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Abstract

Background Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. Instead, individual
differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These
constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful
interpretation. Could machine learning on large samples from the general population be used to build proxy measures of
these constructs that do not require human intervention? Results Here, we built proxy measures by applying machine
learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date:
the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful,
and sometimes more useful than the original measures for characterizing real-world health behavior (sleep, exercise,
tobacco, alcohol consumption). We observed this complementarity of proxy measures and original measures when
modeling from brain signals or sociodemographic data, capturing multiple health-related constructs. Conclusions
Population modeling with machine learning can derive measures of mental health from brain signals and questionnaire
data, which may complement or even substitute for psychometric assessments in clinical populations.
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Background

Quantitative measures of mental health remain challenging de-
spite substantial efforts [1]. The field has struggled with un-
stable diagnostic systems [2], small sample sizes [3], and re-
liance on case-control studies [4]. Perhaps most importantly,
mental health cannot be measured the same way diabetes can
be assessed through plasma levels of insulin or glucose. Psy-

chological constructs, e.g., intelligence or anxiety, can only be
probed indirectly through lengthy expert-built questionnaires
or structured examinations by a specialist. Though question-
naires often remain the best accessible option, their capacity
to measure a construct is limited [5]. In practice, as full neu-
ropsychological evaluation is not automated process but relies
on expert judgement to confront multiple answers and inter-
pret them in the context of the broader picture, such as cul-
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Key Points

• We applied machine learning on more than 10.000 individuals from the general population to define empirical approxima-
tions of health-related psychological measures that do not require human judgment.

• We found that machine-learning enriched the given psychological measures via approximation from brain and sociodemo-
graphic data: Resulting proxy measures related as well or better to real-world health behavior than the original measures.

• Model comparisons showed that sociodemographic information contributed most to characterizing psychological traits
beyond aging.

tural background of the participant. While the field of psy-
chometrics has thoroughly studied the validity of psycholog-
ical constructs and their measure [6, 7, 8], the advent of new
biophysical measurements of the brain brings new promises
[9, 10, 11]. The growth of biobanks and advances in machine
learning open the door to large-scale validation of psycholog-
ical measures for mental health research [12], and the hope to
develop more generalizable models [13]. Yet, to be reliable, ma-
chine learning needs large labeled datasets [14]. Its application
to learn imaging biomarkers of mental disorders is limited by
the availability of large cohorts with high-quality neuropsychi-
atric diagnosis [15].

By comparison, it is easier to collect data on the general pop-
ulation without information on clinical conditions. For brain
health, such data has lead to developing proxy measures that
quantify biological aging [16, 17, 18, 11, 19, 20, 21, 22]. One
counterintuitive aspect of the methodology is that measures of
biological aging can be obtained by focusing on the age of a
person, which is known in advance and in itself not interest-
ing. Yet, by (imperfectly) predicting the age from brain data,
machine-learning can capture the relevant signal. Based on a
population of brain images, it extracts the best guess for the age
of a person, indirectly positioning that person within the pop-
ulation. Individual-specific prediction errors therefore reflect
deviations fromwhat is statistically expected [23]. The brain of
a person can look similar to the brains commonly seen in older
(or younger) people. The resulting brain-predicted age reflects
physical and cognitive impairment in adults [24, 17, 16] and re-
veals neurodegenerative processes [22, 25]. Can this strategy
of biomarker-like proxy measures be extended to other tar-
gets beyond the construct of aging? Extrapolating from these
successes, we propose to build upon large datasets to extend
the collection of health-related proxymeasures, probing mental
traits. For this end, we focused on constructs fundamentally
different in terms of content and methodology.

One high-stake target is intelligence, which is measured
through socially administered tests and is one of the most ex-
tensively studied constructs in psychology. Fluid intelligence
refers to the putatively culture-free, heritable and physiologi-
cal component of intelligence [26, 27] and is a latent construct
designed to capture individual differences in cognitive capacity.
It has been robustly associated with neuronal maturation and is
typically reflected in cognitive-processing speed and working-
memory capacity [28]. Applied to psychiatric disorders, it may
help characterize psychosis, bipolar disorder, and substance
abuse [29, 30].

Neuroticism is a second promising target. As a key repre-
sentative of the extensively studied Big Five personality inven-
tory, neuroticism has a long-standing tradition in the psychol-
ogy of individual differences [31, 32]. Neuroticism is measured
using self-assessment questionnaires and conceptualized as
capturing dispositional negative emotionality including anxi-
ety and depressiveness [33]. It has been inter-culturally vali-
dated [26, 34] and population-genetics studies have repeatedly
linked neuroticism to shared genes [35, 36, 37]. Neuroticism

was shown useful in psychometric screening and supports pre-
dicting real-world behavior [38, 39].
Despite strong population-level heritability [40, 41], the

link between psychological constructs, brain function and ge-
netics is still being actively researched [42, 33]. Empowered
by emerging large-scale datasets, current attempts to predict
fluid intelligence or neuroticism from thousands of MRI scans
argue in favor of heterogeneity and weakly generalizing ef-
fects [43, 44]. This stands in contrast to the remarkable per-
formance obtained when predicting psychometric data from
language-based inputs captured by Twitter and Facebook user
data [45, 46]. As MRI acquisitions can be difficult to come by in
certain populations, the promises of social-media data are ap-
pealing. However, such data may lead to measurement and se-
lection biases difficult to control. Instead, background sociode-
mographic data may provide an easily accessible alternative for
contextualizing the heterogeneity of psychological traits [47].
Another challenge is that psychological traits are often mea-

sured using arbitrary non-physical units, e.g. education degree
or monthly income. In fact, society treats individual differ-
ences as categorical or continuous, depending on the practical
context. While personality has been proposed to span a con-
tinuum [48], psychiatrists treat certain people as patients and
not others [49]. Therefore, a measure that performs globally
poorly at a continuous scale can be sufficient to distinguish
subgroups as it may be informative around the boundary re-
gion between certain classes, e.g., pilots who should fly and
who should not. Choosing the granularity with which to gauge
psychological constructs is difficult.
Confronting the promises of population phenotyping with

the challenges of measuring psychological traits raises the fol-
lowing questions: 1) Can the success of brain age at charac-
terizing health be extended to other proxy measures directly
targeting mental constructs? 2) How well can various con-
structs related to mental health be approximated from general-
purpose inputs not designed to measure specific latent con-
structs? 3) What is the relative merit of brain imaging and
sociodemographics? We tackled these questions by using ma-
chine learning to craft proxy measures in order to approximate
well-characterized target measures from brain-imaging and so-
ciodemographic data. We studied age, fluid intelligence, and
neuroticism. These targets have been, traditionally, consid-
ered as proxies for mental health and are fundamentally dif-
ferent in terms of scope and nature. Our results suggest that,
as with brain age, proxy measures can bring value for the study
of mental health that goes beyond approximating an available
measure.
The paper is organized as follows: We first present a sum-

mary of the methodology and the workflow of building distinct
proxy measures for age, fluid intelligence and neuroticism us-
ing machine learning (Figure 1). We then benchmark the proxy
and the original target measures against real-world patterns
of health-relevant behavior. Subsequently, through system-
atic model comparisons, we assess the relative contributions of
brain imaging and sociodemographic data for prediction perfor-
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Figure 1. Methods workflow: building and evaluating proxy measures We combined multiple brain-imaging modalities (A) with sociodemographic data (B)
to approximate health-related biomedical and psychological constructs (C), i.e., brain age (accessed through prediction of chronological age), cognitive capacity
(accessed through a fluid-intelligence test) and the tendency to report negative emotions (accessed through a neuroticism questionnaire). We included the imaging
data from the 10 000-subjects release of the UK biobank. Among imaging data (A) we considered features related to cortical and subcortical volumes, functional
connectivity from rfMRI based on ICA networks, and white-matter molecular tracts from diffusive directions (see Table 1 for an overview about the multiple brain-
imaging modalities). We then grouped the sociodemographic data (B) into five different blocks of variables related to self-reported mood & sentiment, primary
demographics, lifestyle, education, and early-life events (Table 2 lists the number of variables in each block). We systematically compared the approximations
of all three targets based on either brain images and sociodemographics in isolation or combined (C) to evaluate the relative contribution of these distinct inputs.
Note that proxy measures can only add to the target measures if they are not identical, i.e., if the approximation of the target from the given inputs is imperfect
(guaranteed in our context as the exact data generating mechanism is unknown and causally important variables remain unobserved). Using the full model
(brain imaging + sociodemographics), we benchmarked complementarity of the proxy measures and the target measures with regard to real-world patterns of
health behavior (D), i.e., the number of alcoholic beverages, exercise (metabolic equivalent task), sleep duration and the number of cigarettes smoked. Potentially
additive effects between proxies and targets were gauged using multiple linear regression. Models were developed on 50% of the data (randomly drawn) based
on random forest regression guided by Monte Carlo cross-validation with 100 splits (see section Model Development and Generalization Testing). We assessed
generalization and health implications using the other 50% of the data as fully independent out-of-sample evaluations (see section Statistical Analysis). Learning
curves suggested that this split-half approach provided sufficient data for model construction (Figure 1 – Figure supplement 1).

mance in the regression and classification settings. The com-
plementarity between the proxy measures is, finally, discussed
in the light of statistical considerations, potential data generat-
ing mechanisms, and applications for public health and clinical
research.

Results: validity of proxy measures

Complementing the original measures at characteriz-
ing real-life health-related habits

To approximate age, fluid intelligence and neuroticism, we ap-
plied random-forest regression on sociodemographic data and
brain images. The data was split into validation data for model
construction (see section Model Development and Generaliza-
tion Testing) and generalization data for statistical inference on
out-of-sample predictions with independent data (see section
Statistical Analysis). Our findings suggested that some infor-
mation on psychological constructs can be assembled from gen-
eral inputs not specifically tailored tomeasure these constructs,
such as brain images and sociodemographic variables. The re-
sulting proxy measures may be regarded as crude approxima-
tions of the psychological measures, but they can nonetheless
capture essential aspects of the target constructs. To probe
the external validity of the proxy measures, we investigated
their link with real-world behavior, e.g., sleep, physical ex-
ercise, alcohol and tobacco consumption on left-out data. To
probe the external validity of the proxy-measures, we investi-
gated their link with real-world behavior, e.g., sleep, physical
exercise, alcohol and tobacco consumption on left-out data. To

relate such health behaviors to our proxy measures, we mod-
eled them separately as weighted sums of predicted brain-age
delta, fluid intelligence and neuroticism using multiple linear
regression (section Statistical Analysis). To avoid circularity,
we used the out-of-sample predictions for all proxy measures
(section Model Development and Generalization Testing).

The estimated regression coefficients (partial correlations),
revealed complementary associations between the proxy mea-
sures and health-related behavior (Figure 2). Similar patterns
arise when considering proxy measures in isolation (Figure 2
– Figure supplement 1). Compared to other proxy measures,
elevated brain-age delta was associated with increased alcohol
consumption (Figure 2, first row). Levels of physical exercise
were consistently associated with all three predicted targets,
suggesting additive effects (Figure 2, second row). For fluid in-
telligence, this result, counter-intuitive from the health stand-
point, could imply that higher test scores reveal a more seden-
tary life style. Increased sleep duration consistently went along
with elevated brain age delta, but lower levels of predicted
neuroticism (Figure 2, third row). This may seem counter-
intuitive, but is conditional on neuroticism showing a nega-
tive link with sleep duration. No consistent effect emerged for
fluid intelligence. Numbers of cigarettes smoked was indepen-
dently associated with all predicted targets (Figure 2, last row):
Intensified smoking went along with elevated brain age delta
and neuroticism but lower fluid intelligence.

The three proxy measures are difficult to compare on an
equal footing as a delta was considered for brain age only
(the difference between predicted and actual age) and aging-
specific deconfounding was applied. The brain-age delta is in-
deed the standard practice, theoretically justified as age is on
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Figure 2. Proxy measures show systematic and complementary out-of-sample associations with health-related habits. We probed the external validity of all
three proxy measures (brain age, fluid intelligence, neuroticism) based on a combination of brain images and all sociodemographic factors (see Figure 1 for
details). We investigated their out-of-sample associations with ecological indicators of mental health (sleep duration, time spent with physical exercise, number
of alcoholic beverages and cigarettes consumed). To tease apart complementary and redundant effects, we constructed multiple linear regression models on
out-of-sample predictions combining all three proxy measures (A). For comparison, we repeated the analysis using the actual target measures (B) observed on
the held-out data. Regression models are depicted rows-wise. Box plots summarize the uncertainty distribution of target-specific (color) regression coefficients
with whiskers indicating two-sided 95% uncertainty intervals (parametric bootstrap). Dots illustrate a random subset of 200 out of 10000 coefficient draws. The
average coefficient estimate is annotated for convenience. At least two distinct patterns emerged: either the health outcome was specifically associated with one
proxy measures (brain age delta and number of alcoholic beverages) or multiple measures showed additive associations with the outcome (e.g. number of pack years
smoked). For target measures (B), associations with health habits were often noisier or less pronounced compared to the target measures (A) and even a a change
in direction was observed for brain age and metabolic activity. Figure 2 – Figure supplement 1 shows highly similar trends with marginal associations between
proxy measures and health-related habits. Our results suggest that the proxy measures capture well health-related habits, potentially better than the original
target measures, and in a complementary way across the three measures. The same patterns emerged as brain-predicted age rather than the brain age delta is
used as a proxy measure (Figure 2 – Figure supplement 2). As proxy-specific deconfounding is applied, this pattern is preserved (Figure 2 – Figure supplement 3).
Modeling of health-related habits jointly from proxy and target measures simultaneously revealed specific complementari. ty between proxy and target measures
across multiple domains i.e. age, fluid intelligence, neuroticism (Figure 2 – Figure supplement 4).

a metric scale [50] for which the difference between the pre-
dicted and the measured value has a clear meaning. Such a
difference is less obvious for variables with ordinal scales as im-
plied by psychometric measures. Second, age has a pervasive
influence on virtually any biomedical entity, which motivates
controlling for its effect on proxy measures. To rule out that
differences in proxy measures’ associations to health-related
behavior are driven by this methodological asymmetry, we re-
peated the main analysis from Figure 2, first, using the pre-
dicted age without computing the delta (Figure 2 – Figure sup-
plement 2) and, second, introducing additional deconfounders
for fluid intelligence and neuroticism (Figure 2 – Figure sup-
plement 3). The resulting patterns were virtually unchanged,
confirming that interpretations are robust.

A question that remains is whether the proxy measures
bring additional value compared to the original target mea-
sures they were derived from. These original target measures
showed similar associations to health behavior, with the same
signs in most cases (Figure 2, B). At the same time, the ensuing
patterns were more noisy, suggesting that empirically derived
proxy measures yielded enhanced associations with health be-
havior. This inference may be difficult as differences between
targets and proxies were not always easy to pinpoint visually.
To implement a more rigorous statistical approach, we built
comprehensive models of each respective health-related habit
in which we used all proxies (predicted age, predicted fluid in-
telligence, predicted neuroticism) and all targets (age, fluid in-
telligence, neuroticism) simultaneously as predictors (Figure 2
– Figure supplement 4). The results show systematic additive
effects of proxies and targets across the three target domains

and the four health-habits. These trends are well-captured by
the hypothesis tests of the respective linear models (Table S3).
As targets and proxies may be systematically intercorrelated,
multicollinearity may corrupt these inferences. Inspection of
variance inflation factors (VIF)— a measure that reveals how
well a given predictor can be approximated by a linear combina-
tion of the other predictors— argued in favor of low to moder-
ate levels of multicollinearity (Table S4). Indeed, all VIF values
fell between 3 and 1, whereas, classically, values above 5 or 10
are considered as thresholds [51] for pathological collinearity.
This suggests that the model inferences are statistically sound.

The relative importance of brain and sociodemo-
graphic data depends on the target

In a second step, we investigated the relative performance of
proxy measures built from brain signals and distinct sociode-
mographic factors for the three targets: age, fluid intelligence
and neuroticism. Among the sociodemographic variables there
was one block for each target explaining most of the predic-
tion performance (Figure 3, dotted outlines). Combining all
sociodemographic variables did not lead to obvious enhance-
ments (Figure 3 – Figure supplement 2). For age prediction,
variables related to current life-style showed by far the high-
est performance. For fluid intelligence, education performed
by far best. For neuroticism, mood & sentiment clearly showed
the strongest performance.

Combining MRI and sociodemographics, enhanced age pre-
diction systematically on all four blocks of variables (Figure 3
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Figure 3. Approximation performance of proxy measures derived from sociodemographic data and MRI. We report the R2 metric to facilitate comparisons
across prediction targets. The cross-validation (CV) distribution (100 Monte Carlo splits) on the validation dataset is depicted by violins. Drawing style indicates
whether brain imaging (solid outlines of violins) was included in addition or not (dotted outlines of violins). Dots depict the average performance on the validation
data across CV-splits. Pyramids depict the performance of the average prediction (CV-bagging) on held-out generalization datasets. For convenience, the mean
performance on the validation set is annotated for each plot. Vertical dotted lines indicate the average performance of the full MRI model. The validation and
held-out datasets gave similar picture of approximation performance with no evidence for cross-validation bias [52]. For the averaged out-of-sample predictions,
the probability of the observed performance under the null-distribution and the uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S1). Corresponding statistics for the baseline performance of models solely based on brain imaging (vertical dotted
lines) are presented in Table S5. Figure 3 – Figure supplement 1 shows approximation results based on MRI. Figure 3 – Figure supplement 2 presents results
based on all sociodemographic factors.

solid outlines, and Table S1). The benefit of brain-imaging fea-
tures was less marked for prediction of fluid intelligence or
neuroticism. With fluid intelligence, brain-imaging data im-
proved the performance statistically significantly for all mod-
els, yet, with small effect sizes (Table S1). For neuroticism,
no systematic benefit of including brain images alongside so-
ciodemographics emerged (Table S1, bottom row). Neverthe-
less, brain data was sufficient for statistically significant ap-
proximation of the target measures in all three targets (Ta-
ble S5).

Psychological measures often come without physical scales
and units [50]. In practice, clinicians and educators use them
with specific thresholds for decision making. To investigate
empirically-defined proxy measures beyond continuous re-
gression, we performed binary classification of extreme groups
obtained from discretizing the targets using the 33rd and 66th
percentiles, following the recommendations by Gelman and
Hill 2006 regarding discrete variable encoding strategies. Fur-
thermore, we measured accuracy with the area under the clas-
sification accuracy curve (AUC) which is only sensitive to rank-
ing, ignoring the scale of the error. Classification performance
visibly exceeded the chance level (AUC > 0.5) for all models
(Figure 4) and approached or exceeded levels considered prac-
tically useful (AUC > 0.8) [49]. Across proxy measures, models
including sociodemographics performed best but the difference
between purely sociodemographic and brain-basedmodels was
comparably weak, at the order of 0.01-0.02 AUC points (Ta-
ble S2). Using brain data only led to worse performance, yet,
still better than chance as revealed by permutation testing (Ta-
ble S6).
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Figure 4. Classification analysis from imaging, sociodemographics and com-
bination of both data. For classification of extreme groups instead of contin-
uous regression, we split the data into low vs high groups based on 33rd and
66th percentiles. Visual conventions follow Figure 3. We report the accuracy
in AUC. Models including sociodemographics performed visibly better than
models purely based on brain imaging. Differences between brain-imaging
and sociodemographics appeared less pronounced as compared to the fully-
fledged regression analysis. For the average out-of-sample predictions, the
probability of the observed performance under the null-distribution and the
uncertainty of effect sizes were formally probed using permutation tests and
bootstrap-based confidence intervals (Table S2). Corresponding statistics for
the baseline performance of models solely based on brain imaging (vertical
dotted lines) are presented in Table S6. Overall, when moving from the more
difficult full-scale regression problem to extreme-group classification prob-
lem with purely ranking-based scores, the relative differences between brain-
based and sociodemographics-based prediction gradually faded away.

Discussion

Guided bymachine learning, we empirically derived proxymea-
sures that combine multiple sources of information to capture
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extensively validated target measures from psychology. These
proxy measures all showed complementary associations with
real-world health indicators beyond the original targets. The
combination of brain imaging and target-specific sociodemo-
graphic inputs often improved approximation performance.

Empirically-derived proxy measures: validity and
practical utility

In our study, construct validity [6, 54, 7] of the corresponding
proxy measures was supported by the gain in prediction per-
formance brought by specific sociodemographic factors (Fig-
ure 3). Association with health-relevant habits added exter-
nal validity to the proxy measures (Figure 2). The comple-
mentary patterns related to traditional construct semantics:
High consumption of cigarettes is associated with neuroticism
[55], excessive drinking may lead to brain atrophy and cogni-
tive decline [56] – both common correlates of elevated brain
age [22, 57].
Can our empirically-derived proxy measures, thus, substi-

tute for specific psychometric instruments? A mental-health
professional may still prefer an established routine for clin-
ical assessment, relying on interviews and personality ques-
tionnaires with implicit experience-based thresholds. Inclu-
sion of brain imaging may even seem to yield diminishing re-
turns when approximating high-level psychological traits. Yet,
it could simply be a matter of time until more effective acquisi-
tion protocols will be discovered alongside useful signal repre-
sentations. Including brain imaging, rather seems a “safe bet”
as machine learning is often capable of selecting relevant in-
puts [11, 58] and costs of MRI-acquisition can be amortized by
clinical usage. Empirically-derived proxy measures may open
new doors where tailored assessment of latent constructs is not
applicable due to lack of specialized mental-health workforce
or sheer cost.

Constructs of mental-health can be accessed from
general-purpose data

Brain age has served as landmark in this study. It has been ar-
guably the most discussed candidate for a surrogate biomarker
in the brain imaging literature [16, 17, 24]. With mean abso-
lute errors around 4 years, up to 67% variance explained, and
AUC-scores up to 0.93 in the classification setting, our results
compare favorably to the recent brain-age literature within the
UK Biobank [19, 59] and in other datasets [22, 11], though we
relied on off-the-shelf methods and not custom deep learn-
ing methods [60]. Applying the same approach to psychologi-
cal constructs (fluid intelligence, neuroticism), we found that
approximation from brain imaging data or sociodemographic
descriptors was generally harder.
It is important to recapitulate that approximation quality

on these differently measured targets has a different meaning.
Age is measured with meaningful physical units (years) on a
ratio scale [50] (Selma is twice as old as Bob). Psychometric
scores are unit-free, which may provoke ambiguity regarding
the level of measurement [54]. Their implied scales may be
considered as interval (the difference between Bob’s and Selma’s
intelligence is -0.1 standard deviations) if not ordinal (Bob’s in-
telligence was ranked below Selma’s) [50]. In day-to-day psy-
chological practice, these scores are often used via practically-
defined thresholds, e.g. school admission or pilot candidate se-
lection [61, 62]. In the classification setting, all proxymeasures
approached or exceeded a performance of 0.80 deemed relevant
in biomarker development [49], though to be fair, they approxi-
mated established psychometric targets (proxymeasures them-
selves) and not a medical condition. Different proxy measures

should, thus, be subjected to different standards, depending on
the granularity of the implied measurement scale.
A more complete view on how the proxy measures cap-

ture mental-health constructs emerges from their associations
with real-world behavior (Figure 2). Indeed, the associations
with proxy measures (Figure 2 B) were less noisy and more
consistent then with the target measures (Figure 2 A), regard-
less of their approximation quality. This may seem surprising
at first, but the target measures are themselves noisy and of
imperfect validity. These measures correspond to traditional
tests which, in practice, must be interpreted by an expert, ac-
tively confronting their output with broader information on
the individual. For instance, IQ scores are typically normal-
ized across age groups. However, extending such a normaliza-
tion approach to many factors (socio-economic status, culture,
gender) poses fundamental high-dimensional statistics chal-
lenges. Conversely, using machine learning to assemble proxy
measures by mapping the targets to rich sociodemographic and
brain data implicitly contextualizes them. In this respect, the
resulting measures capture more general signal than the orig-
inal tests. Here, machine learning could be seen as mimicking
the work of a mental health expert who carefully compares psy-
chometric results with other facts known about an individual
and its reference population.

The benefits offered by brain data depend on the target
construct

All brain-derived approximations were statistically meaning-
ful. Yet, only for age prediction, imaging data by itself led
to convincing performance. For fluid intelligence and neuroti-
cism, sociodemographic factors were themost important deter-
minants of prediction success. The best-performing sociode-
mographic models were based on inputs semantically close
to these targets, i.e., education details or mood & sentiment.
While those results support construct validity, they may come
with a certain risk of circularity. The causal role of those pre-
dictors is not necessarily clear as better educational attain-
ment is heritable itself [63] and may reinforce existing cog-
nitive abilities. Similarly, prolonged emotional stress due to
life events may exacerbate existing dispositions to experience
negative emotions captured by neuroticism [64], traits which
commonly help accumulate stressful life events [38]. Neverthe-
less, for fluid intelligence but not neuroticism, brain imaging
added incremental value when combined with various sociode-
mographic predictors. This may suggest that the cues for neu-
roticism conveyed by brain imaging were already present in
sociodemographic predictors, hinting at common causes. Off
note, in the specific context of aging, the empirical distinction
between brain age and cognitive age is reflecting a similar in-
tuition [65].

Limitations

Additional constructs and psychometric tools could have been
visited. The broader construct of intelligence is often estimated
using a general factor model with multiple correlated tests.
While this is obviously useful for normative assessments, mea-
sures of fluid intelligence can also serve a situational fitness
signal [30]. There is a wealth of questionnaires for measuring
negative emotionality and neuroticism, specifically. Yet, we
could only study the EPQ scale provided by the UK Biobank. A
complementary approach would be to estimate latent factors by
pooling all non-imaging data semantically related to neuroti-
cism [66]. Here, we considered established target measures
“as is”, instead of derivatives.

It terms of mental-health research, this study falls short of
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directly testing the clinical relevance of estimated proxy mea-
sures. Even in a very large general-population cohort such
as the UK Biobank, there are only a few hundred diagnosed
cases of mental disorders (ICD-10 mental-health diagnoses
from the F chapter) with brain-imaging data available. As a
result, we could not directly assess the performance of proxy
measures in clinical populations. The low number of diagnosed
mental disorders in UK Biobank highlights the practical impor-
tance of studying mental health as a continuous, in addition
to diagnosed conditions. Indeed, a public health perspective
calls for targeting individual differences in health, not only
pathology. Psychological constructs such as IQ and neuroticsm
are important factors of the epidemiology of psychiatric dis-
orders [38, 30, 29, 67], and accelerated brain aging is associ-
ated with various neurological conditions [18, 17, 25]. Yet, few
cohorts come with extensive neuropsychological testing. Val-
idated proxies of these constructs open the door to including
them in epidemiological studies as secondary outcomes or ad-
ditional explanatory variables.

Conclusion: Proxy measures may enhance the
validity of constructs gauging mental health

In population studies of mental health, individual traits are
captured via lengthy assessments, tailored to specific brain and
psychological constructs. We have shown that proxy measures
built empirically from general-purpose data can capture these
constructs and can improve upon traditional measures when
studying real-world health patterns. Proxymeasures canmake
psychological constructs available to broader, more ecological
studies building on large epidemiological cohorts or real-world
evidence. This can make the difference where psychological
constructs are central to developing treatment and prevention
strategies, but direct measures have not been collected.

Methods

To facilitate reproduction, understanding, and reuse, we have
made all data analysis and visualization source code available
on Github [68].

Dataset

The United Kingdom Biobank (UKBB) database is to date the
most extensive large-scale cohort aimed at studying the deter-
minants of the health outcomes in the general adult population.
The UKBB is openly accessible and has extensive data acquired
on 500000 individuals aged 40-70 years covering rich pheno-
types, health-related information, brain-imaging and genetic
data [12]. Participants were invited for repeated assessments,
some of which included MR imaging. For instance, cognitive
tests that were administered during an initial assessment were
also assessed during the follow-up visits. This has enabled
finding for many subjects at least one visit containing all het-
erogeneous input data needed to develop the proposed proxy
measures. The study was conducted using the UKBB Resource
Application 23827.

Participants

All participants gave informed consent. The UKBB study was
examined and approved by the North West Multi-centre Re-
search Ethics Committee. We considered participants who have
responded to cognitive tests, questionnaires, and have access
to their primary demographics and brain images [69]. Out of

the total size of UKBB populations, we found 11 175 participants
who had repeated assessments overlapping with the first brain
imaging release [70]. Note that the features (sociodemographic
variables) that we included in the analysis are measures that
are self-reported during a follow-up imaging visit. The demo-
graphics are 51.6% female (5572) and 48.3% male (5403), and
an age range between 40-70 years (with a mean of 55 years and
standard deviation of 7.5 years). The data for model training
were selected using a randomized split-half procedure yield-
ing 5587 individuals. The remaining subjects were set aside
as a held-out set for generalization testing (see section Model
development and generalization testing). We made sure that
the subjects used for model training and generalization testing
were strictly non-overlapping.

Learning curves documented that the training split was suf-
ficiently large for constructing stable prediction models Fig-
ure 1 – Figure supplement 1 with profiles of performance
similar to latest benchmarks on model complexity in the UK
Biobank [71]. Moreover, simulations and empirical findings
suggest that larger testing sets are more effective at miti-
gating optimistic performance estimates [72, 52]. Together,
this provided a pragmatic solution to the inference-prediction
dilemma [58, 73] given the two objectives of the present in-
vestigation to obtain reasonably good predictive models, while
at the same time performing parameter inference of statistical
models developed on the left-out data.

To establish specific comparisons between models based on
sociodemographics, brain data or their combinations we exclu-
sively considered the cases for which MRI scans were available.
The final sample sizes used for model construction and gener-
alization testing then depended on the availability of MRI: For
age and fluid intelligence, our randomized split-half procedure
(see section Model development and generalization testing)
yielded 4203 cases for model building and 4157 for generaliza-
tion. For cases with valid neuroticism assessment, fewer brain
images were available, which yielded 3550 cases for model
building and 3509 for generalization.

Data acquisition

Sociodemographic data (non-imaging) was collected with self-
report measures administered through touchscreen question-
naires, complemented by verbal interviews, physical measures,
biological sampling and imaging data. MRI data were ac-
quired with the Siemens Skyra 3T using a standard Siemens
32-channel RF receiver head coil [74]. We considered three MR
imagingmodalities as each of them potentially captures unique
neurobiological details: structural MRI (sMRI/T1), resting-
state functional MRI (rs-fMRI) and diffusion MRI (dMRI). For
technical details about the MR acquisition parameters, please
refer to [70]. We used image-derived phenotypes (IDPs) of
those distinct brain-imaging modalities, as they provide ac-
tionable summaries of the brain measurements and encourage
comparability across studies.

Target measures

As our target measures for brain age modeling, we use an
individual’s age at baseline recruitment (UKBB code “21022-
0.0”). Fluid intelligence, was assessed using a cognitive bat-
tery designed to measure an individual’s capacity to solve novel
problems that require logic and abstract reasoning. In the UK
Biobank, the fluid intelligence test (UKBB code “20016-2.0”)
comprises thirteen logic and reasoning questions that were ad-
ministered via the touchscreen to record a response within two
minutes for each question. Therefore, each correct answer is
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scored as one point with 13 points in total1. Neuroticism (UKBB
code “20127-0.0”) was measured using a shorter version of the
revised Eysenck Personality Questionnaire (EPQ-N) comprised
of 12-items [32]. Neuroticism was assessed during Biobank’s
baseline visit. The summary of the individual’s scores ranges
from 0 to 12 that assess dispositional tendency to experience
negative emotions 2.
In the course of this work, a question that emerged con-

cerned the size of the gap between age at baseline recruit-
ment and MRI-scan time and its potential impact on the anal-
ysis. Supplementary checks indicated that the age gap was
at least 5 years for most participants. Yet, from a statisti-
cal perspective, the two age measures turned out highly inter-
changeable (Figure S2) and global conclusions remained un-
changed (Figure S3).

Sociodemographic data

In this work, we refer to non-imaging variables broadly as so-
ciodemographics excluding the candidate targets fluid intelli-
gence and neuroticism. To approximate latent constructs from
sociodemographics, we included 86 non-imaging inputs (Ta-
ble S7) which are the collection of variables reflecting each
participant’s demographic and social factors i.e., sex, age, date
and month of birth, body mass index, ethnicity, exposures at
early life –e.g. breast feeding, maternal smoking around birth,
adopted as a child– education, lifestyle-related variables –e.g.
occupation, household family income, household people living
at the same place, smoking habits–, and mental-health vari-
ables. All these data were self-reported. We then assigned
these 86 variables to five groups based on their relationships.
Based on our conceptual understanding of the variables, we
name assigned them to one out of five groups: 1) mood & sen-
timent, 2) primary demographics as age, sex, 3) lifestyle, 4)
education, 5) early life. We then investigated the intercorrela-
tion between all 86 variables to ensure that the proposed group-
ing is compatible with their empirical correlation structure Fig-
ure S1.
The sociodemographic groups had varying amounts of miss-

ing data. For e.g. the source of missingness is concerned with
the participants lifestyle habits such as smoking and mental
health issues [77]. To deal with this missingness in the data
using imputation [78], we used column-wise replacement of
missing information with the median value calculated from the
known part of the variable. We subsequently included an indi-
cator for the presence of imputed for down-stream analysis.
Such imputation is well suited to predictive models [79].

Image processing to derive phenotypes for machine
learning

MRI data preprocessing were carried out by UKBB imaging
team. The full technical details are described elsewhere [70,
74]. Below, we describe briefly the custom processing steps
that we used on top of the already preprocessed inputs.

Structural MRI
This type of data analysis on T1-weighted brain images are
concerned with morphometry of the gray matter areas i.e. the
quantification of size, volume of brain structures and tissue

1 A complete overview of the 13 individual fluid intelligence items is pro-
vided by the dedicated user manual [75]

2 For a complete list of Neuroticism questionnaires is provided by the ded-
icated field descriptions and derivation for variables related to bipolar
disorder, major depression status and neuroticism score [76]

types and their variations under neuropathologies or behavior
[80]. For example, volume changes in gray matter areas over
lifetime are associated with: brain aging [81], general intelli-
gence [82] and brain disease [83]. Such volumes are calculated
within pre-defined ROIs composed of cortical and sub-cortical
structures [84] and cerebellar regions [85]. We included 157
sMRI features consisting of volume of total brain and grey
matter along with brain subcortical structures3. All these fea-
tures are pre-extracted by UKBB brain imaging team [70] and
are part of data download. We concatenated all inputs along-
side custom-built fMRI features for predictive analysis (feature
union).

Diffusion weighted MRI
Diffusion MRI enables to identify white matter tracts along
principal diffusive direction of water molecules, as well as the
connections between different gray matter areas [88, 89]. The
study of these local anatomical connections through white mat-
ter are relevant to the understanding of neuropathologies and
functional organization [90]. We included 432 dMRI skeleton
features of FA (fractional anisotropy), MO (tensor mode) and
MD (mean diffusivity), ICVF (intra-cellular volume fraction),
ISOVF (isotropic volume fraction) and OD (orientation disper-
sion index) modeled on many brain white matter structures ex-
tracted from neuroanatomy4. For extensive technical details,
please refer to [92]. The skeleton features we included were
from category134 shipped by the UKBB brain-imaging team
and we used them without modification.

Functional MRI
Resting-state functional MR images capture low-frequency
fluctuations in blood oxygenation that can reveal ongoing neu-
ronal interactions in time forming distinct brain networks
[93]. Functional connectivity within these brain network can
be linked to clinical status [94], to behavior [70], or to psy-
chological traits [44]. We also included resting-state connec-
tivity features based on the time-series extracted from Inde-
pendent Component Analysis (ICA) with 55 components repre-
senting various brain networks extracted on UKBB rfMRI data
[70]. These included the default mode network, extended de-
fault mode network and cingulo-opercular network, executive
control and attention network, visual network, and sensorimo-
tor network. We measured functional connectivity in terms
of the between-network covariance. We estimated the covari-
ance matrices using Ledoit-Wolf shrinkage [95]. To account
for the fact that covariance matrices live on a particular man-
ifold, i.e., a curved non-Euclidean space, we used the tangent-
space embedding to transform the matrices into a Euclidean
space [96, 97] following recent recommendations [98, 99]. For
predictive modeling, we then vectorized the covariance matri-
ces to 1485 features by taking the lower triangular part. These
steps were performed with NiLearn [100].

Comparing predictive models to approximate target
measures

Imaging-based models
First, we focused on purely imaging-based models based on
exhaustive combinations of the three types of MRI modalities
(see Table 1 for an overview). This allowed us to study poten-
tial overlap and complementarity between the MRI-modalities.
Preliminary analyses revealed that combining all MRI data gave
reasonable results with no evident disadvantage over particular

3 Regional grey matter volumes [86] Subcortical volumes [87]
4 Diffusion-MRI skeleton measurements [91]
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Table 1. Imaging-based models.

In-
dex

Name # variables # groups

1 brain volumes (sMRI) 157 1
2 white matter (dMRI) 432 1
3 functional connectivity (fMRI) 1485 1
4 sMRI, dMRI 589 2
5 sMRI, fMRI 1642 2
6 dMRI, fMRI 1917 2
7 sMRI, dMRI, fMRI (full MRI) 2074 3

Table 2. Non-imaging baseline models or sociodemographic mod-
els based on single group. Variables in each group are described at
corresponding section sociodemographic data

Index Name # variables

1 Mood & Sentiment (MS) 25
2 Age, Sex (AS) 5
3 Life style (LS) 45
4 Education (EDU) 2
5 Early Life (EL) 9

Table 3. Random forest hyperparameters and tuning with grid
search (5 fold cross-validation).

Hyperparameter Values

Impurity criterion Mean squared error
Maximum tree depth 5, 10, 20, 40, full depth
Fraction of features for split 1, 5, “log2”, “sqrt”, “complete”
Number of trees 250

combinations of MRI modalities (Figure 3 – Figure supplement
1), hence, for simplicity, we only focused on the full MRI model
in subsequent analyses.

Sociodemographic models

We composed predictive models based on non-exhaustive com-
binations of different types of sociodemographic variables. To
investigate the relative importance of each class of sociodemo-
graphic inputs, we performed systematic model comparisons.
We were particularly interested in studying the relative contri-
butions of early-life factors as compared to factors related to
more recent life events such as education as well as factors re-
lated to current circumstances such as mood & sentiment and
life-style. The resulting models based on distinct groups of
predictors are listed in Table 2 (for additional details see Ta-
ble S7 and Figure S1).

Combined imaging and sociodemographic models

In the next step, we were interested in how brain-related infor-
mation would interact within each of these sociodemographic
models. For example, information such as the age of an indi-
vidual, or the level of education, may add important contextual
information to brain images. We therefore considered an alter-
native variant for each of the models in Table 2 that included all
MRI-related features (2074 additional features) as described
at section image processing to derive phenotypes for machine
learning.

Predictive model

Linear models are recommended as default choice in neu-
roimaging research [98, 101] especially when datasets include
fewer than 1000 data points. In this study approximated tar-
gets generated by distinct underlying mechanisms based on

Table 4. Number of samples for classification analysis (N).

# groups Age Fluid intelligence Neuroticism

1 1335 1108 1054
2 1200 898 1020

multiple classes of heterogenous input data with several thou-
sands of data points. We hence chose the non-parametric ran-
dom forest algorithm that can be readily applied on data of dif-
ferent units for non-linear regression and classification [102]
with mean squared error as impurity criterion. To improve
computation time we fixed tree-depth to 250 trees, a hyper-
parameter that is not usually not tuned but set to a generous
number as performance plateaus beyond a certain number of
trees [103, ch. 15]. Preliminary analyses suggested that addi-
tional trees would not have led to substantial improvements
in performance. We used nested cross-validation (5-fold grid
search) to tune the depth of the trees as well as the number of
variables considered for splitting (see Table 3 for a full list of
hyper-parameters considered).
Classification analysis. We also performed classification anal-

ysis on the continuous targets. Adapting recommendations
from Gelman and Hill [53], we performed discrete variable
encoding of the targets leading to extreme groups based on
the 33rd and 66th percentiles (see Table 4 for the number of
classification samples per group). This choice avoids includ-
ing samples near the average outcome for which the input
data may be indistinct. We were particularly interested in un-
derstanding whether model performance would increase when
moving toward classifying extreme groups. For this analysis,
we considered all three types of models (full MRI 2074 fea-
tures from imaging-based models, all sociodemographics vari-
ables, total 86 variables see section, combination of full MRI
and all sociodemographics, a total 2160 variables see section
(See section Comparing predictive models to approximate tar-
get measures). When predicting age, we excluded the age & sex
sociodemographic block from all sociodemographic variables
which then yielded a total of 81 variables. To assess the perfor-
mance for classification analysis, we used the area under the
curve (AUC) of the receiver operator characteristic (ROC) as an
evaluation metric [101].

Model development and generalization testing

Before any empirical work, we generated two random parti-
tions of the data, one validation dataset for model construction
and one held-out generalization dataset for studying out-of-
sample associations using classical statistical analyses.
For cross-validation, we then subdivided the validation set

into 100 training- and testing splits following the Monte Carlo
resampling scheme (also referred to as shuffle-split) with 10%
of the data used for testing. To compare model performances
based on paired tests, we used the same splits across all mod-
els. Split-wise testing performance was extracted and car-
ried forward for informal inference using violin plots (Fig-
ure 3,Figure 4). For generalization testing, predictions on the
held-out data were generated from all 100 models from each
cross-validation split.
On the held-out set, unique subject-wise predictions were

obtained by averaging across folds and occasional duplicate
predictions due to Monte Carlo sampling which could produce
multiple predictions per subject5. Such strategy is known as

5 We ensured prior to computation that with 100 CV-splits, predictions
were available for all subjects.
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CV-bagging [104, 105] and can improve both performance and
stability of results6. The resulting averages were reported as
point estimates in Figures 3,4, and 3 – Figure supplement 1
and used as proxy measures in the analysis of health-related
behaviors Figure 2.

Statistical analysis

Resampling statistics for model comparisons on the held-out data
To assess the statistical significance of the observed model per-
formance and the differences in performance between themod-
els, we computed resampling statistics of the performancemet-
rics on the held-out generalization data not used for model
construction [106]. Once unique subject-wise predictions were
obtained on the held-out generalization data by averaging the
predictions emanating from each fold of the validation set (cv-
bagging), we computed null- and bootstrap-distributions of
the observed test statistic on the held-out data, i.e., R2 score
for regression and AUC score for classification.
Baseline comparisons. To obtain a p-value for baseline com-

parisons (could the prediction performance of a given model be ex-
plained by chance?) on the held-out data, we permuted targets
10000 times and then recomputed the test statistic in each iter-
ation. P-values were then defined as the probability of the test
statistic under null distribution being larger than the observed
test statistic. To compute uncertainty intervals, we used boot-
strap, recomputing the test statistic after resampling 10000
times with replacement and reporting the 2.5 and 97.5 per-
centiles of the resulting distribution.
Pairwise comparisons between models. For model compar-

isons, we considered the out-of-sample difference in R2 or AUC
between any two models. To obtain a p-value for model com-
parisons (could the difference in prediction performance between
two given models be explained chance?) on the held-out data,
we permuted the scores predicted by model A and model B for
every single prediction 10000 times and then recomputed the
test statistic in each iteration. We omitted all cases for which
only predictions from one of the models under comparison was
present. P-values were then defined as the probability of the
absolute of the test statistic under null distribution being larger
than the absolute observed test statistic. The absolute was
considered to account for differences in both directions. Un-
certainty intervals were obtained from computing the 2.5 and
97.5 percentiles of the bootstrap distribution based on 10000
iterations. Here, predictions from model A and model B were
resampled using identical resampling indices to ensure amean-
ingful paired difference.

Out-of-sample association between proxy measures and health-
related habits
Computation of brain age delta and de-confounding. For associa-
tion with health-contributing habits (Table 5), we computed
the brain age delta as the difference between predicted age and
actual age:

BrainAge� = Agepredicted – Age (1)

As age prediction is rarely perfect, the residuals will still con-
tain age-related variance which commonly leads to brain age
bias when relating the brain age to an outcome of interest,
e.g., sleep duration [107]. To mitigate leakage of age-related
information into the statistical models, we employed a de-

6 The use of CV-bagging can explain why on figures 3,4, and 3 – Figure
supplement 1 the performance was sometimes slightly better on the held-
out set compared to the cross-validation on the validation test.

confounding procedure in line with [108] and [11, eqs. 6-8]
consisting in residualizing a measure of interest (e.g. sleep du-
ration) with regard to age through multiple regression with
quadratic terms for age. To minimize computation on the
held-out data, we first trained a model relating the score
of interest to age on the validation set to then derive a de-
confounding predictor for the held-out generalization data.
The resulting de-confounding procedure for variables in the
held-out data amounts to computing an age-residualized pre-
dictor measureresid from the measure of interest (e.g. sleep du-
ration) by applying the following quadratic fit on the validation
data:

measurevalidation = agevalidation ⇥ �val1+

age2validation ⇥ �val2 + ✏
(2)

The de-confounding predictor was then obtained by evaluating
the weights �val1 and �val2 obtained from Equation 2 on the
generalization data:

deconfounder = agegeneralization ⇥ �val1

+age2generalization ⇥ �val2

(3)

We performed this procedure for all target measures, to study
associations not driven by the effect of age. For supplemen-
tary analyses presented in figure Figure 2 – Figure supplement
3, the same procedure was applied, substituting age for fluid
intelligence and neuroticism, respectively.

Health-related habits regression. We then investigated the joint
association between proxy measures of interest and health-
related habits (Table 5) using multiple linear regression. For
simplicity, we combined all brain imaging and all sociodemo-
graphics variables (Figure 3, Figure 3 – Figure supplement
1, Figure 3 – Figure supplement 2). The ensuing model can
be denoted as

measure = deconfounder ⇥ �1 + BrainAge� ⇥ �2

+PredFluidInt⇥ �3 + PredNeurot⇥ �4 + ✏,
(4)

where deconfounder is given by Equation 2. Prior to model fit-
ting, rows with missing inputs were omitted. For comparabil-
ity, we then applied standard scaling on all outcomes and all
predictors.

The parametric bootstrap was a natural choice for uncer-
tainty estimation, as we used standard multiple linear regres-
sion which provides a well defined procedure for mathemati-
cally quantifying its implied probabilistic model. Computation
was carried out using sim function from the arm package as de-
scribed in [53, Ch.7,pp.142-143]. This procedure can be intu-
itively regarded as yielding draws from the posterior distribu-
tion of the multiple linear regression model under the assump-
tion of a uniform prior. For consistency with previous analyses,
we computed 10000 draws.

For supplementary analysis in Figure 2 – Figure supplement
2, the brain-predicted age instead of the delta was used:

measure = deconfounder ⇥ �1 + BrainAge⇥ �2+

PredFluidInt⇥ �3 + PredNeurot⇥ �4 + ✏,
(5)

For supplementary analysis in Figure 2 – Figure supplement



Dadi et al. | 11

Table 5. Extra health variables used for correlation analysis with subject-specific predicted scores.

Family eid Variables

Alcohol⇤ 1568-0.0 Average weekly red wine intake
1578-0.0 Average weekly champagne plus white wine intake
1588-0.0 Average weekly beer plus cider intake
1598-0.0 Average weekly spirits intake
1608-0.0 Average weekly fortified wine intake
5364-0.0 Average weekly intake of other alcoholic drinks

Physical activity 22040-0.0 Summed MET minutes per week for all activity
Smoking 20161-0.0 Pack years of smoking
Sleep 1160-0.0 Sleep duration

⇤We computed a compound drinking score by summing up all variables from the alcohol family

3, additional deconfounders were introduced.

measure = deconfounderage ⇥ �1+

BrainAge⇥ �2 + deconfounderFI ⇥ beta3 + PredFluidInt⇥ �4+

deconfounderN +�5 + PredNeurot⇥ �6 + ✏,
(6)

where deconfounderFI is the deconfounder for fluid intelligence
and deconfounderN the deconfounder for neuroticsm following
the procedure described in Equation 2 and Equation 3.
For supplementary analysis in Figure 2 – Figure supplement

4, proxies and targets were analyzed simultaneously.

measure = Age⇥ �1 + BrainAge⇥ �2 + FluidIntelligence⇥ beta3+

PredFluidInt⇥ �4+

Neuroticism +�5 + PredNeurot⇥ �6 + ✏,
(7)

Software

Preprocessing and model building were carried out using
Python 3.7. The NiLearn library was used for processing MRI
inputs [100]. We used the scikit-learn library for machine
learning [109]. For statistical modeling and visualization we
used the R-language [110] (version 3.5.3) and its ecosystem:
data.table for high-performance manipulation of tabular data,
ggplot [111, 112] for visualization and the arm package for para-
metric bootstrapping [113]. All data analysis code is shared on
GitHub [68].

Availability of source code and requirements

• Project name: “empirical_proxy_measures“
• Project home page: [68]
• Operating system(s): e.g. Platform independent
• Programming language: e.g. Python and R
• Other requirements: e.g. Python 3.6.8 or higher, R 3.4.3 or
higher

• License: BSD-3

Availability of supporting data and materials

Aggregated data supporting the results and figures of this arti-
cle is available through the GigaScience Database [114] and the
“empirical_proxy_measures“ code repository [68]. In the fu-
ture, the individual-level proxy measures obtained from the
prediction models in this work will be shared in agreement
with the UK Biobank regulations. Please revisit the code repos-

itory “empirical_proxy_measures“ [68] for details. The input
data is available for other researchers via UKBB’s controlled
access scheme [115]. The procedure to apply for access [116]
requires registering with the UK Biobank and compiling an ap-
plication form detailing:

• A summary of the planned research
• The UK Biobank data fields required for the project
• A description of derivatives (data, variables) generated by
the project
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