). For fluid in-
telligence, this result, counter-intuitive from the health stand-
point, could imply that higher test scores reveal a more seden-
tary life style. Increased sleep duration consistently went along
with elevated brain age delta, but lower levels of predicted
neuroticism (Figure 2, third row). This may seem counter-
intuitive, but is conditional on neuroticism showing a nega-
tive link with sleep duration. No consistent effect emerged for
fluid intelligence. Numbers of cigarettes smoked was indepen-
dently associated with all predicted targets (Figure 2, last row):
Intensified smoking went along with elevated brain age delta
and neuroticism but lower fluid intelligence.

The question remains three proxy measures are difficult
to compare on an equal footing as a delta was considered for
brain age only (the difference between predicted and actual
age) and aging-specific deconfounding was applied. The brain-
age delta is indeed the standard practice, theoretically justified
as age is on a metric scale [50] for which the difference be-
tween the predicted and the measured value has a clear mean-
ing. Such a difference is less obvious for variables with ordi-
nal scales as implied by psychometric measures. Second, age
has a pervasive influence on virtually any biomedical entity,
which motivates controlling for its effect on proxy measures.
To rule out that differences in proxy measures’ associations
to health-related behavior are driven by this methodological
asymmetry, we repeated the main analysis from Figure 2, first,
using the predicted age without computing the delta (Figure 2
– Figure supplement 2) and, second, introducing additional de-
confounders for fluid intelligence and neuroticism (Figure 2 –
Figure supplement 3). The resulting patterns were virtually
unchanged, confirming that interpretations are robust.

A question that remains is whether the proxy measures
bring additional value compared to the original target mea-
sures they were derived from. These original target measures
showed similar associations to health behavior, often, with the
same signs in most cases (Figure 2, B). HoweverAt the same
time, the ensuing patterns were more noisy, suggesting that
empirically derived proxy measures indeed yield yielded en-
hanced associations with health behavior. This inference may
be difficult as differences between targets and proxies were
not always easy to pinpoint visually. To implement a more
rigorous statistical approach, we built comprehensive models
of each respective health-related habit in which we used all
proxies (predicted age, predicted fluid intelligence, predicted
neuroticism) and all targets (age, fluid intelligence, neuroti-
cism) simultaneously as predictors (Figure 2 – Figure supple-
ment 4). The results show systematic additive effects of prox-
ies and targets across the three target domains and the four
health-habits. These trends are well-captured by the hypoth-
esis tests of the respective linear models (Table S3). As tar-
gets and proxies may be systematically intercorrelated, multi-
collinearity may corrupt these inferences. Inspection of vari-
ance inflation factors (VIF)— a measure that reveals how well
a given predictor can be approximated by a linear combination
of the other predictors— argued in favor of low to moderate
levels of multicollinearity (Table S4). Indeed, all VIF values
fell between 3 and 1, whereas, classically, values above 5 or 10
are considered as thresholds [51] for pathological collinearity.
This suggests that the model inferences are statistically sound.



4 | GigaScience, 20xx, Vol. 0, No. 0

Age Observed NeuroticismObserved Fluid Intelligence

Specific associations for proxy and target measures with health−related habits

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

# Cigarettes smoked
(Pack−Years)

Sleep duration (hours)

Metabolic Equivalent Task
(minutes/week)

# Alcoholic beverages

βproxy ± bootstrap−based uncertainty estimates

A proxy measure

B target measure

Brain Age Delta Predicted Fluid Intelligence Predicted Neuroticism

# Cigarettes smoked
(Pack−Years)

Sleep duration (hours)

Metabolic Equivalent Task
(minutes/week)

# Alcoholic beverages

Figure 2. Proxy measures show systematic and complementary out-of-sample associations with health-related habits. We probed the external validity of all
three proxy measures (brain age, fluid intelligence, neuroticism) based on a combination of brain images and all sociodemographic factors (see Figure 1 and
for details). We investigated their out-of-sample associations with ecological indicators of mental health (sleep duration, time spent with physical exercise,

number of alcoholic beverages and cigarettes consumed). To tease apart complementary and redundant effects, we constructed multiple linear regression models
on out-of-sample predictions combining all three proxy measures (A). For comparison, we repeated the analysis using the actual target measures (B) observed on
the held-out data. Regression models are depicted rows-wise. Box plots summarize the uncertainty distribution of target-specific (color) regression coefficients
with whiskers indicating two-sided 95% uncertainty intervals (parametric bootstrap). Dots illustrate a random subset of 200 out of 10 000 coefficient draws. The
average coefficient estimate is annotated for convenience. At least two distinct patterns emerged: either the health outcome was specifically associated with one
proxy measures (brain age delta and number of alcoholic beverages) or multiple measures showed additive associations with the outcome (e.g. number of pack years
smoked). Finally, For target measures (B)show noisier , associations than proxy with health habits were often noisier or less pronounced compared to the target
measures (A) , though none of the significant associations changed and even a a change in direction was observed for brain age and metabolic activity. Figure 2
– Figure supplement 1 shows highly similar trends with marginal associations between proxy measures and health-related habits. Our results suggest that the
proxy measures capture well health-related habits, potentially better than the original target measures, and in a complementary way across the three measures.
The same patterns emerged as brain-predicted age rather than the brain age delta is used as a proxy measure (Figure 2 – Figure supplement 2). As proxy-specific
deconfounding is applied, this pattern is preserved (Figure 2 – Figure supplement 3). Modeling of health-related habits jointly from proxy and target measures
simultaneously revealed specific complementari. ty between proxy and target measures across multiple domains i.e. age, fluid intelligence, neuroticism (Figure 2
– Figure supplement 4).

The relative importance of brain and sociodemo-
graphic data depends on the target

In a second step, we investigated the relative performance of
proxy measures built from brain signals and distinct sociode-
mographic factors for the three targets: age, fluid intelligence
and neuroticism. Among the sociodemographic variables there
was one block for each target explaining most of the predic-
tion performance (Figure 3, dotted outlines). Combining all
sociodemographic variables did not lead to obvious enhance-
ments (Figure 3 – Figure supplement 2). For age prediction,
variables related to current life-style showed by far the high-
est performance. For fluid intelligence, education performed
by far best. For neuroticism, mood & sentiment clearly showed
the strongest performance.

Combining MRI and sociodemographics, enhanced age pre-
diction systematically on all four blocks of variables (Figure 3
solid outlines, and Table S1). The benefit of brain-imaging fea-
tures was less marked for prediction of fluid intelligence or
neuroticism. With fluid intelligence, brain-imaging data im-
proved the performance statistically significantly for all mod-
els, yet, with small effect sizes (Table S1). For neuroticism,
no systematic benefit of including brain images alongside so-
ciodemographics emerged (Table S1, bottom row). Neverthe-
less, brain data was sufficient for statistically significant ap-
proximation of the target measures in all three targets (Ta-
ble S5).

Psychological measures often come without physical scales
and units [50]. In practice, clinicians and educators use them

with specific thresholds for decision making. To investigate
empirically-defined proxy measures beyond continuous re-
gression, we performed binary classification of extreme groups
obtained from discretizing the targets using the 33rd and 66thpercentiles, following the recommendations by Gelman and
Hill 2006 regarding discrete variable encoding strategies. Fur-
thermore, we measured accuracy with the AUC area under the
classification accuracy curve (AUC) which is only sensitive to
ranking, ignoring the scale of the error. Classification perfor-
mance visibly exceeded the chance level (AUC > 0.5) for all mod-
els (Figure 4) and approached or exceeded levels considered
practically useful (AUC > 0.8) [49]. Across proxy measures,
models including sociodemographics performed best but the
difference between purely sociodemographic and brain-based
models was comparably weak, at the order of 0.01-0.02 AUC
points (Table S2). Using brain data only led to worse perfor-
mance, yet, still better than chance as revealed by permutation
testing (Table S6).

Discussion

Guided by machine learning, we empirically derived proxy mea-
sures that combine multiple sources of information to capture
extensively validated target measures from psychology. These
proxy measures all showed complementary associations with
real-world health indicators beyond the original targets. The
combination of brain imaging and target-specific sociodemo-
graphic inputs often improved approximation performance.
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Figure 3. Approximation performance of proxy measures derived from sociodemographic data and MRI. We report the R2 metric to facilitate comparisons
across prediction targets. The cross-validation (CV) distribution (100 Monte Carlo splits) on the validation dataset is depicted by violins. Drawing style indicates
whether brain imaging (solid outlines of violins) was included in addition or not (dotted outlines of violins). Dots depict the average performance on the validation
data across CV-splits. Pyramids depict the performance of the average prediction (CV-bagging) on held-out generalization datasets. For convenience, the mean
performance on the validation set is annotated for each plot. Vertical dotted lines indicate the average performance of the full MRI model. The validation and
held-out datasets gave similar picture of approximation performance with no evidence for cross-validation bias [52]. For the averaged out-of-sample predictions,
the probability of the observed performance under the null-distribution and the uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S1). Corresponding statistics for the baseline performance of models solely based on brain imaging (vertical dotted
lines) are presented in Table S5. Figure 3 – Figure supplement 1 shows approximation results based on MRI. Figure 3 – Figure supplement 2 presents results
based on all sociodemographic factors.
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Figure 4. Classification analysis from imaging, sociodemographics and com-
bination of both data. For classification of extreme groups instead of contin-
uous regression, we split the data into low vs high groups based on 33rd and
66th percentiles. Visual conventions follow Figure 3. We report the accuracy
in AUC. Models including sociodemographics performed visibly better than
models purely based on brain imaging. Differences between brain-imaging
and sociodemographics appeared less pronounced as compared to the fully-
fledged regression analysis. For the average out-of-sample predictions, the
probability of the observed performance under the null-distribution and the
uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S2). Corresponding statistics for
the baseline performance of models solely based on brain imaging (vertical
dotted lines) are presented in Table S6. Overall, when moving from the more
difficult full-scale regression problem to extreme-group classification prob-
lem with purely ranking-based scores, the relative differences between brain-
based and sociodemographics-based prediction gradually faded away.

Empirically-derived proxy measures: validity and
practical utility

In our study, construct validity [6, 54, 7] of the corresponding
proxy measures was supported by the gain in prediction per-
formance brought by specific sociodemographic factors (Fig-
ure 3). Association with health-relevant habits added exter-
nal validity to the proxy measures (Figure 2). The comple-
mentary patterns related to traditional construct semantics:
High consumption of cigarettes is associated with neuroticism
[55], excessive drinking may lead to brain atrophy and cogni-
tive decline [56] – both common correlates of elevated brain
age [22, 57].

Can our empirically-derived proxy measures, thus, substi-
tute for specific psychometric instruments? A mental-health
professional may still prefer an established routine for clin-
ical assessment, relying on interviews and personality ques-
tionnaires while still applying with implicit experience-based
thresholds. Inclusion of brain imaging may even seem to yield
diminishing returns when approximating high-level psycho-
logical traits. Yet, it could simply be a matter of time until more
effective acquisition protocols will be discovered alongside use-
ful signal representations. Including brain imaging, rather
seems a “safe bet” as machine learning is often capable of se-
lecting relevant inputs [11, 58] and costs of MRI-acquisition
can be amortized by clinical usage. Empirically-derived proxy
measures may open new doors where tailored assessment of
latent constructs is not applicable due to lack of specialized
mental-health workforce or sheer cost.



6 | GigaScience, 20xx, Vol. 0, No. 0

Constructs of mental-health can be accessed from
general-purpose data

Brain age has served as landmark in this study. It has been ar-
guably the most discussed candidate for a surrogate biomarker
in the brain imaging literature [16, 17, 24]. With mean ab-
solute errors around 4 years, up to 67% variance explained,
and AUC-scores up to 0.93 in the classification setting, our
results compare favorably to the recent brain-age literature
within the UK Biobank [19, 59] and in other datasets [22, 11],
though we relied on classical off-the-shelf methods and not
deep learningcustom deep learning methods [60]. Applying the
same approach to psychological constructs (fluid intelligence,
neuroticism), we found that approximation from brain imaging
data or sociodemographic descriptors was generally harder.

It is important to recapitulate that approximation quality
on these differently measured targets has a different meaning.
Age is measured with meaningful physical units (years) on a
ratio scale [50] (Selma is twice as old as Bob). Psychometric
scores are unit-free, which may provoke ambiguity regarding
the level of measurement [54]. Their implied scales may be
considered as interval (the difference between Bob’s and Selma’s
intelligence is -0.1 standard deviations) if not ordinal (Bob’s in-
telligence was ranked below Selma’s) [50]. In day-to-day psy-
chological practice, these scores are often used via practically-
defined thresholds, e.g. school admission or pilot candidate se-
lection [61, 62]. In the classification setting, all proxy measures
approached or exceeded a performance of 0.80 deemed relevant
in biomarker development [49], though to be fair, they approxi-
mated established psychometric targets (proxy measures them-
selves) and not a medical condition. Different proxy measures
should, thus, be subjected to different standards, depending on
the granularity of the implied measurement scale.

The out-of-sample associations of the approximated
constructs with health-related habitsA more complete view
on how the proxy measures capture mental-health constructs
emerges from their associations with real-world behavior (Fig-
ure 2)paint a more complete picture. Compared to the
traditional measures Indeed, the associations with proxy mea-
sures (Figure 2 B) , the associations between proxy measures
and real-world behavior were less noisy and more consistent
then with the target measures (Figure 2 A), regardless of their
approximation quality (A). This may seem surprising at first,
but the target measures are themselves noisy and of imperfect
validity. Our target These measures correspond to traditional
tests which, in practice, must be interpreted by an expert, ac-
tively confronting their output with broader information on
the individual. For instance, IQ scores are typically normal-
ized across age groups. However, extending such a normaliza-
tion approach to many factors (socio-economic status, culture,
gender) poses fundamental high-dimensional statistics chal-
lenges. Conversely, the proxy measures were assembled via us-
ing machine learning to assemble proxy measures by mapping
the targets to rich sociodemographic and brain data , implicitly
contextualizing themand building a less noisy measure in the
processimplicitly contextualizes them. In this sense, respect,
the resulting measures capture more general signal than the
original tests. Here, machine learning could be seen as mim-
icking the work of a mental health expert who carefully com-
pares psychometric results with other facts known about an
individual and its reference population.

The benefits offered by brain data depend on the target
construct

All brain-derived approximations were statistically meaning-
ful. Yet, only for age prediction, imaging data by itself led

to convincing performance. For fluid intelligence and neuroti-
cism, sociodemographic factors were the most important deter-
minants of prediction success. The best-performing sociode-
mographic models were based on inputs semantically close
to these targets, i.e., education details or mood & sentiment.
While those results support construct validity, they may come
with a certain risk of circularity. The causal role of those pre-
dictors is not necessarily clear as better educational attain-
ment is heritable itself [63] and may reinforce existing cog-
nitive abilities. Similarly, prolonged emotional stress due to
life events may exacerbate existing dispositions to experience
negative emotions captured by neuroticism [64], traits which
commonly help accumulate stressful life events [38]. Neverthe-
less, for fluid intelligence but not neuroticism, brain imaging
added incremental value when combined with various sociode-
mographic predictors. This may suggest that the cues for neu-
roticism conveyed by brain imaging were already present in
sociodemographic predictors, hinting at common causes. Off
note, in the specific context of aging, the empirical distinction
between brain age and cognitive age is reflecting a similar in-
tuition [65].

Limitations

Additional constructs and psychometric tools could have been
visited. The broader construct of intelligence is often estimated
using a general factor model with multiple correlated tests.
While this is obviously useful for normative assessments, mea-
sures of fluid intelligence can also serve a situational fitness
signal [30]. There is a wealth of questionnaires for measuring
negative emotionality and neuroticism, specifically. Yet, we
could only study the EPQ scale provided by the UK Biobank. A
complementary approach would be to estimate latent factors by
pooling all non-imaging data semantically related to neuroti-
cism [66]. Here, we considered established target measures
“as is”, instead of derivatives.

It terms of mental-health research, this study falls short of
directly testing the clinical relevance of estimated proxy mea-
sures. Even in a very large general-population cohort such as
the UK Biobank, there are only a few hundred diagnosed cases
of mental disorders (ICD-10 mental-health diagnoses from the
F chapter) with brain-imaging data available. This challenge
As a result, we could not directly assess the performance of
proxy measures in clinical populations. The low number of di-
agnosed mental disorders in UK Biobank highlights the prac-
tical importance of studying mental health as a continuous,
in addition to diagnosed conditions. Indeed, a public health
perspective calls for targeting individual differences in health,
not only pathology. Psychological constructs such as IQ and
neuroticsm are important factors of the epidemiology of psy-
chiatric disorders [38, 30, 29, 67], and accelerated brain aging
is associated with various neurological conditions [18, 17, 25].
Yet, few cohorts come with extensive neuropsychological test-
ing. Validated proxies of these constructs open the door to in-
cluding them in epidemiological studies as secondary outcomes
or additional explanatory variables.

Conclusion: Proxy measures may enhance the
validity of constructs gauging mental health

Empirical proxy measures of brain and mental healthIn pop-
ulation studies of mental health, individual traits are cap-
tured via lengthy assessments, tailored to specific brain and
psychological constructs. We have shown that proxy mea-
sures built empirically from general-purpose data can capture
these constructs and can improve upon traditional measures
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when studying real-world health patterns. Understanding
and improving mental health of populations call for studying
not only patients but also the continuity of psychological
traits in the general population. In addition, Proxy mea-
sures can make psychological constructs available to broader,
more ecological studies building on large epidemiological co-
horts or real-world evidenceis increasingly seen as . This can
make the difference where psychological constructs are cen-
tral to developing treatment and prevention strategies [68]
. This is particularly important in mental health, whose
proper assessments demands considering the full context of
individuals. We believe that developing proxy measures for
constructs that are difficult to assess brings promises to this
mental-health research agenda: Proxy measures can provide
enriched outcomes facilitating the study of mental health and
its underlying factors in a broader and more ecological way, but
direct measures have not been collected.

Methods

To facilitate reproduction, understanding, and reuse, we have
made all data analysis and visualization source code avail-
able on Github: https://github.com/KamalakerDadi/empirical_
proxy_measures.

To facilitate reproduction, understanding, and reuse, we
have made all data analysis and visualization source code
available on Github: .

Dataset

The United Kingdom Biobank (UKBB) database is to date the
most extensive large-scale cohort aimed at studying the deter-
minants of the health outcomes in the general adult population.
The UKBB is openly accessible and has extensive data acquired
on 500 000 individuals aged 40-70 years covering rich pheno-
types, health-related information, brain-imaging and genetic
data [12]. Participants were invited for repeated assessments,
some of which included MR imaging. For instance, cognitive
tests that were administered during an initial assessment were
also assessed during the follow-up visits. This has enabled
finding for many subjects at least one visit containing all het-
erogeneous input data needed to develop the proposed proxy
measures. The study was conducted using the UKBB Resource
Application 23827.

Participants

All participants gave informed consent. The UKBB study was
examined and approved by the North West Multi-centre Re-
search Ethics Committee. We considered participants who have
responded to cognitive tests, questionnaires, and have access
to their primary demographics and brain images [69]. Out of
the total size of UKBB populations, we found 11 175 participants
who had repeated assessments overlapping with the first brain
imaging release [70]. Note that the features (sociodemographic
variables) that we included in the analysis are measures that
are self-reported during a follow-up imaging visit. The demo-
graphics are 51.6% female (5 572) and 48.3% male (5 403), and
an age range between 40-70 years (with a mean of 55 years and
standard deviation of 7.5 years). Out of the complete analysis
set, The data for model training were selected using a random-
ized split-half procedure yielding 5 587 individualswere used
in the study to train the model and . The remaining subjects
were set aside as a held-out set for generalization testing (see
section ). Model development and generalization testing). We
made sure that the subjects used for model training and gen-

eralization testing were strictly non-overlapping.
Learning curves documented that the training split was suf-

ficiently large for constructing stable prediction models Fig-
ure 1 – Figure supplement 1 with profiles of performance
similar to latest benchmarks on model complexity in the UK
Biobank [71]. Moreover, simulations and empirical findings
suggest that larger testing sets are more effective at miti-
gating optimistic performance estimates [72, 52]. Together,
this provided a pragmatic solution to the inference-prediction
dilemma [58, 73] given the two objectives of the present inves-
tigation to obtain reasonably good predictive models, while at
the same time performing parameter inference of statistical
models developed on the left-out data.

To establish specific comparisons between models based on
sociodemographics, brain data or their combinations we exclu-
sively considered the cases for which MRI scans were available.
The final sample sizes used for model construction and gen-
eralization testing then depended on the availability of MRI:
For age and fluid intelligence, our random splitting procedure
(randomized split-half procedure (see section Model develop-
ment and generalization testing) yielded 4203 cases for model
building and 4157 for generalization. For cases with valid neu-
roticism assessment, fewer brain images were available, which
yielded 3550 cases for model building and 3509 for generaliza-
tion.

Data acquisition

Sociodemographic data (non-imaging) was collected with self-
report measures administered through touchscreen question-
naires, complemented by verbal interviews, physical measures,
biological sampling and imaging data. MRI data were ac-
quired with the Siemens Skyra 3T using a standard Siemens
32-channel RF receiver head coil [74]. We considered three MR
imaging modalities as each of them potentially captures unique
neurobiological details: structural MRI (sMRI/T1), resting-
state functional MRI (rs-fMRI) and diffusion MRI (dMRI). For
technical details about the MR acquisition parameters, please
refer to [70]. We used image-derived phenotypes (IDPs) of
those distinct brain-imaging modalities, as they provide ac-
tionable summaries of the brain measurements and encourage
comparability across studies.
Target measures
As our target measures for brain age modeling, we use an
individual’s age at baseline recruitment (UKBB code “21022-
0.0”). Fluid intelligence, was assessed using a cognitive bat-
tery designed to measure an individual’s capacity to solve novel
problems that require logic and abstract reasoning. In the UK
Biobank, the fluid intelligence test (UKBB code “20016-2.0”)
comprises thirteen logic and reasoning questions that were ad-
ministered via the touchscreen to record a response within two
minutes for each question. Therefore, each correct answer is
scored as one point with 13 points in total1. Neuroticism (UKBB
code “20127-0.0”) was measured using a shorter version of the
revised Eysenck Personality Questionnaire (EPQ-N) comprised
of 12-items [32]. Neuroticism was assessed during Biobank’s
baseline visit. The summary of the individual’s scores ranges
from 0 to 12 that assess dispositional tendency to experience
negative emotions 2.

1 A complete overview of the 13 individual fluid intelligence items can be
seen from this manual https://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/Fluidintelligence.pdf

2 For a complete list of Neuroticism questionnaires can be seen
from this manual https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
MentalStatesDerivation.pdf

https://github.com/KamalakerDadi/empirical_proxy_measures
https://github.com/KamalakerDadi/empirical_proxy_measures
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Fluidintelligence.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf
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In the course of this work, a question that emerged con-
cerned the size of the gap between age at baseline recruitment
and MRI-scan time and its potential impact on the analysis.
Supplementary checks indicated that the age gap was at least 5
years for most participants. Yet, from a statistical perspective,
the two age measures turned out highly interchangeable (Fig-
ure S2) and global conclusions remained unchanged (Figure S3).

Sociodemographic data

In this work, we refer to non-imaging variables broadly as so-
ciodemographics excluding the candidate targets fluid intelli-
gence and neuroticism. To approximate latent constructs from
sociodemographics, we included 86 non-imaging inputs (Ta-
ble S7) which are the collection of variables reflecting each
participant’s demographic and social factors i.e., sex, age, date
and month of birth, body mass index, ethnicity, exposures at
early life –e.g. breast feeding, maternal smoking around birth,
adopted as a child– education, lifestyle-related variables –e.g.
occupation, household family income, household people living
at the same place, smoking habits–, and mental-health vari-
ables. All these data were self-reported. We then assigned
these 86 variables to five groups based on their relationships.
Based on our conceptual understanding of the variables, we
name assigned them to one out of five groups: 1) mood & sen-
timent, 2) primary demographics as age, sex, 3) lifestyle, 4)
education, 5) early life. We then investigated the intercorrela-
tion between all 86 variables to ensure that the proposed group-
ing is compatible with their empirical correlation structure Fig-
ure S1.

The sociodemographic groups had varying amounts of miss-
ing data. For e.g. the source of missingness is concerned with
the participants lifestyle habits such as smoking and mental
health issues [75]. To deal with this missingness in the data
using imputation [76], we used column-wise replacement of
missing information with the median value calculated from the
known part of the variable. We subsequently included an indi-
cator for the presence of imputed for down-stream analysis.
Such imputation is well suited to predictive models [77].

Image processing to derive phenotypes for machine
learning

MRI data preprocessing were carried out by UKBB imaging
team. The full technical details are described elsewhere [70,
74]. Below, we describe briefly the custom processing steps
that we used on top of the already preprocessed inputs.
Structural MRI
This type of data analysis on T1-weighted brain images are
concerned with morphometry of the gray matter areas i.e. the
quantification of size, volume of brain structures and tissue
types and their variations under neuropathologies or behavior
[78]. For example, volume changes in gray matter areas over
lifetime are associated with: brain aging [79], general intelli-
gence [80] and brain disease [81]. Such volumes are calculated
within pre-defined ROIs composed of cortical and sub-cortical
structures [82] and cerebellar regions [83]. We included 157
sMRI features consisting of volume of total brain and grey
matter along with brain subcortical structures3. All these fea-
tures are pre-extracted by UKBB brain imaging team [70] and

3 Regional grey matter volumes http://biobank.ctsu.ox.ac.uk/crystal/
label.cgi?id=1101 Subcortical volumes http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=1102

are part of data download. We concatenated all inputs along-
side custom-built fMRI features for predictive analysis (feature
union).
Diffusion weighted MRI
Diffusion MRI enables to identify white matter tracts along
principal diffusive direction of water molecules, as well as the
connections between different gray matter areas [84, 85]. The
study of these local anatomical connections through white mat-
ter are relevant to the understanding of neuropathologies and
functional organization [86]. We included 432 dMRI skeleton
features of FA (fractional anisotropy), MO (tensor mode) and
MD (mean diffusivity), ICVF (intra-cellular volume fraction),
ISOVF (isotropic volume fraction) and OD (orientation disper-
sion index) modeled on many brain white matter structures ex-
tracted from neuroanatomy4. For extensive technical details,
please refer to [87]. The skeleton features we included were
from category134 shipped by the UKBB brain-imaging team
and we used them without modification.
Functional MRI
Resting-state functional MR images capture low-frequency
fluctuations in blood oxygenation that can reveal ongoing neu-
ronal interactions in time forming distinct brain networks
[88]. Functional connectivity within these brain network can
be linked to clinical status [89], to behavior [70], or to psy-
chological traits [44]. We also included resting-state connec-
tivity features based on the time-series extracted from Inde-
pendent Component Analysis (ICA) with 55 components repre-
senting various brain networks extracted on UKBB rfMRI data
[70]. These included the default mode network, extended de-
fault mode network and cingulo-opercular network, executive
control and attention network, visual network, and sensorimo-
tor network. We measured functional connectivity in terms
of the between-network covariance. We estimated the covari-
ance matrices using Ledoit-Wolf shrinkage [90]. To account
for the fact that covariance matrices live on a particular man-
ifold, i.e., a curved non-Euclidean space, we used the tangent-
space embedding to transform the matrices into a Euclidean
space [91, 92] following recent recommendations [93, 94]. For
predictive modeling, we then vectorized the covariance matri-
ces to 1 485 features by taking the lower triangular part. These
steps were performed with NiLearn [95].

Comparing predictive models to approximate target
measures

Imaging-based models
First, we focused on purely imaging-based models based on
exhaustive combinations of the three types of MRI modalities
(see Table 1 for an overview). This allowed us to study poten-
tial overlap and complementarity between the MRI-modalities.
Preliminary analyses revealed that combining all MRI data gave
reasonable results with no evident disadvantage over particular
combinations of MRI modalities (Figure 3 – Figure supplement
1), hence, for simplicity, we only focused on the full MRI model
in subsequent analyses.
Sociodemographic models
We composed predictive models based on non-exhaustive com-
binations of different types of sociodemographic variables. To
investigate the relative importance of each class of sociodemo-
graphic inputs, we performed systematic model comparisons.

4 Diffusion-MRI skeleton measurements http://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=134

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1101
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1102
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=134
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Table 1. Imaging-based models.
In-
dex

Name # variables # groups

1 brain volumes (sMRI) 157 1
2 white matter (dMRI) 432 1
3 functional connectivity (fMRI) 1485 1
4 sMRI, dMRI 589 2
5 sMRI, fMRI 1642 2
6 dMRI, fMRI 1917 2
7 sMRI, dMRI, fMRI (full MRI) 2074 3

Table 2. Non-imaging baseline models or sociodemographic mod-els based on single group. Variables in each group are described atcorresponding section: .sociodemographic data
Index Name # variables
1 Mood & Sentiment (MS) 25
2 Age, Sex (AS) 5
3 Life style (LS) 45
4 Education (EDU) 2
5 Early Life (EL) 9

Table 3. Random forest hyperparameters and tuning with gridsearch (5 fold cross-validation).
Hyperparameter Values
Impurity criterion Mean squared error
Maximum tree depth 5, 10, 20, 40, full depth
Fraction of features for split 1, 5, “log2”, “sqrt”, “complete”
Number of trees 250

We were particularly interested in studying the relative contri-
butions of early-life factors as compared to factors related to
more recent life events such as education as well as factors re-
lated to current circumstances such as mood & sentiment and
life-style. The resulting models based on distinct groups of
predictors are listed in Table 2 (for additional details see Ta-
ble S7 and Figure S1).
Combined imaging and sociodemographic models

In the next step, we were interested in how brain-related infor-
mation would interact within each of these sociodemographic
models. For example, information such as the age of an indi-
vidual, or the level of education, may add important contextual
information to brain images. We therefore considered an alter-
native variant for each of the models in Table 2 that included all
MRI-related features (2 074 additional features) as described
at section image processing to derive phenotypes for machine
learning.
Predictive model

Linear models are recommended as default choice in neu-
roimaging research [93, 96] especially when datasets include
fewer than 1000 data points. In this study approximated tar-
gets generated by distinct underlying mechanisms based on
multiple classes of heterogenous input data with several thou-
sands of data points. We hence chose the non-parametric ran-
dom forest algorithm that can be readily applied on data of dif-
ferent units for non-linear regression and classification [97]
with mean squared error as impurity criterion. To improve
computation time we fixed tree-depth to 250 trees, a hyper-
parameter that is not usually not tuned but set to a generous
number as performance plateaus beyond a certain number of
trees [98, ch. 15]. Preliminary analyses suggested that addi-

Table 4. Number of samples for classification analysis (N).
# groups Age Fluid intelligence Neuroticism
1 1335 1108 1054
2 1200 898 1020

tional trees would not have led to substantial improvements
in performance. We used nested cross-validation (5-fold grid
search) to tune the depth of the trees as well as the number of
variables considered for splitting (see Table 3 for a full list of
hyper-parameters considered).
Classification analysis. We also performed classification

analysis on the continuous targets. For this purpose,
we discretized the targets into Adapting recommendations
from Gelman and Hill [53], we performed discrete variable en-
coding of the targets leading to extreme groups based on the
33rd and 66th percentiles (see Table 4 for the number of classi-
fication samples per group). This choice avoids including sam-
ples near the average outcome for which the input data may
be indistinct. We were particularly interested in understand-
ing whether model performance would increase when moving
toward classifying extreme groups. For this analysis, we con-
sidered all three types of models (full MRI 2074 features from
imaging-based modelssee section , all sociodemographics vari-
ables, total 86 variables see section), combination of full MRI
and all sociodemographics, a total 2160 variables see section
(See section Comparing predictive models to approximate tar-
get measures). When predicting age, we excluded the age & sex
sociodemographic block from all sociodemographic variables
which then yielded a total of 81 variables. To assess the perfor-
mance for classification analysis, we used the area under the
curve (AUC) of the receiver operator characteristic (ROC) as an
evaluation metric [96].

Model development and generalization testing

Before any empirical work, we generated two random parti-
tions of the data, one validation dataset for model construction
and one held-out generalization dataset for studying out-of-
sample associations using classical statistical analyses.

For cross-validation, we then subdivided the validation set
into 100 training- and testing splits following the Monte Carlo
resampling scheme (also referred to as shuffle-split) with 10%
of the data used for testing. To compare model performances
based on paired tests, we used the same splits across all mod-
els. Split-wise testing performance was extracted and car-
ried forward for informal inference using violin plots (Fig-
ure 3,Figure 4). For generalization testing, predictions on the
held-out data were generated from all 100 models from each
cross-validation split.

On the held-out set, unique subject-wise predictions were
obtained by averaging across folds and occasional duplicate pre-
dictions due to Monte Carlo sampling which could produce mul-
tiple predictions per subject5. Such strategy is known as CV-
bagging [99] [99, 100] and can improve both performance and
stability of results6. The resulting averages were reported as
point estimates in Figures 3,4, and 3 – Figure supplement 1
and used as proxy measures in the analysis of health-related
behaviors Figure 2.

5 We ensured prior to computation that with 100 CV-splits, predictions
were available for all subjects.

6 The use of CV-bagging can explain why on figures 3,4, and 3 – Figure
supplement 1 the performance was sometimes slightly better on the held-
out set compared to the cross-validation on the validation test.
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Table 5. Extra health variables used for correlation analysis with subject-specific predicted scores.
Family eid Variables
Alcohol∗ 1568-0.0 Average weekly red wine intake

1578-0.0 Average weekly champagne plus white wine intake
1588-0.0 Average weekly beer plus cider intake
1598-0.0 Average weekly spirits intake
1608-0.0 Average weekly fortified wine intake
5364-0.0 Average weekly intake of other alcoholic drinks

Physical activity 22040-0.0 Summed MET minutes per week for all activity
Smoking 20161-0.0 Pack years of smoking
Sleep 1160-0.0 Sleep duration

∗We computed a compound drinking score by summing up all variables from the alcohol family

Statistical analysis

Resampling statistics for model comparisons on the held-out data

To assess the statistical significance of the observed model per-
formance and the differences in performance between the mod-
els, we computed resampling statistics of the performance met-
rics on the held-out generalization data not used for model
construction [101]. Once unique subject-wise predictions were
obtained on the held-out generalization data by averaging the
predictions emanating from each fold of the validation set (cv-
bagging), we computed null- and bootstrap-distributions of
the observed test statistic on the held-out data, i.e., R2 score
for regression and AUC score for classification.
Baseline comparisons. To obtain a p-value for baseline com-

parisons (could the prediction performance of a given model be ex-
plained by chance?) on the held-out data, we permuted targets
10 000 times and then recomputed the test statistic in each iter-
ation. P-values were then defined as the probability of the test
statistic under null distribution being larger than the observed
test statistic. To compute uncertainty intervals, we used boot-
strap, recomputing the test statistic after resampling 10 000
times with replacement and reporting the 2.5 and 97.5 per-
centiles of the resulting distribution.
Pairwise comparisons between models. For model compar-

isons, we considered the out-of-sample difference in R2 or AUC
between any two models. To obtain a p-value for model com-
parisons (could the difference in prediction performance between
two given models be explained chance?) on the held-out data,
we permuted the scores predicted by model A and model B for
every single prediction 10 000 times and then recomputed the
test statistic in each iteration. We omitted all cases for which
only predictions from one of the models under comparison was
present. P-values were then defined as the probability of the
absolute of the test statistic under null distribution being larger
than the absolute observed test statistic. The absolute was
considered to account for differences in both directions. Un-
certainty intervals were obtained from computing the 2.5 and
97.5 percentiles of the bootstrap distribution based on 10 000
iterations. Here, predictions from model A and model B were
resampled using identical resampling indices to ensure a mean-
ingful paired difference.
Out-of-sample association between proxy measures and health-
related habits

Computation of brain age delta and de-confounding. For associa-
tion with health-contributing habits (Table 5), we computed
the brain age delta as the difference between predicted age and
actual age:

BrainAge∆ = Agepredicted – Age (1)
As age prediction is rarely perfect, the residuals will still con-
tain age-related variance which commonly leads to brain age

bias when relating the brain age to an outcome of interest,
e.g., sleep duration [102]. To mitigate leakage of age-related
information into the statistical models, we employed a de-
confounding procedure in line with [103] and [11, eqs. 6-8]
consisting in residualizing a measure of interest (e.g. sleep du-
ration) with regard to age through multiple regression with
quadratic terms for age. To minimize computation on the
held-out data, we first trained a model relating the score
of interest to age on the validation set to then derive a de-
confounding predictor for the held-out generalization data.
The resulting de-confounding procedure for variables in the
held-out data amounts to computing an age-residualized pre-
dictor measureresid from the measure of interest (e.g. sleep du-
ration) by applying the following quadratic fit on the validation
data:

measurevalidation = agevalidation × βval1+
age2validation × βval2 + ε

(2)

The de-confounding predictor was then obtained by evaluating
the weights βval1 and βval2 obtained from Equation 2 on the
generalization data:

deconfounder = agegeneralization × βval1
+age2generalization × βval2

(3)

We performed this procedure for all target measures, to study
associations not driven by the effect of age. For supplemen-
tary analyses presented in figure Figure 2 – Figure supplement
3, the same procedure was applied, substituting age for fluid
intelligence and neuroticism, respectively.

Health-related habits regression. We then investigated the joint
association between proxy measures of interest and health-
related habits (Table 5) using multiple linear regression. For
simplicity, we combined all brain imaging and all sociodemo-
graphics variables (Figure 3, Figure 3 – Figure supplement
1, Figure 3 – Figure supplement 2). The ensuing model can
be denoted as

measure = deconfounder × β1 + BrainAge∆ × β2
+PredFluidInt× β3 + PredNeurot× β4 + ε, (4)

where outcomeresid deconfounder is given by Equation 2. Prior
to model fitting, rows with missing inputs were omitted. For
comparability, we then applied standard scaling on all out-
comes and all predictors.

The parametric bootstrap was a natural choice for uncer-
tainty estimation, as we used standard multiple linear regres-
sion which provides a well defined procedure for mathemati-
cally quantifying its implied probabilistic model. Computation
was carried out using sim function from the arm package as de-
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scribed in [53, Ch.7,pp.142-143]. This procedure can be intu-
itively regarded as yielding draws from the posterior distribu-
tion of the multiple linear regression model under the assump-
tion of a uniform prior. For consistency with previous analyses,
we computed 10000 draws.

For supplementary analysis in Figure 2 – Figure supplement
2, the brain-predicted age instead of the delta was used:

measure = deconfounder × β1 + BrainAge× β2+
PredFluidInt× β3 + PredNeurot× β4 + ε, (5)

For supplementary analysis in Figure 2 – Figure supplement
3, additional deconfounders were introduced.

measure = deconfounderage × β1+
BrainAge× β2 + deconfounderFI × beta3 + PredFluidInt× β4+

deconfounderN + β5 + PredNeurot× β6 + ε,
(6)

where deconfounderFI is the deconfounder for fluid intelligence
and deconfounderN the deconfounder for neuroticsm following
the procedure described in Equation 2 and Equation 3.

For supplementary analysis in Figure 2 – Figure supplement
4, proxies and targets were analyzed simultaneously.

measure = Age× β1 + BrainAge× β2 + FluidIntelligence× beta3+
PredFluidInt× β4+

Neuroticism + β5 + PredNeurot× β6 + ε,
(7)

Software

Preprocessing and model building were carried out using
Python 3.7. The NiLearn library was used for processing
MRI inputs [95]. We used the scikit-learn library for ma-
chine learning [104]. For statistical modeling and visualiza-
tion we used the R-language [105] (version 3.5.3) and its
ecosystem: data.table for high-performance manipulation of
tabular data, ggplot [106, 107] for visualization and the arm
package for parametric bootstrapping [108]. All data analysis
code is shared on GitHub: https://github.com/KamalakerDadi/
empirical_proxy_measures.

Availability of source code and requirements

• Project name: “empirical_proxy_measures“
• Project home page: e.g. https://github.com/KamalakerDadi/

empirical_proxy_measures
• Operating system(s): e.g. Platform independent
• Programming language: e.g. Python and R
• Other requirements: e.g. Python 3.6.8 or higher, R 3.4.3 or

higher
• License: BSD-3

Availability of supporting data and materials

The data supporting the results and figures of this article
is available in the “empirical_proxy_measures“ repository,
https://github.com/KamalakerDadi/empirical_proxy_measures.
The input data is publicly available via the UK Biobank
http://www.ukbiobank.ac.uk.
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Supporting Information

Appendix 1: Additional results
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Figure 1 – Figure supplement 1. Learning curves on the random split-half validation used for model building. To facilitate comparisons, we evaluated predictions
of age, fluid intelligence and neuroticism from a complete set of socio-demographic variables without brain imaging using the coefficient of determination R2
metric (y-axis) to compare results obtained from 100 to 3000 training samples (x-axis). The cross-validation (CV) distribution was obtained from 100 Monte Carlo
splits. Across targets, performance started to plateau after around 1000 training samples with scores virtually identical to the final model used in subsequent
analyses. These benchmarks suggest that inclusion of additional training samples would not have led to substantial improvements in performance.
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Figure 2 – Figure supplement 1. Marginal associations between proxy measures and health-related habits. Marginal (instead of conditional) estimates using
univariate regression. Same visual conventions as in Figure 2 – Figure supplement 1.
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Figure 2 – Figure supplement 2. Conditional associations between proxy measures and health-related habits without explicit brain age delta. Conditional
estimates using multivariate regression. Instead of the brain age delta, the brain-predicted age is included alongside an age-deconfounder as used in the main
analysis. Same visual conventions as in Figure 2.
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Figure 2 – Figure supplement 3. Conditional associations between proxy measures and health-related habits with-proxy-specific deconfounding. Conditional
estimates using multivariate regression. Instead of the brain age delta, the brain-predicted age is included alongside an age-deconfounder as used in the main
analysis. Moreover, predicted fluid intelligence and neuroticism are deconfounded for the target values at training time, analogous to the brain age predictions.
Same visual conventions as in Figure 2.
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Figure 2 – Figure supplement 4. Joint modeling of health-related habits from proxy and target measures. Conditional estimates using multivariate regression.
Every health-related habit (double rows) is modeled simultaneously from multiple proxies and targets. Same visual conventions as in Figure 2. Across health-
habits, additive effects emerged not only for proxies and targets within the same measure (e.g. age) but also across measures (e.g. age and fluid intelligence). For
illustration, we shall consider two examples. Regarding alcohol consumption, age was the most important measure and opposite conditional effects were observed
for the proxy and the target: Across the age range, people with higher brain age tended to drink more and across the brain-age range, older people tended to drink
less. For smoking, the proxy measures were the most important variables with clear non-zero coefficients, pointing in different directions across target domains.
Holding fluid intelligence and neuroticism constant (targets and proxies), people with higher brain age tended to have been smoking for a longer time. At the
same time, those who scored lower on predicted fluid intelligence across the entire range of age, predicted age, measured fluid intelligence, predicted neuroticism
and neuroticism, have been smoking for a longer time. Finally, those who scored higher on predicted neuroticism tended to smoke more across the ranges of all
other measures.

Table S1. Paired difference between purely sociodemographic and models including brain imaging on held-out data.
Target sociodemographics R2diff p-value CIlow CIhigh
Age Early Life 0.494 0.0001 0.473 0.515
Age Education 0.458 0.0001 0.437 0.479
Age Life style 0.071 0.0001 0.058 0.085
Age Mood & sentiment 0.294 0.0001 0.272 0.315
Fluid intelligence Age, Sex 0.048 0.0001 0.040 0.057
Fluid intelligence Early Life 0.039 0.0001 0.027 0.050
Fluid intelligence Education 0.018 0.0001 0.010 0.025
Fluid intelligence Life style 0.030 0.0001 0.020 0.040
Fluid intelligence Mood & sentiment 0.031 0.0001 0.019 0.043
Neuroticism Age, Sex 0.001 0.6789 –0.006 0.008
Neuroticism Early Life 0.010 0.0697 –0.001 0.021
Neuroticism Education 0.009 0.0817 –0.001 0.020
Neuroticism Life style –0.008 0.1750 –0.020 0.004
Neuroticism Mood & sentiment –0.030 0.0001 –0.041 –0.018

Table S2. Difference statistics for classification on the held-out set for sociodemographic vs combined approximation.
Target AUCdiff observed p-value CIlow CIhigh
Age 0.013 0.0008 0.006 0.021
Fluid intelligence –0.031 0.0001 –0.044 –0.017
Neuroticism –0.003 0.4818 –0.013 0.006



Table S3. Inferential statistics for joint proxy-target models of health-related habits
Outcome

Alcohol Activity Sleep Smoking
predicted Age 0.208∗∗∗ –0.066∗∗ 0.121∗∗∗ 0.200∗∗∗

(0.034) (0.032) (0.029) (0.058)
Age –0.129∗∗∗ 0.105∗∗∗ –0.050∗ –0.008

(0.035) (0.032) (0.030) (0.060)
predicted Fluid Intelligence 0.004 –0.085∗∗∗ 0.016 –0.132∗∗∗

(0.022) (0.021) (0.019) (0.035)
Fluid Intelligrence 0.003 –0.088∗∗∗ –0.038∗∗ 0.018

(0.022) (0.020) (0.019) (0.038)
predicted Neuroticism 0.001 –0.054∗∗ –0.095∗∗∗ 0.151∗∗∗

(0.024) (0.022) (0.020) (0.040)
Neuroticism –0.026 –0.027 –0.006 –0.031

(0.024) (0.022) (0.020) (0.041)
Constant –0.001 0.018 0.017 –0.052

(0.019) (0.018) (0.017) (0.034)

Observations 2,687 3,022 3,504 896
R2 0.016 0.031 0.020 0.071
Adjusted R2 0.014 0.029 0.018 0.064
Residual Std. Error 1.004 (df = 2680) 0.997 (df = 3015) 0.992 (df = 3497) 0.992 (df = 889)
F Statistic 7.334∗∗∗ (df = 6; 2680) 15.854∗∗∗ (df = 6; 3015) 11.733∗∗∗ (df = 6; 3497) 11.256∗∗∗ (df = 6; 889)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S4. Variance Inflation Factors (VIF) for joint proxy-target models of health-related habits
Alcohol Activity Sleep Smoking

predicted Age 3.063 3.149 3.076 3.000
Age 3.108 3.181 3.123 3.070

predicted Fluid Intelligence 1.259 1.254 1.266 1.254
Fluid Intelligrence 1.220 1.223 1.229 1.229

predicted Neuroticism 1.451 1.457 1.460 1.590
Neuroticism 1.434 1.435 1.439 1.552
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Figure 3 – Figure supplement 1. Prediction of individual differences in proxy measures from MRI. Approximation performance using multiple MR modalities
on the validation dataset: sMRI, dMRI, rfMRI and their combinations (see Table 1). Visual conventions as in Figure 3. One can see that prediction of age was
markedly stronger than prediction of fluid intelligence or prediction of neuroticism. As a general trend, models based on multiple MRI modalities tended to yield
better prediction. For simplicity, we based subsequent analyses on the full model based on all MRI data.
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Figure 3 – Figure supplement 2. Approximation performance using all sociodemographic data. Approximation performance using all sociodemographic variables
with or without brain imaging included on the validation dataset. Visual conventions as in Figure 3. The performance was highly related to the best performing
models within each target Figure 3, i.e., life style for age, education for fluid intelligence and mood & sentiment for neuroticism. This suggests that for each target
those specific blocks of predictors were sufficiently explaining the performance. For simplicity, we based subsequent analyses in Figure 4 and Figure 2 on all
sociodemographic variables.

Table S5. Regression statistics on the held-out set for purely MRI-based approximation.
Target R2observed p-value CIlow CIhigh
Age 0.521 1×10–4 0.502 0.538
Fluid intelligence 0.061 1×10–4 0.052 0.070
Neuroticism 0.015 1×10–4 0.005 0.024



Table S6. Classification difference statistics on the held-out set for MRI-based approximation.
Target AUCobserved p-value CIlow CIhigh
Neuroticism 0.590 1×10–4 0.566 0.614
Age 0.916 1×10–4 0.905 0.927
Fluid intelligence 0.667 1×10–4 0.643 0.690



Appendix 2: Sociodemographic variables

Table S7. List of variables contained in each block of sociodemographic models: mood & sentiment (MS), Age, Sex (AS), Education (EDU),Early life (EL).
Group UKBB code Variables
Mood & Sentiment 2040-2.0 Risk taking

4526-2.0 Happiness
4537-2.0 Work/job satisfaction
4548-2.0 Health satisfaction
4559-2.0 Family relationship satisfaction
4570-2.0 Friendships satisfaction
4581-2.0 Financial situation satisfaction
4598-2.0 Ever depressed for a whole week
4609-2.0 Longest period of depression
4620-2.0 Number of depression episodes
4631-2.0 Ever unenthusiastic/disinterested for a whole week
4642-2.0 Ever manic/hyper for 2 days
4653-2.0 Ever highly irritable/argumentative for 2 days
2050-2.0 Frequency of depressed mood in last 2 weeks
2060-2.0 Frequency of unenthusiasm / disinterest in last 2 weeks
2070-2.0 Frequency of tenseness / restlessness in last 2 weeks
2080-2.0 Frequency of tiredness / lethargy in last 2 weeks
2090-2.0 Seen doctor (GP) for nerves, anxiety, tension or depression
2100-1.0 Seen a psychiatrist for nerves, anxiety, tension or depression
5375-2.0 Longest period of unenthusiasm / disinterest
5386-2.0 Number of unenthusiastic/disinterested episodes
5663-2.0 Length of longest manic/irritable episode
5674-2.0 Severity of manic/irritable episode
6145-2.0 Illness, injury, bereavement, stress in last 2 years
6156-2.0 Manic/hyper symptoms

Age, Sex 31-0.0 Sex
34-0.0 Year of birth
52-0.0 Month of birth
21022-0.0 Age at recruitment
21003-2.0 Age when attended assessment centre

Education 6138-2.0 Qualifications
845-2.0 Age completed full time education

Early life

1647-2.0 Country of birth (UK/elsewhere)
1677-2.0 Breastfed as a baby
1687-2.0 Comparative body size at age 10
1697-2.0 Comparative height size at age 10
1707-2.0 Handedness (chirality/laterality)
1767-2.0 Adopted as a child
1777-2.0 Part of a multiple birth
1787-2.0 Maternal smoking around birth

Lifestyle 670-2.0 Type of accommodation lived in
680-2.0 Own or rent accommodation lived in
6139-2.0 Gas or solid-fuel cooking/heating
699-2.0 Length of time at current address
709-2.0 Number in household
6141-2.0 How are people in household related to participant



Table S7 continued

728-2.0 Number of vehicles in household
738-2.0 Income before tax
796-2.0 Distance between home and job workplace
757-2.0 Time employed in main current job
767-2.0 Length of working week for main job
777-2.0 Freq. of travelling from home to job workplace
6143-2.0 Transport type for commuting to job workplace
6142-2.0 Current employment status
806-2.0 Job involves mainly walking or standing
816-2.0 Job involves heavy manual or physical work
826-2.0 Job involves shift work
3426-2.0 Job involves night shift work
1031-2.0 Freq. of friend/ family visits
6160-2.0 Leisure/social activities
2110-2.0 Able to confide
1239-2.0 Current tobacco smoking
1249-2.0 Past tobacco smoking
1259-2.0 Smoking/smokers in household
1269-2.0 Exposure to tobacco smoke at home
1279-2.0 Exposure to tobacco smoke outside home
2644-2.0 Light smokers, at least 100 smokes in lifetime
2867-2.0 Age started smoking in former smokers
2877-2.0 Type of tobacco previously smoked
2887-2.0 Number of cigarettes previously smoked daily
2897-2.0 Age stopped smoking
2907-2.0 Ever stopped smoking for 6+ months
2926-2.0 Number of unsuccessful stop-smoking attempts
2936-2.0 Likelihood of resuming smoking
3436-2.0 Age started smoking in current smokers
3446-2.0 Type of tobacco currently smoked
3456-2.0 Number of cigarettes currently

smoked daily (current cigarette smokers)
3466-2.0 Time from waking to first cigarette
3476-2.0 Difficulty not smoking for 1 day
3486-2.0 Ever tried to stop smoking
3496-2.0 Wants to stop smoking
3506-2.0 Smoking compared to 10 years previous
5959-2.0 Previously smoked cigarettes on most/all days
6157-2.0 Why stopped smoking
6158-2.0 Why reduced smoking



Year of birth
Seen doctor (GP) for nerves, anxiety, tension or depression

Ever depressed for a whole week
Ever unenthusiastic/disinterested for a whole week

Ever highly irritable/argumentative for 2 days
Irritability

Tense/ "highly strung"
Nervous feelings

Suffer from 'nerves'
Guilty feelings

Worry too long after embarassment
Sensitivity/ hurt feelings

Neuroticism score
Worrier/ anxious feelings

Mood swings
Miserableness
Fed-up feelings

Loneliness, isolation
Frequency of tenseness / restlessness in last 2 weeks

Frequency of depressed mood in last 2 weeks
Frequency of unenthusiasm / disinterest in last 2 weeks

Frequency of tiredness / lethargy in last 2 weeks
Health satisfaction

Financial situation satisfaction
Happiness

Family relationship satisfaction
Friendships satisfaction

Number of cigarettes currently smoked daily (current cigarette smokers)
Difficulty not smoking for 1 day

Job involve night shift work
Job involves shift work

Job involves heavy manual or physical work
Job involves mainly walking or standing

Income before tax
Number of vehicles in household

Number in household
Able to confide

Likelihood of resuming smoking
Past tobacco smoking
Why stopped smoking

Number of cigarettes previously smoked daily
Number of unsuccessful stop-smoking attempts

Manic/hyper symptoms
Severity of manic/irritable episode

Length of longest manic/irritable episode
Ever manic/hyper for 2 days

Seen a psychiatrist for nerves, anxiety, tension or depression
Age started smoking in current smokers

Why reduced smoking
Gas or solid-fuel cooking/heating
Smoking/smokers in household

Exposure to tobacco smoke at home
Exposure to tobacco smoke outside home

Maternal smoking around birth
Time employed in main current job
Age completed full time education

Qualifications
Comparitive height size at age 10
Comparitive body size at age 10

Breastfed as a baby
Leisure/social activities
Part of a multiple birth
Adopted as a child

Light smokers, at least 100 smokes in lifetime
Month of birth

Country of birth (UK/elsewhere)
Ethnic background

Handedness (chirality/laterality)
Type of accomodation lived in

Previously smoked cigarettes on most/all days
Age started smoking in former smokers

Type of tobacco previously smoked
Age stopped smoking

Ever stopped smoking for 6+ months
Gender

Risk taking
Distance between home and job workplace

Length of working week for main job
Freq. of travelling from home to job workplace

Freq. of friend/ family visits
Transport type for commuting to job workplace

Own or rent accomodation lived in
Illness, injury, bereavement, stress in last 2 years
How are people in household related to participant

Ever tried to stop smoking
Wants to stop smoking

Type of tobacco currently smoked
Current tobacco smoking

Smoking compared to 10 years previous
Longest period of depression

Longest period of unenthusiasm / disinterest
Number of unenthusiastic/disinterested episodes

Number of depression episodes
Time from waking to first cigarette
Length of time at current address

Current employment status
Work/job satisfaction

Age when attended assessment centre
Age at recruitment
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Figure S1. Intercorrelations between sociodemographic inputs. To check the plausibility of the proposed grouping of variables into blocks, we investigated the
inter-correlations among the sociodemographic inputs (Table S7). We first applied Yeo-Johnson power transform to the variables yield approximately symmetrical
distributions. Then we computed Pearson correlations. One can see that a large majority of variables shows low if any inter-correlations. Strongly inter-correlated
blocks emerged, in particular for Mood & Sentiment and Life Style. Note that within the Life Style category many smaller blocks with strong inter-correlation
occurred, some of which were obviously related to the circumstance of living such as household or employment status.



Appendix 3: Impact of Measurement Time
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Figure S2. Investigating the age gap between the first visit and the MRI-visit time point. (A) Individual gap between age at first visit and MRI-scan time. MRI
scans never happened at the first visit, leading to a strictly positive gap greater than five years for most participants. Pearson’s correlation coefficient indicates
high rank stability, suggesting that, from a statistical perspective, age at first visit and age at scan time are, essentially, interchangeable. (B) Direct comparison
of individual-specific age predictions from brain images and sociodemographic data. Same model as in the main analysis (Figure 2). The emerging pattern of
association summarized by Pearson’s correlation coefficient suggests that predictions from models either trained on age at the first visit or at MRI-scan time are
equivalent.
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Specific associations for proxy and target measures with health−related habits

Figure S3. Proxy measures show systematic and complementary out-of-sample associations with health-related habits using age at MRI-scan time. The
patterns observed in Figure 2 and global conclusions remain unchanged.


