
GigaScience

Optimized Distributed Systems Achieve Significant Performance Improvement on
Sorted Merging of Massive Omics Data

--Manuscript Draft--

Manuscript Number: GIGA-D-17-00267

Full Title: Optimized Distributed Systems Achieve Significant Performance Improvement on
Sorted Merging of Massive Omics Data

Article Type: Technical Note

Funding Information:

Abstract: Background: Sorted merging of genomic data is a common data operation necessary
in whole genome sequencing studies. It involves sorting and merging genomic data
from different subjects by genomic locations. With the rapid increase of high throughput
experimental data, the computational burden makes traditional methods designed for a
single computer no longer feasible to this problem. The newly emerged distributed
systems have the potential to offer a much needed boost in performance. However,
carefully designed optimization schemas are required to take advantage of the
increased computing power while overcoming bottlenecks to achieve maximum
performance.

Findings: In this study, we custom design optimized schemas for three Apache big data
platforms, MapReduce, HBase and Spark, to perform sorted merging of massive
genome-wide data. These schemas all adopt the divide-and-conquer strategy to split
the merging job into sequential phases/stages consisting of subtasks which are
conquered in an ordered, parallel and bottleneck-free way. In two illustrating examples,
we test the performance of our schemas on merging multiple Variant Call Format
(VCF) files into either a TPED or a VCF file, which are benchmarked with the traditional
multiway-merge method and the popular VCFTools.

Conclusions: Our experiments suggest that all three schemas deliver a significant
performance improvement over existing methods. More importantly, they all show good
scalability on input size and computing resources. Therefore our findings provide
generalized scalable schemas for performing sorted merging on genetics and
genomics data using these Apache distributed systems.

Corresponding Author: Zhaohui Qin

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Xiaobo Sun

First Author Secondary Information:

Order of Authors: Xiaobo Sun

Zhaohui Qin

Fusheng Wang

Jingjing Gao

Peng Jin

Order of Authors Secondary Information:

Opposed Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Optimized Distributed Systems Achieve Significant Performance 1

Improvement on Sorted Merging of Massive Omics Data 2

Xiaobo Sun1, Jingjing Gao2, Peng Jin3, Fusheng Wang4*, Zhaohui Qin2,5* 3

 4

1Department of Computer Sciences, Emory University, Atlanta, GA 30322, USA. 5

2Department of Medical Informatics, Emory University School of medicine, Atlanta, GA 30322, USA. 6

3Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA. 7

4Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA. 8

5Department of Biostatistics, Emory University, Atlanta, GA 30322, USA. 9

X.S. Email: xsun28@emory.edu 10

J.G. Email: jingjing.gao@abbvie.com 11

P.J. Email: peng.jin@emory.edu 12

F.W. Email: fusheng.wang@stonybrook.edu 13

Z.Q. Email: zhaohui.qin@emory.edu 14

*Correspondence: zhaohui.qin@emory.edu, fusheng.wang@stonybrook.edu 15

Manuscript Click here to download Manuscript submission
manuscript.docx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:xsun28@emory.edu
mailto:jingjing.gao@abbvie.com
mailto:peng.jin@emory.edu
mailto:fusheng.wang@stonybrook.edu
mailto:zhaohui.qin@emory.edu
mailto:zhaohui.qin@emory.edu
mailto:fusheng.wang@stonybrook.edu
http://www.editorialmanager.com/giga/download.aspx?id=21365&guid=ca011c36-9ca2-4343-af5e-1150d84d3c66&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21365&guid=ca011c36-9ca2-4343-af5e-1150d84d3c66&scheme=1

2

Abstract 16

Background: Sorted merging of genomic data is a common data operation necessary in whole 17

genome sequencing studies. It involves sorting and merging genomic data from different subjects 18

by genomic locations. With the rapid increase of high throughput experimental data, the 19

computational burden makes traditional methods designed for a single computer no longer feasible 20

to this problem. The newly emerged distributed systems have the potential to offer a much needed 21

boost in performance. However, carefully designed optimization schemas are required to take 22

advantage of the increased computing power while overcoming bottlenecks to achieve maximum 23

performance. 24

Findings: In this study, we custom design optimized schemas for three Apache big data platforms, 25

MapReduce, HBase and Spark, to perform sorted merging of massive genome-wide data. These 26

schemas all adopt the divide-and-conquer strategy to split the merging job into sequential 27

phases/stages consisting of subtasks which are conquered in an ordered, parallel and bottleneck-28

free way. In two illustrating examples, we test the performance of our schemas on merging 29

multiple Variant Call Format (VCF) files into either a TPED or a VCF file, which are 30

benchmarked with the traditional multiway-merge method and the popular VCFTools. 31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Conclusions: Our experiments suggest that all three schemas deliver a significant performance 32

improvement over existing methods. More importantly, they all show good scalability on input 33

size and computing resources. Therefore our findings provide generalized scalable schemas for 34

performing sorted merging on genetics and genomics data using these Apache distributed systems. 35

Keywords: Sorted merging, whole genome sequencing, MapReduce, Hadoop, HBase, Spark. 36

 37

Findings 38

Introduction 39

With rapid development of high-throughput biotechnologies, genetics studies have entered the Big 40

Data era. Studies like Genome Wide Association Studies (GWASs), Whole Genome Sequencing 41

(WGS) and whole exome sequencing (WES) studies have produced a massive amount of data. 42

The ability to efficiently process such massive data becomes increasingly important in a 43

successful large scale genetics study [1, 2]. Traditional single machine based methods are no 44

longer feasible to process such big data due to the prohibitive computation time and I/O 45

bottleneck. It becomes increasingly attractive for investigators to take advantage of the powerful 46

distributed computing resources or the cloud to perform data processing and analyses [3]. Apache 47

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

Foundation has been a leading force in this endeavor and has developed multiple platforms and 48

systems including Hadoop [4, 5], HBase [6] and Spark [7]. All these three Apache platforms have 49

gained increasing popularity in recent years, and have been endorsed and supported by major 50

vendors such as Amazon Web Services (AWS). 51

 52

In bioinformatics, researchers have recently started to embrace distributed systems to process large 53

amount of high throughput omics data. For example, both the CloudBurst [8] and Crossbow 54

software [9] takes advantage of the Hadoop framework to accelerate sequencing read mapping and 55

SNP calling. The Collaborative Genomic Data Model (CGDM) [10] uses HBase to boost the 56

querying speed for the main classes of queries on genomic databases. The ADAM project [1], 57

built on the Spark platform, adapts the Sequence/Binary Alignment/Map (SAM/BAM) formats to 58

distributed computing environments. Industry cloud computing vendors such as Amazon [11] and 59

Google [12] are also beginning to provide specialized environments to ease genomics data 60

processing in the cloud. 61

 62

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

Despite their potentials, applications of Apache big data platform in genetics and genomics studies 63

are still relatively limited. We believe there are plenty of opportunities as data becomes larger and 64

more complex. One particular example is sorted merging, which is a ubiquitous operation in 65

processing genetics and genomics data. As an example, in WGS, variants identified from 66

individuals are often called and stored in separate VCF files, subsequently these VCF files need to 67

be merged (into a VCF or TPED file) as required by downstream analyses such as PLINK [13] 68

and BlueSNP [14, 15]. Either a VCF or TPED file requires data to be sorted by genomic location, 69

thus these tasks are equivalent to the well-known sorted full-outer-joining problem [16, 17]. 70

Currently, they are handled by software such as VCFTools [18] and PLINK. These utilities 71

become very cumbersome even in the face of a moderate scale of genomic data. The main reason 72

is that most of these tools adopt the multiway-merge-like method [19] with a priority queue as the 73

underlying data structure to ensure the output order. A key deficiency of such method is that it can 74

only have one consumer to access items from the queue, which literally makes it single-threaded, 75

even if there can be parallel producers that put items into the queue. Therefore, these single-76

machine based tools are inefficient and time-consuming when handling large datasets. 77

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

 78

In this study, we use the case of the sorted-merging of multiple VCF files to a single file to 79

demonstrate the benefits of using distributed platforms. However, simply running sorted merging 80

on a distributed system runs into problems of bottlenecks, hotspots and unordered results 81

commonly seen in parallel computations. Rather, we believe working schemas custom designed 82

for each specific distributed platform are required to unleash the full potential of these distributed 83

systems. We propose and implement three schemas running on Hadoop, Spark and HBase 84

respectively to overcome the limitations of both single-machine and simple distributed system 85

based methods. We choose these three platforms because they are representative cloud distributed 86

systems providing data partitioning based parallelism with distributed storage, data partitioning 87

based parallelism with in-memory based processing, and high dimensional table like distributed 88

storage, respectively. Hadoop [4] is the open source implementation of MapReduce [5] based 89

parallel key-value processing technique, and has the advantage of transparency and simplicity. 90

HBase [6] is a data warehousing platform which adopts Google’s BigTable data storing structure 91

[20] to achieve high efficiency in storing and reading/writing large scale of sparse data. Spark [7] 92

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

introduces the concept of Resilient Distributed Dataset (RDD) and Directed Acyclic Graph (DAG) 93

execution to parallel key-value processing, thus enabling fast, robust and repetitive in-memory 94

data manipulations. Specifically, our schemas involve dividing the job into multiple phases 95

corresponding to tasks of loading, mapping, filtering, sampling, partitioning, shuffling, merging 96

and outputting. Within each phase, data and tasks are evenly distributed across the cluster, 97

enabling processing large scale of data in a parallel and scalable manner, which in turn 98

significantly boosts performance. 99

 100

Methods 101

Overview 102

Compared to using the multiway-merge method [19] or a relational database based approach, the 103

benefits of using the three Apache distributed platforms to perform sorted merging are three-fold. 104

First, with representation of genomic locations as keys and genotypes as values, it is readily 105

transformed into the key-value model on which all three platforms offer a rich set of parallel 106

operations. Second, data in VCF files are semi-structured. Semi-structured data ideally fit for all 107

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

three platforms which allow defining the schema during data loading, avoiding the preprocessing 108

of raw data into a rigid schema as in a relational database. Third, the merged results are outputted 109

onto a distributed file system such as HDFS and Amazon S3 which can be directly used for 110

subsequent cluster-based GWAS or WGS analytical tools such as BlueSNP. 111

 112

Despite these advantages, simply performing sorted merging on distributed systems will not 113

deliver expected results for the following reasons. First, it can lead to globally unsorted results. 114

Hash-based shuffling of input data is the default mechanism for distributing data to parallel 115

working units in the system. However, shuffling will lead to globally unsorted results. Second, 116

bottleneck and hotspot can happen during the processing in the cluster. Bypassing the hashing 117

based shuffling can lead to unbalanced workload across the cluster, result in straggling computing 118

units which become the bottlenecks for response time. In addition, for parallel loading of presorted 119

data into HBase, data being loaded from all the loading tasks will hit the same node 120

simultaneously while other machines are idling, leading to an I/O hotspot. Third, sampling costs 121

could become prohibitive. Although Hadoop provides a native utility named total-order-merging 122

[16] to achieve both workload balance and global order, it involves transferring to and sampling 123

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

all the data onto a single node. The communication cost over the network and disk I/O can be 124

prohibitive when data size is very large. In the following sections, we will illustrate how our 125

custom designed schema are able to overcome these limitations in detail. 126

 127

 Data Formats and Operations 128

In a typical WGS, data analysis often starts from individual genotype files in VCF format [21]. A 129

VCF file contains data arranged into a table consisting of eight mandatory fields including 130

chromosome (CHROM), the genomic coordinate of the start of the variant (POS), the reference 131

allele (REF), a comma separated list of alternate alleles (ALT), among others. In our experiments, 132

we use a dataset consisting of the VCF files of 93 individuals [22] generated from Illumina's 133

BaseSpace software (Left tables in Figure 1). Each file has around 4-5 million rows, each 134

representing one of the individual’s genomic variants, with a size of about 300 megabytes. In an 135

attempt to protect the privacy of the study subjects, we apply the following strategy to conceal 136

their real genetic variant information contained in the VCF files: we first transform each original 137

genomic location by multiplying it with an undisclosed constant real number, taking the floor 138

integer of the result, and then add another undisclosed constant integer number. 139

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

 140

It is common that multiple VCF files need to be merged into a single TPED file for analysis tools 141

such as PLINK. A TPED file resembles a big table, aggregating genotypes of all individuals under 142

investigation by genomic location (Right table in Figure 1). The merging follows several rules. 143

First, records having an unqualified filter value are discarded. Second, genotypes in VCF files are 144

stored as binary codes where 0 stands for reference allele while 1 stands for mutant allele. Binary 145

codes must be translated into corresponding types of nucleotides in the TPED file. Third, all 146

individuals need to have a genotype for genomic locations that appears in at least one VCF file. 147

The default genotype for missing values is homozygous reference alleles. 148

 149

MapReduce Schema 150

MapReduce [5] is a parallel computing model based on a split-apply-combine strategy for data 151

analysis, in which data are mapped to key-values for splitting (mapping), shuffling and combining 152

(reducing) for final results. We use Apache Hadoop-2.7 as the system for our implementation. Our 153

optimized schema consists of two MapReduce phases, as shown in Figure 2. 154

 155

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

First MapReduce phase. Raw data are loaded from HDFS into parallel mappers to perform the 156

following tasks: First, unqualified data are filtered out and qualified ones are mapped to key-value 157

pairs. The mapper output key is a genomic location and output value is genotype and individual 158

ID. Second, Key-value pairs are grouped together by their chromosome and temporarily saved as 159

compressed Hadoop sequence files [23] for faster I/O in the second MapReduce phase. With this 160

grouping, we can merge records from selected chromosomes of interests rather than from all of 161

them. Meantime, these records are sampled to explore their key distribution profile along the 162

chromosomes for determining boundaries in between each pair of which there is approximately an 163

equal number of records. Specifically, the genomic locations of sampled-out records for each 164

chromosome are used as boundaries to split the chromosome into disjoint segments. Because 165

records falling in the same segment will be assigned to the same reducer in the later phase, 166

boundaries calculated in this way ensure that the workload of each reducer is balanced. There are 167

two rounds of samplings. The first one happens in each mapper with a pre-specified sampling rate, 168

which in our case is set to 0.0001. To separate sampled records by chromosome they are 169

distributed to different reducers in this phase based on their chromosomes, where they are sampled 170

again with a rate equal to the reciprocal of input file number. This second sampling limits the 171

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

number of final sampled records even in the face of a large number of input files. Because the 172

number of reducers instantiated in the second phase is decided by the number of sampled records, 173

we can therefore avoid launching unnecessary reducers thus reducing task overhead. 174

 175

Second MapReduce phase. In this phase, multiple parallel MapReduce jobs are created, and each 176

job specifically handles all records of a single chromosome outputted as sequence files in the first 177

phase. Within each job, a partitioner shuffles records to the appropriate reducer by referring to the 178

boundaries from the previous phase, so that records falling in between the same pair of boundaries 179

are aggregated together. Finally, each reducer sorts and merges aggregated records by genomic 180

location before outputting them to a TPED file. In this way, globally sorted merging can be 181

fulfilled. 182

 183

HBase Schema 184

HBase [6] is a column-oriented database where data are grouped into column families and split 185

horizontally into regions spreading across the cluster. With this data storing structure, it supports 186

efficient sequential reading and writing of large-scale data as well as fast random data accessing. 187

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

Also, HBase is storage efficient because it can remember null values without saving them on disk. 188

These features make HBase an ideal platform for managing large, sparse data with relatively low 189

latency which naturally fits the sorted merging case. We use the HBase-1.3 as the system for our 190

implementation. As shown in Figure 3, our optimized HBase schema is divided into three phases 191

as discussed next. 192

 193

1) Sampling phase 194

The main challenge of HBase lies in that it is not uncommon to find that one server of the cluster 195

becomes a computational hotspot. This can happen when it starts loading a table from a single 196

region hosted by a single node. Therefore, we need to presplit the table into regions of 197

approximately equal size before loading. The sampling phase is introduced to determine 198

reasonable presplitting regional boundaries. The total region number is set to be half of the 199

number of input files so that the size of each region is approximately 1GB. Meanwhile, mappers 200

of this phase also output qualified records as compressed Hadoop sequence files on HDFS which 201

are used as inputs in the next phase. In addition, filtering and key-value mapping also take place in 202

this phase. 203

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

 204

2) Bulk loading phase 205

Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs is not 206

yet fully solved because sorted records are loaded sequentially and all the records being loaded at 207

any instant still hit the same region and server. This necessitates the adding of this phase. During 208

the bulk loading, the key and value of each record outputted from previous phase is converted into 209

HBase’s binary row-key and column-value respectively, and saved as HFile, HBase’s native 210

storage format. The row-key here is in the form of chromosome-genomic location, and column-211

value refers to reference allele, individual ID and genotype. The bulk loading populates each 212

HFile with records falling in the same pair of presplit regional boundaries. Because HFiles are 213

written simultaneously by parallel mappers/reducers, all working nodes are actively involved and 214

the regional hotspot is thus circumvented. Upon finishing writings, the HBase can readily load 215

HFiles in parallel into the table by simply moving them into local storage folders. This procedure 216

is therefore at least a magnitude faster than the normal loading. The order of records in the table is 217

guaranteed because they are internally sorted by writing reducers and HBase’s Log-Structured 218

Merge-tree [24]. It is noteworthy to mention that VCF records are sparse, thus HBase is very 219

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

storage-efficient. 220

 221

3) Exporting Phase 222

A scan is performed on the table. It involves launching parallel mappers each receiving records 223

from a HBase region, filling in missing genotypes, concatenating records with the same row-key, 224

and outputting final results into TPED files. 225

 226

Spark Schema 227

Spark [7] is a distributed engine that embraces the ideas of MapReduce and Resilient Distributed 228

Dataset (RDD). It can save intermediate results in the form of RDD in memory, and perform 229

computation on them. Also, its computations are lazily evaluated, which means the execution plan 230

can be optimized since it tries to include as many computational steps as possible. As a result, it is 231

ideal for iterative computations such as sorted merging. We implement our optimized Spark 232

schema on Spark-2.1. It has three stages as shown in Figure 4. Stage I involves loading raw data 233

as RDDs, filtering, and mapping RDDs to paired-RDDs with keys (chromosome-genomic 234

position) and values (reference allele, individual ID and genotype). This stage ends with a sort-by-235

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

key shuffling that repartitions and sorts PairRDD records so that records with the same key are 236

aggregated together. In Stage II, aggregated PairRDD records of the same key are merged into 237

TPED format and converted back to RDD records for outputting. However, Spark’s native family 238

of group-by-key functions cannot be used here because their default partitioner is hash-based and 239

different from the range-based partitioner used by previous sort-by-key function. Consequently, 240

the merged results would be reshuffled into an unsorted status. We therefore optimize the merging 241

to bypass these functions, being performed locally without data reshuffling to ensure both order 242

and high speed. Finally in Stage III, merged RDD records are saved as TPED files. 243

 244

Execution parallelism has an important impact on the performance. To maximize performance, the 245

number of parallel tasks is set to the number of input files. In this way, the data locality is 246

maximized and each task is assigned a proper amount of work. In addition, unlike using 247

MapReduce or HBase, when performing sorting by key, no explicit sampling is needed because 248

Spark keeps track of the number of records before determining repartition boundaries. 249

 250

Results 251

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

We conduct all experiments using Amazon’s Elastic MapReduce (EMR) service. Within the 252

infrastructure, we choose EC2 working nodes of m3.xlarge type, which has four High Frequency 253

Intel Xeon E5-2670 v2 (Ivy Bridge) Processors and 15GB memory. We use a dataset consisting of 254

the VCF files of 93 individuals [22] generated from Illumina's BaseSpace software. 255

 256

 Overall Performance Analysis of Clustered-based Schemas 257

Our primary goal is to explore the scalability of the three schemas on input data size and available 258

computing resources, namely CPUs. To achieve this, in this experiment we adjust the number of 259

input files from 10 to 93, with an approximate total uncompressed size from 2.5 G to 20 G, and 260

conduct the experiment using a varying number of working nodes from 3 to 18, namely 12 to 72 261

cores. 262

 263

As Figure 5 shows, for all three schemas, given a fixed number of cores, the execution time 264

increases linearly with the increased number of input files. On the one hand, the increasing trend is 265

apparent with fewer cores because each core is fully utilized and the more input files, the larger 266

number of parallel tasks are assigned to it. For example, given 12 cores, as the file number 267

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

increases from 10 to 93, the execution time increases from 739 to 2,281 seconds for the 268

MapReduce schema, from 375 to 2,751 seconds for the HBase schema, and from 361 to 1,699 269

seconds for the Spark schema, respectively. On the other hand, with relatively more cores such as 270

72, this linear increasing trend is less pronounced because there are more cores than tasks so that 271

all cores are assigned at most one task. We also notice that when input file size is small to 272

moderate, the Spark schema does not always show consistent improvement in terms of execution 273

time when using more cores, for example, the intersection of curves of 24 and 72 cores in Figure 274

5c. This phenomenon is attributed to the limitation of Spark’s internal task assignment policy 275

which gives rise to the possibility that some nodes are assigned more than one tasks while others 276

remain idle. 277

 278

In another experiment in which the input file number is fixed at 93, the core number increases 279

from 12 to 72 (Figure 6). For all three schemas, execution time is reduced with more cores, from 280

2,281 to 514 seconds for MapReduce, from 2,751 to 591 seconds for HBase, and from 1,699 to 281

460 seconds for Spark, respectively. Therefore, all three schemas demonstrate nice scalability on 282

input data size and computing resources. 283

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

 284

The Anatomic Performances Analysis of Cluster-based Schemas 285

Another important goal of our study is to identify potential performance bottlenecks, so we 286

evaluate the execution time of each phase/stage of all three schemas. Figure 7 shows the trend of 287

anatomic computing time spent on merging increasing number of VCF files using 48 cores. For 288

the MapReduce schema (Figure 7a), its two phases account for a comparable proportion of total 289

time and both show a linear or sublinear increasing pattern. For the three phases of the HBase 290

schema (Figure 7b), they generally scale well with the input file number. Meanwhile, the second 291

phase becomes more dominant with more input files owing to the larger amount of shuffled data 292

during the writing of HFiles. However, we do not consider it as a bottleneck since all tasks of this 293

phase are parallelized with no workload or computational hotspot. We do not observe an obvious 294

super-linear increment pattern from the figure either. Finally, Figure 7c shows the time costs of 295

three stages of the Spark schema. They show a uniform increasing trend with input file number. 296

Among them, the second one takes up a considerable proportion of the total execution time as it 297

has the relatively expensive sort-by-key shuffling operation. Although no data is shuffled in the 298

first stage, its time lapse is close to that of the second stage. This is because at the end of the first 299

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

stage, data are sampled for determining the boundaries used by sort-by-key’s range partitioner. 300

This operation demands a considerable execution time because it scans all the data and balances 301

them if necessary. 302

 303

Put together, these results suggest that all phases/stages of the three schemas scale well on input 304

data size. Therefore we are not expecting to see any bottleneck when dealing with even larger 305

scale of data. 306

 307

Comparisons between Single Machine Based Methods and Cluster-based Schemas 308

Another intriguing question in our experiments is how much can our schemas outperform the 309

current single machine based methods and applications. To achieve this, in the first experiment, 310

we test the performance of merging 40 VCF files into one VCF using VCFTools v4.2 as a 311

benchmark. As shown in Table 2, VCFTools takes 30,189 seconds while the fastest cluster-based 312

schema, MapReduce-based, takes only 484 seconds using 72 cores, which is 62-fold faster. In the 313

second experiment, we test the performance of merging of VCF files into a TPED using multiway-314

merge based implementation as a benchmark. We choose to implement multiway-merge because, 315

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

to our best knowledge, currently no software/application is available to perform this task with a 316

simple call. Rather, VCF files need to be manually converted to individual TPED files first which 317

in turn are merged together using merging utility of PLINK which essentially is based on 318

multiway-merge. Our multi-way merge implementation saves this manual conversion step, and is 319

also more concise and efficient than PLINK. The multiway-merge implementation is tested on a 320

single node while the three schemas on a cluster of nodes with 72 cores. Initially with fewer input 321

files, the execution time difference is 399 seconds or about 2.8-fold between multiway-merge and 322

the fastest cluster-based schema, MapReduce. However, this difference becomes significant with 323

more input files. For example, the largest difference is 5,585 seconds or about 13-fold (Figure 8) 324

on merging 93 files. As an extreme test of merging 642 VCF files (not shown), the computing time 325

is 1,228 minutes for multiway merge implementation versus 11.3 minutes of the MapReduce 326

schema running on a 400-core cluster, more than 100-fold of speed up. 327

 328

We also compare the performances among the three schemas all of which are evaluated on a 72-329

core cluster with increasing number of files as inputs (Figure 8). It turns out that the three schemas 330

have comparable performance. More specifically, MapReduce-based schema performs best with 331

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

small input size, HBase-based schema performs best with moderate input size, while Spark-based 332

schema performs best with large input size. The rationale behind such an observation is when the 333

input data size is small, MapReduce can make the most usage of computing resources because it 334

has a constant 25 parallel jobs (one for each of chromosomes 1-22, X Y and M (Mitochondria)) in 335

its second phase. In contrast, Spark has much fewer tasks with a number equals to the number of 336

input files for achieving maximized data-task locality. When the input data size is moderate, 337

HBase triumphs due to its internal sorting and relative compact storage format of intermediate 338

data. When the input data size is large, Spark-based schema outperforms the other two owing to its 339

least number of data shuffling (only one), execution plan optimization, and ability to cache 340

intermediate results in memory. We caution that the computing time may fluctuate depending on 341

the genomic location profile of input files as well as the data loading balance of the HDFS. 342

 343

Discussion 344

In this report, we describe three cluster-based schemas running on Apache Hadoop (MapReduce), 345

HBase and Spark platforms respectively for performing sorted merging of variants identified from 346

WGS. We manage to show that all three schemas are highly scalable on both input data size and 347

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

computing resources, suggesting that large scale sequencing of variant data can be merged 348

efficiently given computing resources that are readily available in the cloud. We also show that 349

even with a moderate-sized cluster and input data, all three schemas are able to significantly 350

outperform the broadly-used, single-machine based VCFTools and multiway-merge 351

implementation. We expect a much more significant performance improvement when merging a 352

much larger scale of data using a larger cluster or the cloud. 353

 354

Unlike normal merging, efficient sorted merging of many large tables has always been a difficult 355

problem in the field of data management. Multiway-merge is the most efficient single-machine 356

based method for sorted merging, but its performance is limited by the disk I/O [25]. Sorted 357

merging also places challenges to distributed system based solutions because neither the efficient 358

hash-based merging nor caching the intermediate table in shared memory is feasible [26]. 359

Although a utility named total-order-joining is provided by the Hadoop for addressing this 360

problem, it suffers from both network communication and local disk I/O bottleneck, thus is not 361

scalable [16, 27]. In contrast, our schemas divide this problem into different phases of tasks each 362

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

conquered in parallel to bypass these bottlenecks and achieve maximum parallelism and 363

scalability. Furthermore, in addition to merging sequencing variant data, the schemas can be 364

generalized for other key-based, sorted merging problems that are frequently encountered in 365

genetics and genomics data processing. As an example, they can be slightly modified to merge 366

multiple BED format files such as ChIP-seq peak lists [28] and other genomic regions of interest. 367

Another potentially useful feature is that, unlike traditional sorted merging algorithms which 368

usually require presorted inputs for better performance, our schemas are free of such a 369

requirement. 370

 371

Finally, in light of the different features and specialties of the three platforms, each of the three 372

schemas we developed has its own advantages and disadvantages in different application scenarios 373

as summarized in Table 1. For example, the MapReduce schema is good for static one-time, non-374

incremental merging on small to moderate-sized data since it can have the most parallel jobs, the 375

least overhead, and the most transparent workflow. The HBase schema, supported by data 376

warehousing technologies, fits for incremental merging since it does not need to re-merge existing 377

results with new ones from the scratch only if the incremental merging is performed on the same 378

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

chromosomes. Also, it provides highly-efficient storage and On-Line Analytical Processing 379

(OLAP) on merged results. The Spark schema is ideal for merging large scale of data because it 380

has the least data shuffling and keeps intermediate results in memory. A bonus brought by Spark is 381

that subsequent statistical analyses can be carried out directly on the merged results using its rich 382

set of parallel statistical utilities. 383

 384

Availability and Requirements 385

Project name: CloudMerge 386

Project home page: https://github.com/xsun28/CloudMerge 387

Operating system(s): Linux 388

Programming language: Java 389

Other requirements: Java 1.7 or higher, Hadoop-2.7, HBase-1.3, Spark-2.1 390

License: Apache License 2.0 391

 392

Availability of Data and Materials 393

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/xsun28/PlinkCloud

26

The source code of the project is available on GitHub. The original 93 individual VCF files used 394

in our experiments are from the Consortium on Asthma among African-ancestry Population in the 395

Americas (CAAPA) [22]. To conceal the potential individual identifiable genotype information 396

from the public, we encrypt the authentic genomic location of all VCF files to generate a new 397

batch of encrypted VCF files, which are available on AWS S3 as 398

https://s3.amazonaws.com/xsun316/encrypted/encrypted.tar.gz. We also provide sample results of 399

merging 93 VCF files into either one VCF or one TPED file using our cluster-based schemas, 400

which are available on AWS S3 as 401

https://s3.amazonaws.com/xsun316/sample_results/result.tar.gz. 402

 403

Abbreviations 404

VCF: Variant Call Format; GWAS: Genome Wide Association Studies; WGS: Whole Genome 405

Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative 406

Genomic Data Model; SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed 407

Dataset; DAG: Directed Acyclic Graph; EMR: Elastic-MapReduce; CAAPA: Consortium on Asthma 408

among African-ancestry Population in the Americas; 409

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://s3.amazonaws.com/xsun316/encrypted/encrypted.tar.gz

27

 410

Consent for Publication 411

Not applicable 412

Competing Interests 413

The authors declare they have no competing interests. 414

Authors Contributions 415

J.G. proposed the problem. X.S., F.W. initiated this project. X.S. designed and implemented the 416

CloudMerge project. X.S. drafted the manuscript. X.S., J.P., F.W. and Z.Q. revised the manuscript. 417

Acknowledgements 418

We are grateful for Duck, Alyssa Leann for helping on revising and rephrasing the manuscript. 419

 420

References 421

1. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. Adam: Genomics 422

formats and processing patterns for cloud scale computing. University of California, Berkeley 423

Technical Report, No UCB/EECS-2013. 2013;207. 424

2. Siretskiy A, Sundqvist T, Voznesenskiy M and Spjuth O. A quantitative assessment of the hadoop 425

framework for analyzing massively parallel dna sequencing data. Gigascience. 2015;4 1:26. 426

3. Burren OS, Guo H and Wallace C. VSEAMS: a pipeline for variant set enrichment analysis using 427

summary GWAS data identifies IKZF3, BATF and ESRRA as key transcription factors in type 1 428

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

diabetes. Bioinformatics. 2014;30 23:3342-8. doi:10.1093/bioinformatics/btu571. 429

4. Apache Hadoop. http://hadoop.apache.org/. Accessed 10 Oct 2017. 430

5. Dean J and Ghemawat S. Mapreduce: Simplified data processing on large clusters. Commun Acm. 431

2008;51 1:107-13. doi:Doi 10.1145/1327452.1327492. 432

6. Vora MN. Hadoop-HBase for large-scale data. In: Computer science and network technology 433

(ICCSNT), 2011 international conference on 2011, pp.601-5. IEEE. 434

7. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient distributed datasets: 435

A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th 436

USENIX conference on Networked Systems Design and Implementation 2012, pp.2-. USENIX 437

Association. 438

8. Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009;25 439

11:1363-9. doi:10.1093/bioinformatics/btp236. 440

9. Langmead B, Schatz MC, Lin J, Pop M and Salzberg SL. Searching for SNPs with cloud computing. 441

Genome Biol. 2009;10 11:R134. doi:10.1186/gb-2009-10-11-r134. 442

10. Wang S, Mares MA and Guo YK. CGDM: collaborative genomic data model for molecular profiling 443

data using NoSQL. Bioinformatics. 2016;32 23:3654-60. doi:10.1093/bioinformatics/btw531. 444

11. AWS Genomics Guide. 445

https://d0.awsstatic.com/Industries/HCLS/Resources/AWS_Genomics_WP.pdf. Accessed 446

10 Oct 2017. 447

12. Gruber K. Google for genomes. Nature Research, 2014. 448

13. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for 449

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81 450

3:559-75. doi:10.1086/519795. 451

14. Mohammed EA, Far BH and Naugler C. Applications of the MapReduce programming framework 452

to clinical big data analysis: current landscape and future trends. BioData Min. 2014;7:22. 453

doi:10.1186/1756-0381-7-22. 454

15. Huang H, Tata S and Prill RJ. BlueSNP: R package for highly scalable genome-wide association 455

studies using Hadoop clusters. Bioinformatics. 2013;29 1:135-6. 456

doi:10.1093/bioinformatics/bts647. 457

16. White T. Hadoop: The definitive guide. " O'Reilly Media, Inc."; 2012. 458

17. Silberschatz A, Korth HF and Sudarshan S. DatabaseSystem Concepts. 2010. 459

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://hadoop.apache.org/
https://d0.awsstatic.com/Industries/HCLS/Resources/AWS_Genomics_WP.pdf

29

18. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format 460

and VCFtools. Bioinformatics. 2011;27 15:2156-8. doi:10.1093/bioinformatics/btr330. 461

19. Multiway-Merge Algorithm. https://en.wikipedia.org/wiki/K-Way_Merge_Algorithms. 462

Accessed 10 Oct 2017. 463

20. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, et al. Bigtable: A distributed 464

storage system for structured data. Acm T Comput Syst. 2008;26 2 doi:Artn 4 465

10.1145/1365815.1365816. 466

21. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of 467

human genome variation from population-scale sequencing. Nature. 2010;467 7319:1061-73. 468

doi:10.1038/nature09534. 469

22. Mathias RA, Taub MA, Gignoux CR, Fu W, Musharoff S, O'Connor TD, et al. A continuum of 470

admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat 471

Commun. 2016;7:12522. doi:10.1038/ncomms12522. 472

23. Kwon Y, Balazinska M, Howe B and Rolia J. A study of skew in mapreduce applications. Open 473

Cirrus Summit. 2011;11. 474

24. O’Neil P, Cheng E, Gawlick D and O’Neil E. The log-structured merge-tree (LSM-tree). Acta 475

Informatica. 1996;33 4:351-85. 476

25. Sedgewick R and Flajolet P. An introduction to the analysis of algorithms. Addison-Wesley; 2013. 477

26. Özsu MT and Valduriez P. Principles of distributed database systems. Springer Science & Business 478

Media; 2011. 479

27. Miner D and Shook A. MapReduce Design Patterns: Building Effective Algorithms and Analytics 480

for Hadoop and Other Systems. " O'Reilly Media, Inc."; 2012. 481

28. Chen L, Wang C, Qin ZS and Wu H. A novel statistical method for quantitative comparison of 482

multiple ChIP-seq datasets. Bioinformatics. 2015;31 12:1889-96. 483

 484

Figure legends 485

Figure 1. Converting VCF files to TPED. Left tables are input VCF files. Right table is the 486

merged TPED file. Records are filtered out if their Filter value doesn’t equal to ‘PASS’ (Pos 487

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://en.wikipedia.org/wiki/K-Way_Merge_Algorithms

30

10147). Individual genotypes with the same genomic location that exist in any VCF file are 488

aggregated together on one row. The resulting TPED file thus has an inclusive set of sorted 489

genomic locations from all VCF files. 490

 491

Figure 2. The workflow chart of MapReduce schema. It consists of two phases: In the first 492

phase, input VCF records are filtered, grouped around chromosomes into bins, and mapped into 493

key-value records. Two samplings are performed to generate partition lists of chromosomes. In the 494

second phase, parallel jobs of specified chromosomes are launched. Within each job, records from 495

corresponding bins are loaded, partitioned, sorted and merged by genomic locations before being 496

outputted as TPED files. 497

 498

Figure 3. The workflow chart of HBase schema. The workflow is divided into three phases. The 499

first one is a sampling, filtering and mapping phase. A MapReduce job samples out VCF records 500

whose genomic positions are used as region boundaries when creating the HBase table. Only 501

qualified records are mapped as key-values and saved as Hadoop sequence files. The second phase 502

is HBase bulk loading in which a MapReduce job load and writes records outputted from the 503

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31

previous phase, aggregating them into corresponding regional HFiles in the form of HBase’s row 504

key and column families. Finished HFiles are moved into data folders on region servers. In the 505

third phase, we launch parallel scans over regions of the whole table to retrieve desired records 506

which are subsequently merged and exported as TPED files. 507

 508

Figure 4. The workflow chart of Spark schema. It is a single Spark job consisting of three 509

stages. In the first stage, VCF records are loaded, filtered, and mapped to PairRDDs with keys of 510

genomic position and values of genotype. The sort-by-key shuffling spans across the first two 511

stages, sorting and grouping together records by keys. Then grouped records with the same key 512

are locally merged into one record in TPED format. Finally, merged records are exported as TPED 513

files. 514

 515

Figure 5. The scalability of clustered based schemas on input size. Subfigures a, b and c refer 516

to MapReduce, HBase and Spark schemas respectively. As input file number increases from 10 to 517

93, the time cost of all three schemas with 12, 24 or 72 cores show at most a linear increasing 518

trend which suggests good scalabilities. The HBase schema with 12 cores has the largest increase 519

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32

from 375 to 2,751 seconds, or 7.3-fold. 520

 521

Figure 6. The scalability of cluster based schemas on available computing core number. 522

Subfigures a, b and c refer to MapReduce, HBase and Spark schemas respectively. In these 523

experiments, the number of input files is fixed at 93. As core number increases from 12 to 72, the 524

time cost of the three schemas decrease linearly until a plateau is reached where computing 525

resources become excessive. The Spark schema shows lowest reduction of time cost from 1,699 to 526

460 seconds, or 3.7-fold. These results suggest good scalabilities of these schemas on computing 527

resources. 528

 529

Figure 7. The performance anatomy of cluster-based schemas on increasing input size. The 530

number of cores in these experiments is fixed at 48. All phases of the three schemas show good 531

scalabilities with input data size. a) MapReduce schema: The two MapReduce phases have a 532

comparable time cost, increasing 3.0- and 2.2-fold respectively as input file number increases 533

from 10 to 93. b) HBase schema: The time spent in each phase increases 2.0-, 2.7- and 2.2-fold 534

respectively as input file number increases from 10 to 93. The bulk loading and exporting phases 535

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

33

together take up more than 90% of total time expense. c) Spark schema: The time cost increases 536

3.1-, 3.0- and 3.4-fold respectively for the three stages as input file number increases from 10 to 537

93. Like the HBase schema, the first two stages of the Spark schema together account for more 538

than 90% of total time cost. 539

 540

Figure 8. Performance comparison among multiway-merge implementations and cluster-541

based schemas: Firstly, we compare of the performances of the three schemas with that of the 542

multiway-merge implementation. When input file number is 10, the time differences between 543

multiway-merge and our schemas are relatively small, ranging from 2- to 2.8-fold. As file number 544

increases to 93, the differences turn out to be more significant, ranging from 10.2- to 13.1-fold. 545

Secondly, we compare the performances among the three schemas which are comparable to each 546

other regardless of the input file number. MapReduce schema has best performance in merging 10 547

files; HBase schema performs best in merging 20, 40 and 60 files; Spark schema is fastest in 548

merging 93 files. 549

 550

 551

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34

Tables 552

Table 1. Performance comparisons of VCTools versus MapReduce, HBase and Spark 553

schemas 554

 VCFTools MapReduce HBase Spark

Time cost (seconds) 30,189 484 577 596

Fold (faster) - 62.4 52.3 50.7

We compare the time cost of VCFTools and our three schemas using 72 cores on merging 40VCF 555

files into one VCF file. VCFTools takes more than 30,000 seconds to finish. In contrast, all three 556

schemas take less than 600 seconds to finish. MapReduce schema has the largest performance 557

improvement which is about 62-fold. 558

 559

Table 2. Pros and Cons of MapReduce, HBase and Spark schemas 560

Schemas Pros Cons

MapReduce Simple architecture and

least overhead.

 Best parallelism for small

input size (<= 20).

 Good for one-time

merging.

 Performance is stable.

 Merging is not

incremental.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35

HBase Good for intermediate

input size (>=20 and

<=100).

 Supports incremental

merging.

 Supports On-Line

Analytical Processing

(OLAP).

 Best storage efficiency.

 Users must determine

region number in

advance.

 Has most local I/O.

 Complex performance

tuning.

Spark Good for large input size

(>100).

 Keeps intermediate

results in memory and

least local I/O.

 Good for subsequent

statistical analysis on

merged results.

 Possibly weakened data

locality during loading.

 Slight unstable

performance when

computing resources

exceeds needs of input

size.

 Actual execution plan is

not transparent.

 Complex performance

tuning.

Each of the three distributed systems has its own specialties and limitations. As a result, the 561

schemas running on them have different pros and cons, and application scenarios as listed above. 562

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Chr Pos Ref Alt Filter … Genotype

1 10147 A T q20 … 1/0:43

1 10240 T G PASS … 1/0:5

… … … … … … …

Y 11590 G C PASS … 0/0:10

Chr Pos Ref Alt Filter … Genotype

1 10186 G A PASS … 1/0:9

1 10240 T G PASS … 1/1:11

… … … … … … …

Y 11872 G T PASS … 0/1:10

VCF	File	
1

VCF	File	
2

Chr Rs Distance Pos Ind_1 Ind_2

1 . 0 10186 G	G G	A

1 . 0 10240 T	G G	G

… … … … … …

Y . 0 11590 G	G G	G

Y . 0 11872 G	G G	T

Merged	TPED	file

Genotypes

Figure1 Click here to download Figure Figure1.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21348&guid=6735451f-7b0d-4c1c-8ea6-a6a3e0469642&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21348&guid=6735451f-7b0d-4c1c-8ea6-a6a3e0469642&scheme=1

Phase	I

Mappers

Binned	
Folders

Filtering	&	Binning

Reducer

Second
Sampling

Sampling

Chr1

Chr2
…

Partition	Lists

Launch	Parallel	
Jobs

Phase	II
(#	Jobs=#	Chrm)

Mappers Partitioner

Merging

Reducers

TPED	FilesVCF	Files

…

Output

…

Loading

Figure2 Click here to download Figure Figure2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21349&guid=3130c5d6-695d-44b4-8557-e18247a18bf4&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21349&guid=3130c5d6-695d-44b4-8557-e18247a18bf4&scheme=1

VCF	Files

…

Sampling, Mapping& Filtering

chr1_loci_1
…
chrM_loci_N

Region	Boundaries

Create	table

HBase	Bulk	Loading

Converting
to HBase
row keys
and values

Mappers HFiles

HBase	Table

region	1

region	2	

…
region n

Scanning
Mappers

Exporting

HDFS

Mappers

…

…

HDFS

TPED	Files
Moving	to
Region	
Servers

Sampling

Outputting
Sequence Files

Loading

Loading

Figure3 Click here to download Figure Figure3.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21350&guid=aa7b1fe1-d2fb-43d8-8d37-fdcbc4c9e8ec&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21350&guid=aa7b1fe1-d2fb-43d8-8d37-fdcbc4c9e8ec&scheme=1

Input	Files

…

HDFS

RDD

…

Loading	to	RDDs Filtering Mapping	to	
PairRDD	with	
keys	and	values

Sort	by	key Locally	
merge	by	key	

…

HDFS

Saving	to	
HDFS

Stage	1 Stage	3

TPED	FilesRDD

…

PairRDD

…

PairRDD

… …

PairRDD

Stage	2Figure4 Click here to download Figure Figure4.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21351&guid=c03f7600-3225-4dc0-ae7b-0faaa38daa58&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21351&guid=c03f7600-3225-4dc0-ae7b-0faaa38daa58&scheme=1

0

500

1000

1500

2000

2500

10 20 40 60 93

Ti
m
e	
Co

st
s	(
se
c)

Input	File	Number

MapReduce	Schema

12	cores 24	cores 72	cores

0

500

1000

1500

2000

2500

3000

10 20 40 60 93

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

HBase	Schema

12	cores 24	cores 72	cores

0

500

1000

1500

2000

10 20 40 60 93

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

Spark	Schema

12	cores 24	cores 72	cores

c)

a) b)
Figure5 Click here to download Figure Figure5.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21352&guid=15b1c8dc-e796-4ba7-8821-046d5deda812&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21352&guid=15b1c8dc-e796-4ba7-8821-046d5deda812&scheme=1

a)

0

500

1000

1500

2000

2500

12 24 48 60 72

Ti
m
e	
Co

st
s	(
Se
c)

Core	Number

MapReduce	Schema b)

0

500

1000

1500

2000

2500

3000

12 24 48 60 72

Ti
m
e
Co

st
s(
Se
c)

Core Number

HBase	Schema

c)

0

500

1000

1500

2000

12 24 48 60 72

Ti
m
e
Co

st
s{
Se
c)

Core Number

Spark	Schema

Figure6 Click here to download Figure Figure6.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21353&guid=0d6c94fd-18f9-45ea-bef1-e3ccdb1496bb&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21353&guid=0d6c94fd-18f9-45ea-bef1-e3ccdb1496bb&scheme=1

0

50

100

150

200

250

300

350

400

10 20 40 60 93

Ti
m
e	
Co

st
s(
Se
c)

Input	File	Number

MapReduce	Schema

Loading,	Filtering,	Mapping	&Sampling Sorting,	Mergining	&	Outputting

a)

0

50

100

150

200

250

300

350

10 20 40 60 93

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

HBase	Schema

Sampling Bulk	Loading Exporting

b)

c)

0

50

100

150

200

250

300

10 20 40 60 93

Ti
m
e	
Co

st
s	(
Se
c)

Input	File	Number

Spark	Schema

Loading,	Filtering	&	Mapping Sorting	&	Merging Exporting

Figure7 Click here to download Figure Figure7.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21354&guid=3cb74d88-6f03-40f1-a3b7-1e82bb4d9dab&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21354&guid=3cb74d88-6f03-40f1-a3b7-1e82bb4d9dab&scheme=1

2.8

4.5

7.1
10.3

13.1

200

2000

20000

10 20 40 60 93

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

Multiway	Merge MapReduce	w/	72	cores HBase	w/	72	cores Spark	w/	72	cores

Figure8 Click here to download Figure Figure8.pdf

http://www.editorialmanager.com/giga/download.aspx?id=21355&guid=7cb53a4c-64f4-4a73-b521-c19d1b5f86f1&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21355&guid=7cb53a4c-64f4-4a73-b521-c19d1b5f86f1&scheme=1

 October 12, 2017

Laurie Goodman, PhD

Editor-in-Chief

GigaScience

Dear Dr. Goodman:

On behalf of our colleague, Xiaobo Sun, Jingjing Gao and Peng Jin, I am pleased to submit a

manuscript titled:

Optimized Distributed Systems Achieve Significant Performance Improvement on Sorted Merging of

Massive Omics Data

for publication consideration in GigaScience as a Technical Note.

In the present manuscript, we describe three novel optimized schemas, running on Apache Hadoop,

HBase and Spark respectively, for performing sorted merging on Omics data. Sorted merging is one of

important data manipulation tools for Omics data, for example, the merged VCF or TPED files are

required to perform statistical analysis in association studies on sequencing data. However, most

existing tools for handling this task, such as VCFTools and PLINK, are running on single machine and

implemented based on the multiway-merge algorithm. As a result, they suffer from the limitations of

disk I/O and become very inefficient in face of large data size. The recent distributed systems offer an

alternative solution. However, without optimized working schemas, naively using these systems does

not lead to scalability.

In this study, we custom design optimized schemas for three Apache big data platforms. All three

schemas are able to overcome the bottleneck problem by maintaining cluster’s workload balance and

achieving maximum parallelism. We have compared our schemas with VCFTools on merging 40 VCF

files into a single one, as well as with a multiway-merge based implementation on merging up to 93

VCF files into a single TPED file. It turns out that even using a moderate sized cluster, we can archive

speedup up to 62-fold compared to VCFTools. All three schemas show good scalability on both input

size and number of cores, suggesting given enough computing resources we can guarantee the

performance even in face of very large scale of data. Therefore our findings provide generalized

scalable schemas for performing sorted merging on genetics and genomics data using these Apache

distributed systems. Our schemas can be easily generalized to merge other types of Omics data such as

ChIP-seq peak lists. Therefore, we believe our schemas will have a high impact in the omics field

as we enter the big data era.

Personal Cover Click here to download Personal Cover cloudmerge.cover.docx

http://www.editorialmanager.com/giga/download.aspx?id=21356&guid=9c4c9496-3c09-44bd-812c-dd800cad99a7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=21356&guid=9c4c9496-3c09-44bd-812c-dd800cad99a7&scheme=1

We hereby confirm that we do not have any potential competing interests and all authors have

approved the manuscript for submission. We also confirm that the manuscript has not been submitted

for publication elsewhere.

In light of the content, we suggested the following researchers as potential reviews for our manuscript:

Dongxiao Zhu (Wayne State, email: ct4442@wayne.edu), Huanmei Wu (Indiana University–Purdue

University Indianapolis, email: hw9@iupui.edu), W. Jim Zheng (UT Health at Houston, email:

Wenjin.J.Zheng@uth.tmc.edu), Edmon Begoli (Oak Ridge National Laboratory, email:

begolie@ornl.gov), Ulf Leser (Humboldt-Universität zu Berlin, email: leser@informatik.hu-berlin.de).

Thank you very much for your kind editorial assistance.

Sincerely,

Zhaohui (Steve) Qin, Ph.D.

Associate Professor

Department of Biostatistics and Bioinformatics

Emory University

Atlanta, GA 30322

Fusheng Wang, Ph.D.

Assistant Professor

Department of Biomedical Informatics

Department of Computer Science

Stony Brook University

2313D Computer Science,

Stony Brook, NY 11794-8330

mailto:ct4442@wayne.edu
mailto:hw9@iupui.edu
mailto:Wenjin.J.Zheng@uth.tmc.edu)
mailto:begolie@ornl.gov)
mailto:leser@informatik.hu-berlin.de

