
11111010011111001111001111111011

Identity-by-state and software popcount

PLINK 1.9's most important optimization is its replacement of
slow loops iterating over single genotype calls with bitwise
operations on many calls at a time. This document illustrates
how identity-by-state (i.e. Hamming distance) between two
genomes is computed in this fashion.

Step 1: Transposition and other preprocessing. PLINK's core file format saves
genotype calls in a variant-major manner. IBS computation is faster with
sample-major data, and its overall time complexity is O(mn2) while
transposition is just O(mn), so we transpose the data before the main loop.
We also assemble a bit array tracking the presence of missing genotype calls.

Vincent:

11111111001111111111111111111111
genotypes

nonmissingness

01111111011111111111101111111111
Anton:

00111111001111111111111111111111
genotypes

nonmissingness

Step 2: XOR-and-mask. PLINK 1 represents homozygous major calls with
binary 11, heterozygous calls with 10, and homozygous minor calls with 00.
Conveniently, if you take the exclusive-or of two such values, the number of set
bits in the result is the number of differing allele calls; thus, the overall
Hamming distance between two genomes in (transposed) PLINK 1 format is the
bit population count of their XOR. Excepting missing calls (represented by 01),
that is; we "mask" (via AND operations) the final result with both
nonmissingness arrays to force those bits to zero. (The red '0' below is due to
the mask.)

00000101000000110000100000000100
XOR-and-mask result

Step 3: Software popcount. Since PLINK is still used on many machines
lacking a hardware popcount instruction, we use SSE2 (in x86-64 builds) or
basic word (in 32-bit builds) operations to implement the "bitslice" algorithm
discussed by Dalke et al., which is almost as fast when acting on long arrays.
For clarity of exposition, we illustrate what happens with six 32-bit words; our
SSE2 code applies the same idea to batches of fifteen or thirty 128-bit blocks.

00000101000000110000100000000100

11001010100000101000101100100100

10001100010000110001001001110000

00000000000000000000001000000010

00000100000001001111000000100100

01110001001001010000100100010010

This can be seen as a collection of 192 one-bit values which add up to our
desired result.

The bitslice algorithm starts by generating a collection of two-bit partial sums
which add up to the same total. Specifically, the partial sums in W2,1 aggregate
two bits in W1,1 and an even-position bit in W1,3; W2,2 aggregates pairs of bits
in W1,2 and odd-position bits in W1,3; W2,3 aggregates pairs of bits in W1,4 and
even-position bits in W1,6; and W2,4 aggregates pairs of bits in W1,5 and
odd-position bits in W1,6. The actual operations are a right-shift-1, a mask with
010101..., a subtraction, a mask (even-position) or right-shift-1-and-mask
(odd-position) with 010101..., and an addition.

W1,1

W1,2

W1,3

W1,4

W1,5

W1,6

00000101000000110000100000000100

00000000000000010000010000000000
W1,1

W1,1 after right-shift-1 and 010101.... mask
-

= 0 0 1 1 0 0 0 2 0 0 1 0 0 0 1 0

00000100010000010001000001010000
W1,3 after 010101... mask

+

= 0 0 2 1 1 0 0 3 0 1 1 0 1 1 1 0
W2,1

Note that "2" is shorthand for binary 10 and "3" is shorthand for binary 11 here;
similar shorthand will be used for four- and eight-bit partial sums on the next
page.

+

 0 0 0 1 0 0 0 3 0 1 0 0 0 1 0 0
W2,1 after 001100110011... mask

 0 0 0 2 0 1 0 0 0 0 0 1 0 1 0 1
W2,1 after right-shift-2 and 001100110011... mask

+

 0 0 0 1 0 0 0 2 0 0 0 3 0 2 0 0
W2,2 after 001100110011... mask

 0 3 0 2 0 1 0 0 0 1 0 1 0 0 0 1
W2,2 after right-shift-2 and 001100110011... mask

+

 3 6 2 5 2 5 4 2
W4,1

=

Then we produce a single word of eight-bit partial sums from W4,1 and W4,2.
(Since none of the four-bit partial sums can be greater than 12, and eight bits
can represent values up to 255, we can actually merge up to 10 pairs of partial
sums at this stage, rather than just 2; this is done by some of our SSE2 code.)

 0 6 0 5 0 5 0 2
W4,1 after 00001111000011110000111100001111 mask

 0 3 0 2 0 2 0 4
W4,1 after right-shift-4 and mask

+

 0 2 0 3 0 3 0 3
W4,2 after mask

+

 0 3 0 1 0 4 0 2
W4,2 after right-shift-4 and mask

+

 14 11 14 11
W8

=

Finally, we add these eight-bit partial sums: 14 + 11 + 14 + 11 = 50, which is
indeed the number of set bits among the original 192.

The next step is to use these to produce an even smaller collection of four-bit
partial sums with the same total. Specifically, W4,1 aggregates two values in
W2,1 and two values in W2,2, while W4,2 aggregates two values in W2,3 and
two values in W2,4.

	Canvas 1
	Canvas 2
	Canvas 3

