Draft Genome of the Protandrous Chinese Black Porgy, Acanthopagrus schlegelii

Abstract:
Background: As one of the most popular and valuable commercial marine fishes in China and East Asian countries, the Chinese black porgy (Acanthopagrus schlegelii) also known as the blackhead seabream, has some attractive characteristics, such as fast growth rate, good meat quality, resistance to diseases and excellent adaptability to various environments. Furthermore, the black porgy is a good model for investigating sex changes in fish due to its protandrous hermaphrodite. Here, we obtained a high-quality genome assembly of this interesting teleost species and performed a genomic survey on potential genes associated with the sex-change phenomenon.

Findings: We generated 175.4 gigabases (Gb) of clean sequence reads using a whole-genome shotgun sequencing strategy. The final genome assembly is approximately 688.1 megabases (Mb), accounting for 93% of the estimated genome size (739.6 Mb). The achieved scaffold N50 is 7.6 Mb, reaching a relatively high level among sequenced fish species. Meanwhile, we identified 19,465 protein-coding genes, which had an average transcript length of 17.3 kb. By performing a comparative genomic analysis, we found three types of genes potentially associated with sex change, which are useful for the prediction of related genetic basis for the interesting protandrous hermaphrodite.

Conclusions: We provided a draft genome assembly of the Chinese black porgy and discussed about the potential genetic mechanisms of sex change. These data are also an important resource for studying the biology and facilitating the molecular breeding of this economically important fish.
Dear editor,

Thanks for your kind help. We also appreciate the instructive comments from the two reviewers.

According to their suggestions, we made a careful revision, especially in addition of the actinopterygian BUSCO set (lines 120-121), definitions for the BUSCO values (lines 122-124), and a new column for the known vertebrate paralogs in the revised Table 3. Please see more details in the highlighted texts. Our point-by-point responses are also attached for your consideration.

Best regards,

Qiong Shi, PhD, Professor
BGI
Shenzhen 518083
China

Reviewer reports:
Reviewer #2:
The manuscript has further improved but some issues remain:
1. It is not explicitly mentioned in the text that the actinopterygian BUSCO set was used, so please revise:

Answer: Thanks for your good advice. We added the information on lines 120-121 of the revised manuscript.

l. 120: The final BUSCO score reached 89.1%, (C:89.1% [S:86.2%, D:2.9%], F:2.5%, M:8.4%, Actinopterygii gene set, n:4584).

l. 148: … and the final BUSCO score was up to 85.5% (C:85.5% [S:82.3%, D:3.2%], F:2.8%, M:11.7%, Actinopterygii gene set, n:4584).
It would also be helpful for the readers to define C, S, D, F, and M in the main text.

Answer: Thanks for the advice. Definitions of these values are added on lines 122-124 of the revised manuscript.

2. Table 3 unfortunately remains unrevised with regard to gene orthologies. Now that the authors have performed PhyML analyses and submitted results to GigaDB in support of the genes' actual orthologies (see response to reviewers; but a reference to the GigaDB data should also be put in the main text), they finally would need to revise the table and provide individual rows for known vertebrate and teleost paralogs based on these phylogenetic trees, such as (but not limited to): wnt4a, wnt4b; sox9a, sox9b, etc. Such change of table 3 in my opinion is necessary for publication, as it will also enable the authors to confirm whether or not some of the extra copies found in the black porgy genome are derived from the teleost fish genome duplication (as currently speculated in l. 222-223).

Btw. I don't think that oct4/pou5f1 does exist in teleosts, see publication PMID 23659605. The sequence reported is likely a different pou5f gene.

Answer: Thanks for your nice comments and advice. According to your suggestions, we revised the Table 3 with a new column for the known vertebrate paralogs. You are right. pou5f1/oct4 has been extinct in teleosts, while it survives in tetrapods (Frankenberg and Renfree, 2013). Sorry for the mistake, we hence changed the oct4 to pou2 in the revised Table 3. As we know, teleost pou2 is an orthologue gene of the mammalian pou5f1/oct4, and it has been well characterized in zebrafish. Pou5f1 and pou2 are reported to have a conserved role in the regulation of pluripotency as well as germ cell maintenance and neural patterning in vertebrates (Frankenberg and Renfree, 2013; Khan et al, 2012).

Reference

Additional Information:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you submitting this manuscript to a special series or article collection?</td>
<td>No</td>
</tr>
</tbody>
</table>

Experimental design and statistics

Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our [Minimum Standards Reporting Checklist](#). Information essential to interpreting the data presented should be made available in the figure legends.

Have you included all the information requested in your manuscript? | Yes |

Resources

A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the
Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.

Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?

<table>
<thead>
<tr>
<th>Availability of data and materials</th>
<th>Yes</th>
</tr>
</thead>
</table>

All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript.

Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?
Draft Genome of the Protandrous Chinese Black Porgy,
Acanthopagrus schlegelii

Zhiyong Zhang¹†, Kai Zhang²,³,⁴†, Shuyin Chen¹†, Zhiwei Zhang¹, Jinyong Zhang⁵,
Xinxin You³, Chao Bian³,⁶, Jin Xu¹, Chaofeng Jia¹, Jun Qiang², Fei Zhu¹, Hongxia Li²,
Hailin Liu¹, Dehua Shen¹, Zhonghong Ren¹, Jieming Chen³, Jia Li³, Tianheng Gao⁷,
Ruobo Gu³,⁶, Junmin Xu³,⁶, Qiong Shi³,⁴,⁶*, Pao Xu²*,

1 Jiangsu Marine Fishery Research Institute, Nantong, Jiangsu 226007, China
2 freshwater Fishery Research Center, Chinese Academy of Fishery Sciences, Wuxi,
Jiangsu 214081, China
3 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of
Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences,
BGI Marine, BGI, Shenzhen 518083, China
4 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen,
Guangdong 518083, China
5 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of
Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430000, China
6 BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, Jiangsu 212000, China
7 College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, China

* Correspondence address. Pao Xu, Freshwater Fishery Research Center, Chinese
Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China (tel: +86-138 0619 0669;
email: xup@ffrc.cn); Qiong Shi, Shenzhen Key Lab of Marine Genomics,
Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals,
BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China (tel:
+86-185 6627 9826; email: shiqiong@genomics.cn)

† Contributed equally to this work.
Abstract

Background: As one of the most popular and valuable commercial marine fishes in China and East Asian countries, the Chinese black porgy (Acanthopagrus schlegelii) also known as the blackhead seabream, has some attractive characteristics, such as fast growth rate, good meat quality, resistance to diseases and excellent adaptability to various environments. Furthermore, the black porgy is a good model for investigating sex changes in fish due to its protandrous hermaphrodite. Here, we obtained a high-quality genome assembly of this interesting teleost species and performed a genomic survey on potential genes associated with the sex-change phenomenon.

Findings: We generated 175.4 gigabases (Gb) of clean sequence reads using a whole-genome shotgun sequencing strategy. The final genome assembly is approximately 688.1 megabases (Mb), accounting for 93% of the estimated genome size (739.6 Mb). The achieved scaffold N50 is 7.6 Mb, reaching a relatively high level among sequenced fish species. Meanwhile, we identified 19,465 protein-coding genes, which had an average transcript length of 17.3 kb. By performing a comparative genomic analysis, we found three types of genes potentially associated with sex change, which are useful for the prediction of related genetic basis for the interesting protandrous hermaphrodite.

Conclusions: We provided a draft genome assembly of the Chinese black porgy and discussed about the potential genetic mechanisms of sex change. These data are also an important resource for studying the biology and facilitating the molecular breeding of this economically important fish.

Keywords: Chinese black porgy; Acanthopagrus schlegelii; whole genome sequencing; genome assembly; sex-change related genes

Data description

Background information

As one of the most popular and valuable commercial marine fishes in China and East
Asian countries, the Chinese black porgy (Acanthopagrus schlegelii), also known as the blackhead seabream, has some interesting characteristics, such as fast growth rate, good meat quality, resistance to diseases and good adaptability to various environments. It is often farmed for food in the South China Sea and the coastal waters around Japan and Korea [1,2]. In addition, it is an eurythermal and euryhaline fish, living in a wide range of water temperatures and salinities. Recently, some basic studies on the genetic improvement for its growth and disease resistance have been increasingly performed in order to increase efficiency of farming [3].

The Chinese black porgy is also a good model for investigating the genetic mechanisms of sex change due to its interesting life cycle. It is a functional male during the first 2 years and a subsequent female during the next couple of years. Recently, a good hybrid of the Japanese seabream (Pagrosomus major; ♀) and the Chinese black porgy (♂) has become available [4,5], with better growth performance and higher tolerance against low temperature than its parents. However, related genetic mechanisms for these interesting biological characteristics are still unclear.

Here, we sequenced and assembled the whole genome of the Chinese black porgy, before performing a genomic survey on potential genes associated with the sex-change phenomenon.

Sample and Sequencing

The wild black porgy (NCBI Taxonomy ID: 72011; Fishbase ID: 6531) individuals (Figure 1) were collected from Laizhou Bay in Yantai, Shandong Province, China. Genomic DNA was extracted from the muscle of a female fish using Qiagen GenomicTip100 (Qiagen, Hilden, USA). We employed the whole-genome shotgun sequencing strategy and constructed the subsequent three short-insert libraries (250-bp, 500-bp and 800-bp) and four long-insert libraries (2-kb, 5-kb, 10-kb and 20-kb) in accordance with the standard protocol from Illumina (San Diego, USA). All these constructed libraries were sequenced on the Illumina HiSeq 2000 system [6] (the read length is 125 bp). Finally, we generated a total of 272.9-Gb raw reads from all seven libraries.
Before assembly of the sequencing reads, SOAPfilter v2.2 software [7] with default parameters (-y -p -g 1 -o clean -M 2 -f 0) was utilized to remove low-quality raw reads (including reads with 10 or more non-sequenced/low-quality bases), PCR duplicates and adaptor sequences. Subsequently, we obtained approximately 175.4 Gb of clean reads for further genome size prediction and assembling. A k-mer analysis with the formula $G = \frac{k_num}{k_depth}$ [8] was performed to estimate the genome size of Chinese black porgy. In our current study, the achieved total number of k-mers and k_depth was 2.81×10^{10} and 38, respectively. Therefore, the genome size of Chinese black porgy is estimated to be 739.6 Mb. Based on this result, the retained reads were calculated to cover approximately 238-fold of the whole genome.

Assembly and Evaluation

To obtain a genome assembly, we employed the SOAPdenovo2 v2.04.4 [9] with optimized parameters (pre-graph -K 27 -p 16 -d 1; contig -M 3; scaff -F -b 1.5 -p 16) using these clean reads. In brief, the reads from short-insert libraries were applied for the contig assembly, before alignment of all the filtered reads onto the contigs for linking these contigs to generate scaffolds. GapCloser v1.12 software [7] with default parameters was subsequently used to fill some intra-scaffold gaps in the local assembly, in which the reads were equipped with one end uniquely mapped to a contig and the other end located within a gap. Meanwhile, SSPACE (version 2.0) [10] with default parameters was employed to obtain super scaffolds with the reads from the long-insert libraries (2-kb, 5-kb, 10-kb and 20-kb). The final genome assembly was approximately 688.1 Mb, which accounts for 93.0% of the estimated genome size (739.6 Mb; Table 1).

The achieved scaffold N50 is 7.64 Mb, reaching a relatively high length among sequenced fish species. In comparison, other scaffolds have levels of 1.55 Mb for the zebrafish [11], 1.1 Mb for platy fish [12], 867 kb for half-smooth tongue sole [13], 1 Mb for common carp [14], 6.4 Mb for grass carp [15], 2.97 Mb for Atlantic salmon [16], 1.8 Mb for a seahorse [17] and 1.15 Mb for a Chinese barbel fish [18]. Core Eukaryotic Genes Mapping Approach (CEGMA; version 2.5) [19] with a set of 248
conserved Core Eukaryotic Genes (CEGs) was employed to assess the completeness of the final assembly. The estimates suggest that 90.7% CEGs are complete and 92.3% are partial. Meanwhile, Benchmarking Universal Single-Copy Orthologs (BUSCO; version 3) [20] was applied to evaluate the quality of the generated genome assembly, and we chose the representative actinopterygian gene set with 4,584 single-copy genes as the reference. The BUSCO values were calculated as follows: C: 89.1% [S: 86.2%, D: 2.9%, F: 2.5%, M: 8.4%, n: 4584], in which percentages of the total gene number (n) for the complete (C), single (S), duplicated (D), fragmented (F) and missed (M) are clarified. These results from CEGMA and BUSCO suggested that the assembled genome covers the majority of the gene space.

Annotation

We used RepeatProteinMask (version 4.0.6) [21] in RepeatMasker to identify the repetitive sequences, before employing RepeatModeller (version 1.05) [22] and LTR_FINDER.x86_64-1.0.6 to construct a *de novo* repeat library. Additionally, repetitive elements were predicted using Tandem Repeat Finder (TRF, version 4.04). Finally, we observed that the identified repeat sequences cover 19.78% of the assembled genome (*Table 2*).

Prediction of protein-coding genes was performed based on the integration of *ab initio* prediction, homologue prediction and transcriptome-based prediction. The *ab initio* prediction was carried out with Augustus (version2.5) [23] and GENSCAN (version1.0) [24] on the repeat-masked assembly. For the homology-based gene prediction, homologous proteins of several reported fishes (zebrafish, Japanese puffer, stickleback and medaka) were downloaded from Ensembl release 75 and aligned to the assembled genome using tBlastn (version2.2.19) with e-value ≤ 1e^-5. Subsequently, all the achieved alignments were analyzed using Genewise (version2.2.0) software [25] to search for precise gene structures. We further filtered out these short (less than 150 bp), prematurely terminated or frame-shifted genes. For the transcriptome-based prediction, we obtained transcriptome data from a mixture of liver, muscle, skin, gill and brain of a female fish at cDNA level. Those with
low-quality bases, adapter sequences and duplicated sequences were removed and we acquired approximately 8 Gb of high-quality clean reads. Subsequently, TopHat2.1.1 [26] and Cufflinks (version 2.2.1) [27] were applied to predict gene structures using these retained reads. Eventually, the three gene sets generated from the prediction approaches were integrated into a comprehensive and non-redundant gene set using GLEAN [28]. As summarized in Table 1, the final gene set contains 19,465 genes, with an average transcript length of 17.3 kb. In addition, we ran BUSCO v3 [20] on the predicted coding sequences (CDS), and the final BUSCO score was up to 85.5% (C:85.5% [S:82.3%, D:3.2%, F:2.8%, M:11.7%, n:4584).

Simultaneously, all the protein sequences from the GLEAN analysis were mapped onto several public databases, including Pfam [29], PRINTS [30], ProDom [31] and SMART [32], to detect the known motifs and domains within our genome assembly. The data demonstrated that 99.3% of the predicted genes from the assembled genome contain at least one related functional assignment from other public databases, including Swiss-Prot [33], Interpro [34], TrEMBL [35] and KEGG [36].

Phylogenetic Analysis

In order to examine the phylogenetic position of the Chinese black porgy, we downloaded protein sequences of seven reported fishes, including spotted gar \((Lepisosteus oculatus)\), stickleback \((Gasterosteus aculeatus)\), Japanese fugu \((Takifugu rubripes)\), medaka \((Oryzias latipes)\), zebrafish \((Danio rerio)\), platyfish \((Xiphophorus maculatus)\), and Nile tilapia \((Oreochromis niloticus)\) from Ensembl (release 83) [37]. These sequences were used to construct gene families by OrthoMCL [38] and eventually generated a total of 17,431 gene families by the all-to-all BLASTP strategy with an E-value of \(10^{-5}\). In addition, 65 gene families were only presented in the black porgy genome. Subsequently, 3,239 single-copy orthologous genes from these gene families were selected. These single-copy genes were further aligned using MUSCLE (version 3.8.31) with default parameters [39], before the protein alignments were changed to corresponding CDS using an in-house perl script. All these nucleotide sequences of
each species were integrated into a supergene, which were used to build a phylogenetic tree with PhyML [40]. Our final data orientated the phylogenetic position of the black porgy in teleost (Figure 2).

Analysis of Three Types of Genes for Sex Change

Sex change (secondary sex determination) is a universal phenomenon in fish, but it usually does not occur in amphibians and mammals. The black porgy is a good model for the study on the molecular mechanisms of sex change. For providing a genomic survey on these genes in the assembled genome, protein sequences of three main types of genes potentially associated with sex change, including sex determination and differentiation genes, pluripotency factors and apoptosis factors [41–43], were downloaded from the NCBI database and used for homology searches against the black porgy genome with tBlastn (version2.2.19) [44]. We chose alignments with coverage > 70% and identity > 70% for further prediction of gene structures using Genewise (version 2.2.0) [25]. Finally, we obtained homologous sequences of 26 genes in the genome assembly of Chinese black porgy (see more details in Table 3).

All these predicted protein sequences were employed to build a phylogenetic tree using PhyML [40], and we eventually observed that they were clustered with each corresponding homologue from other vertebrates.

Previous studies have revealed that multiple genes, including dmrt1, cyp19a1a, wnt4, sox9, sfl, foxl2, figla, amhr2 and dax1, are associated with sex change in the black porgy [41,45-47]. These sex determination and differentiation genes were also identified in our assembled scaffolds (in the first batch of Table 3). In the current study, the important male-related dmrt1 and the steroidogenesis-suppressing factor dax1 were mapped on the scaffolds 56 and 14 of the black porgy genome, respectively.

It was reported that dmrt1 may play a key role in the sex change of the black porgy, while the male-phase maintenance of male development was regulated by the brain–pituitary–gonadal axis via the GnRH-GtH-Dmrt1 pathway [41]. In the economically important half-smooth tongue sole (*Cynoglossus semilaevis*), dmrt1 has been proven...
to be a necessary male sex-determining gene \[48,49\]. Moreover, previous findings suggest that a duplicate of \textit{dmrt1} is the male sex determinant in medaka and \textit{dmrt1} mutation causes a male–female sex reversal \[50,51\]. We also validated the existence of \textit{foxl2} and \textit{cyp19a1a}, two putative female-related genes, in the black porgy genome. Previous findings revealed that \textit{cyp19a1a} plays dual roles in gonadal development, while both \textit{cyp19a1a} and \textit{foxl2} are related to the sex change of the black porgy \[47\]. However, \textit{foxl2} has proved to participate in sex differentiation, although it is not essential for the sex determination and sex change in the tongue sole \[52\].

\textit{figla}, with only one copy in the black porgy, is a germ-cell-specific transcription factor related to ovary development and differentiation \[53\]. However, two isotypes (\textit{figla_tv1} and \textit{figla_tv2}) were reported in the tongue sole. \textit{figla_tv1} possesses a conserved function in folliculogenesis as found in other vertebrates, while \textit{figla_tv2} may play a role in the spermatogenesis of pseudo-males by regulating the synthesis and metabolism of steroid hormones \[53\]. \textit{sfl}, also identified with one gene in the black porgy (Table 3), was reported to act as an essential transcriptional factor for steroidogenesis and for development of the reproductive axis \[54\].

Interestingly, five copies of \textit{sox9} were also identified in the black porgy genome. Nevertheless, previous findings reported that only 2 paralogs of \textit{sox9} (\textit{sox9a} and \textit{sox9b}) are present in zebrafish \[55\] and catfish \[56\]. \textit{Sox9a} is usually associated with testicular development, while this may be linked with sex reversal in the tongue sole \[52\]. In comparison, \textit{sox9b} possesses a new function in the ovary \[55\]. In addition, we noticed that female-related genes (\textit{wnt4}, \textit{vasa} and \textit{jnk1}) have multiple copies in our current study, which may be retained since the whole-genome duplication in the ancestor to the teleost. These genes have been proven to play important roles in ovarian growth and natural sex changes in fishes \[57–60\]. It was reported that two \textit{wnt4} genes (\textit{wnt4a} and \textit{wnt4b}) are present in most teleost fish, while other vertebrates and invertebrates possess only a single \textit{wnt4} gene. Furthermore, two copies of the \textit{wnt4a}, \textit{wnt4a1} and \textit{wnt4a2}, exist in some teleost species resulting
from the additional duplication of wnt4 gene [61]. It has been shown that wnt4a was mainly expressed in the gonad, gill and brain of teleost fish (such as zebrafish [62] and rainbow trout [63]), and it was confirmed to be associated with sex reversal in the tongue sole [61]. The vasa gene, also called ddx4, was reported to play an important role in gametogenesis and germ cell development [64]. Previous findings showed that vasa was a single copy gene in the majority of chordates, such as zebrafish [65,66]. However, 3 vasa genes were also reported in Nile tilapia (Oreochromis niloticus) [67]. Jnk1 is closely associated with ovarian differentiation and development in fish. A previous finding [58] reported that jnk1 highly transcribed in the ovary of the female ricefield eel (Monopterus albus), another teleost with natural sex-change from female to male, and reduced to a substantial level at the subsequent stage of intersex; hence, the data demonstrated that jnk1 may play a key role in the sexual reversal. Surprisingly, two jnk1 genes (jnk1a and jnk1b) were reported in the polyploid hybrids of red crucian carp (Carassius auratus red var.) and common carp (Cyprinus carpio L.) [68]. Interestingly, our data demonstrate that the distribution of these 3 types of genes in the black porgy genome is similar to that in ricefield eel (our unpublished results; Data of the Monopterus Whole Genome Shotgun project have been deposited at DDBJ/EMBL/GenBank under the accession number of AONE00000000). For example, 2 male-related genes (piwil1 and piwil2) are clustered together, while lin28a and rspo1 are adjacent to each other. We also observed that most of these genes are congregated on the scaffolds 1, 2, 3, 11 and 15 (Table 3).

Conclusions

In summary, we sequenced and assembled the whole genome of Chinese black porgy. This is the first genomic report of Sparidae fish. Furthermore, we provided a genomic survey on the 26 genes potentially associated with sex change. The achieved genome data will be helpful for further biological and evolutionary studies. Furthermore, it will be valuable for implementation of molecular breeding, with substantial support from our genomic data, to obtain genetic improvement of this economically important
Table 1. Summary of the achieved genome assembly and annotation.

<table>
<thead>
<tr>
<th>Genome assembly</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>contig N50 size (kb)</td>
<td>17.2</td>
</tr>
<tr>
<td>contig number (> 100 bp)</td>
<td>115,091</td>
</tr>
<tr>
<td>scaffold N50 size (Mb)</td>
<td>7.6</td>
</tr>
<tr>
<td>scaffold number (> 100 bp)</td>
<td>31,359</td>
</tr>
<tr>
<td>Total length (Mb)</td>
<td>688.1</td>
</tr>
<tr>
<td>Genome coverage (×)</td>
<td>257.6</td>
</tr>
<tr>
<td>The longest scaffold (bp)</td>
<td>22,574,836</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genome annotation</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein-coding gene number</td>
<td>19,465</td>
</tr>
<tr>
<td>Mean transcript length (kb)</td>
<td>17.3</td>
</tr>
<tr>
<td>Mean exons per gene</td>
<td>11.1</td>
</tr>
<tr>
<td>Mean exon length (bp)</td>
<td>170.2</td>
</tr>
<tr>
<td>Mean intron length (bp)</td>
<td>1519.2</td>
</tr>
<tr>
<td>Type</td>
<td>Repbase TEs</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Length (Mb)</td>
</tr>
<tr>
<td>DNA</td>
<td>20.930</td>
</tr>
<tr>
<td>SINE</td>
<td>1.120</td>
</tr>
<tr>
<td>LTR</td>
<td>7.200</td>
</tr>
<tr>
<td>Other</td>
<td>0.020</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.000</td>
</tr>
<tr>
<td>Total</td>
<td>35.300</td>
</tr>
</tbody>
</table>
Table 3. Three types of genes potentially related to sex change in the black porgy genome

<table>
<thead>
<tr>
<th>Sex determination and differentiation genes</th>
<th>Gene</th>
<th>Copy number</th>
<th>Scaffold</th>
<th>Known vertebrate paralogs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fst</td>
<td>2</td>
<td>10, 17</td>
<td>human-, mouse-, medaka-, zebrafish-fst</td>
</tr>
<tr>
<td></td>
<td>sox9</td>
<td>5</td>
<td>11, 13, 16, 19, 27</td>
<td>human-sox9, zebrafish-sox9a, zebrafish-sox9b</td>
</tr>
<tr>
<td></td>
<td>vasa</td>
<td>10</td>
<td>11, 14, 16, 20, 27, 34, 37, 47, 53, 68</td>
<td>human-, mouse-, medaka-, zebrafish-vasa</td>
</tr>
<tr>
<td></td>
<td>ctnnb1</td>
<td>4</td>
<td>2, 16, 64, 115</td>
<td>human-, mouse-, zebrafish-ctnnb1</td>
</tr>
<tr>
<td></td>
<td>piwil1</td>
<td>1</td>
<td>15</td>
<td>human-, mouse-, medaka-, zebrafish-piwil1</td>
</tr>
<tr>
<td></td>
<td>piwil2</td>
<td>1</td>
<td>15</td>
<td>human-, mouse-, medaka-, zebrafish-piwil2</td>
</tr>
<tr>
<td></td>
<td>sf1</td>
<td>1</td>
<td>108</td>
<td>human-, mouse-, medaka-, zebrafish-sf1</td>
</tr>
<tr>
<td></td>
<td>rspo1</td>
<td>2</td>
<td>1, 2, 74</td>
<td>human-, mouse-, medaka-, zebrafish-rspo1</td>
</tr>
<tr>
<td></td>
<td>foxl2</td>
<td>2</td>
<td>1, 22</td>
<td>human-, mouse-, medaka-, zebrafish-foxl2</td>
</tr>
<tr>
<td></td>
<td>cyp19a1a</td>
<td>2</td>
<td>8, 28</td>
<td>human-, mouse-, medaka-, zebrafish-cyp19a1a</td>
</tr>
<tr>
<td></td>
<td>gsd1</td>
<td>1</td>
<td>3</td>
<td>medaka-gsd1</td>
</tr>
<tr>
<td></td>
<td>figla</td>
<td>1</td>
<td>32</td>
<td>human-, mouse-, medaka-, zebrafish-figla</td>
</tr>
<tr>
<td></td>
<td>dmr1</td>
<td>1</td>
<td>56</td>
<td>human-, mouse-, medaka-, zebrafish-, tongue sole-dmr1</td>
</tr>
<tr>
<td></td>
<td>wnt4</td>
<td>15</td>
<td>1, 2, 5, 6, 7, 8, 9, 18, 19, 20, 32, 34, 62, 67, 122</td>
<td>human-wnt4, mouse-wnt4, zebrafish-wnt4a, zebrafish-wnt4b, rainbow trout-wnt4a1, rainbow trout-wnt4b</td>
</tr>
<tr>
<td></td>
<td>dax1</td>
<td>4</td>
<td>2, 3, 14, 43</td>
<td>mouse-, medaka-, tongue sole-dax1</td>
</tr>
<tr>
<td></td>
<td>cyp11al1</td>
<td>2</td>
<td>8, 33</td>
<td>mouse-, zebrafish-cyp11al1</td>
</tr>
<tr>
<td></td>
<td>hsd3b1</td>
<td>2</td>
<td>7, 36</td>
<td>human-, mouse-, medaka-, zebrafish-hsd3b1</td>
</tr>
<tr>
<td></td>
<td>amhr2</td>
<td>2</td>
<td>9, 185</td>
<td>human-, medaka-amhr2</td>
</tr>
<tr>
<td></td>
<td>jnk1</td>
<td>9</td>
<td>1, 3, 4, 5, 16, 17, 38, 79, 117</td>
<td>human-, mouse-, zebrafish-jnk1</td>
</tr>
</tbody>
</table>

Pluripotency factors

<table>
<thead>
<tr>
<th>Gene</th>
<th>Copy number</th>
<th>Scaffold</th>
<th>Known vertebrate paralogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>klf4</td>
<td>5</td>
<td>1, 3, 17, 96, 142</td>
<td>human-, mouse-, medaka-, zebrafish-klf4</td>
</tr>
<tr>
<td>nr5a2</td>
<td>3</td>
<td>8, 19, 28</td>
<td>human-, mouse-, medaka-, zebrafish-nr5a2</td>
</tr>
<tr>
<td>lin28a</td>
<td>2</td>
<td>2, 3</td>
<td>human-, mouse-, zebrafish-lin28a</td>
</tr>
<tr>
<td>pou2</td>
<td>1</td>
<td>3</td>
<td>human-pou5f1, mouse-pou5f1, zebrafish-pou2</td>
</tr>
</tbody>
</table>

Apoptosis factors

<table>
<thead>
<tr>
<th>Gene</th>
<th>Copy number</th>
<th>Scaffold</th>
<th>Known vertebrate paralogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>traf2</td>
<td>2</td>
<td>3, 15</td>
<td>human-, mouse-, medaka-, zebrafish-traf2</td>
</tr>
<tr>
<td>casp2</td>
<td>1</td>
<td>2</td>
<td>human-, mouse-, zebrafish-casp2</td>
</tr>
<tr>
<td>tnfr1</td>
<td>1</td>
<td>2</td>
<td>human-, mouse-, zebrafish-, tilapia-tnfr1</td>
</tr>
</tbody>
</table>

Note: the last column states the known vertebrate paralogs based on the phylogenetic trees (uploaded to the GigaDB) in this present study.
Figure 1. Image of a Chinese black porgy. It was captured from Laizhou Bay in Yantai, Shandong Province, China.

Figure 2. Phylogeny of ray-finned fishes. Spotted gar was used as the outgroup. The bootstrap supporting value for the topology is 100. These pictures in the phylogenetic tree were downloaded from the Fishbase.

Ethics approval and consent to participate

All animal experiments in this study were implemented in the light of the guidelines
of the Animal Ethics Committee and ratified by the Institutional Review Board on Bioethics and Biosafety of BGI, China

Availability of supporting data

The raw sequencing reads of all libraries and the transcriptome data have been deposited in the NCBI SRA database with accession numbers SRA541936 and SRA587358. Supporting data are available in the GigaScience database, GigaDB.

Author's contributions

ZyZ, QS, and PX conceived the project. JX, CJ, JQ, FZ, HxL, HIL, DS, ZR and JC extracted the genomic DNA and performed genome sequencing. KZ, SC, ZwZ, XY, JZ, CB and JL assembled the genome and analyzed the data. TG, RG and JX participated discussions and provided valuable advice for revision. KZ, QS, ZyZ, PX, ZwZ and SC prepared the manuscript.

Acknowledgements

This work was supported by Aquatic Sanxin Engineering Major Project of Jiangsu Province (No. D2015-17), Key Research and Development (Modern Agriculture) Program of Jiangsu Province (No. BE2016326), Fund for Independent Innovation of Agricultural Science and Technology of Jiangsu Province (No. CX(17)2021), Aquatic Sanxin Engineering Project of Jiangsu Province (No.Y2016-23), Jiangsu Innovation Ability Construction Program (No. BM2015017), Nantong Applied Basic Research Program (No. MS12015071), Nantong Applied Basic Research Program (No. MS12015070 & MS12016029), and Zhenjiang Leading Talent Program for Innovation and Entrepreneurship.

Competing interests

The authors declare that they have no competing interests.

References

insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle.

Nature Genetics 2014;46(3):253-260

