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Abstract 16 

Background: Sorted merging of genomic data is a common data operation necessary in whole 17 

genome sequencing studies. It involves sorting and merging genomic data from different subjects 18 

by genomic locations. With the rapid increase of high throughput experimental data, the 19 

computational burden makes traditional methods designed for a single computer no longer feasible 20 

to this problem. The newly emerged distributed systems have the potential to offer a much needed 21 

boost in performance. However, carefully designed optimization schemas are required to take 22 

advantage of the increased computing power while overcoming bottlenecks to achieve maximum 23 

performance. 24 

Findings: In this study, we custom design optimized schemas for three Apache big data platforms, 25 

MapReduce, HBase and Spark, to perform sorted merging of massive genome-wide data. These 26 

schemas all adopt the divide-and-conquer strategy to split the merging job into sequential 27 

phases/stages consisting of subtasks which are conquered in an ordered, parallel and bottleneck-28 

free way. In two illustrating examples, we test the performance of our schemas on merging 29 

multiple Variant Call Format (VCF) files into either a TPED or a VCF file, which are 30 

benchmarked with the traditional multiway-merge method and the popular VCFTools.  31 
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Conclusions: Our experiments suggest that all three schemas deliver a significant performance 32 

improvement over existing methods. More importantly, they all show good scalability on input 33 

size and computing resources. Therefore our findings provide generalized scalable schemas for 34 

performing sorted merging on genetics and genomics data using these Apache distributed systems. 35 

Keywords: Sorted merging, whole genome sequencing, MapReduce, Hadoop, HBase, Spark.  36 

 37 

Findings  38 

Introduction 39 

With rapid development of high-throughput biotechnologies, genetics studies have entered the Big 40 

Data era. Studies like Genome Wide Association Studies (GWASs), Whole Genome Sequencing 41 

(WGS) and whole exome sequencing (WES) studies have produced a massive amount of data. 42 

The ability to efficiently process such massive data becomes increasingly important in a 43 

successful large scale genetics study [1, 2]. Traditional single machine based methods are no 44 

longer feasible to process such big data due to the prohibitive computation time and I/O 45 

bottleneck. It becomes increasingly attractive for investigators to take advantage of the powerful 46 

distributed computing resources or the cloud to perform data processing and analyses [3]. Apache 47 
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Foundation has been a leading force in this endeavor and has developed multiple platforms and 48 

systems including Hadoop [4, 5], HBase [6] and Spark [7]. All these three Apache platforms have 49 

gained increasing popularity in recent years, and have been endorsed and supported by major 50 

vendors such as Amazon Web Services (AWS). 51 

 52 

In bioinformatics, researchers have recently started to embrace distributed systems to process large 53 

amount of high throughput omics data. For example, both the CloudBurst [8] and Crossbow 54 

software [9] takes advantage of the Hadoop framework to accelerate sequencing read mapping and 55 

SNP calling. The Collaborative Genomic Data Model (CGDM) [10] uses HBase to boost the 56 

querying speed for the main classes of queries on genomic databases. The ADAM project [1], 57 

built  on the Spark platform, adapts the Sequence/Binary Alignment/Map (SAM/BAM) formats to 58 

distributed computing environments. Industry cloud computing vendors such as Amazon [11] and 59 

Google [12] are also beginning to provide specialized environments to ease genomics data 60 

processing in the cloud. 61 

 62 
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Despite their potentials, applications of Apache big data platform in genetics and genomics studies 63 

are still relatively limited. We believe there are plenty of opportunities as data becomes larger and 64 

more complex. One particular example is sorted merging, which is a ubiquitous operation in 65 

processing genetics and genomics data. As an example, in WGS, variants identified from 66 

individuals are often called and stored in separate VCF files, subsequently these VCF files need to 67 

be merged (into a VCF or TPED file) as required by downstream analyses such as  PLINK [13] 68 

and BlueSNP [14, 15]. Either a VCF or TPED file requires data to be sorted by genomic location, 69 

thus these tasks are equivalent to the well-known sorted full-outer-joining problem [16, 17]. 70 

Currently, they are handled by software such as VCFTools [18] and PLINK. These utilities 71 

become very cumbersome even in the face of a moderate scale of genomic data. The main reason 72 

is that most of these tools adopt the multiway-merge-like method [19] with a priority queue as the 73 

underlying data structure to ensure the output order. A key deficiency of such method is that it can 74 

only have one consumer to access items from the queue, which literally makes it single-threaded, 75 

even if there can be parallel producers that put items into the queue. Therefore, these single-76 

machine based tools are inefficient and time-consuming when handling large datasets.  77 
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 78 

In this study, we use the case of the sorted-merging of multiple VCF files to a single file to 79 

demonstrate the benefits of using distributed platforms. However, simply running sorted merging 80 

on a distributed system runs into problems of bottlenecks, hotspots and unordered results 81 

commonly seen in parallel computations. Rather, we believe working schemas custom designed 82 

for each specific distributed platform are required to unleash the full potential of these distributed 83 

systems. We propose and implement three schemas running on Hadoop, Spark and HBase 84 

respectively to overcome the limitations of both single-machine and simple distributed system 85 

based methods. We choose these three platforms because they are representative cloud distributed 86 

systems providing data partitioning based parallelism with distributed storage, data partitioning 87 

based parallelism with in-memory based processing, and high dimensional table like distributed 88 

storage, respectively. Hadoop [4] is the open source implementation of MapReduce [5] based 89 

parallel key-value processing technique, and has the advantage of transparency and simplicity. 90 

HBase [6] is a data warehousing platform which adopts Google’s BigTable data storing structure 91 

[20] to achieve high efficiency in storing and reading/writing large scale of sparse data. Spark [7] 92 
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introduces the concept of Resilient Distributed Dataset (RDD) and Directed Acyclic Graph (DAG) 93 

execution to parallel key-value processing, thus enabling fast, robust and repetitive in-memory 94 

data manipulations.  Specifically, our schemas involve dividing the job into multiple phases 95 

corresponding to tasks of loading, mapping, filtering, sampling, partitioning, shuffling, merging 96 

and outputting. Within each phase, data and tasks are evenly distributed across the cluster, 97 

enabling processing large scale of data in a parallel and scalable manner, which in turn 98 

significantly boosts performance.  99 

 100 

Methods 101 

Overview 102 

Compared to using the multiway-merge method [19] or a relational database based approach, the 103 

benefits of using the three Apache distributed platforms to perform sorted merging are three-fold. 104 

First, with representation of genomic locations as keys and genotypes as values, it is readily 105 

transformed into the key-value model on which all three platforms offer a rich set of parallel 106 

operations.  Second, data in VCF files are semi-structured. Semi-structured data ideally fit for all 107 
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three platforms which allow defining the schema during data loading, avoiding the preprocessing 108 

of raw data into a rigid schema as in a relational database.  Third, the merged results are outputted 109 

onto a distributed file system such as HDFS and Amazon S3 which can be directly used for 110 

subsequent cluster-based GWAS or WGS analytical tools such as BlueSNP.  111 

 112 

Despite these advantages, simply performing sorted merging on distributed systems will not 113 

deliver expected results for the following reasons. First, it can lead to globally unsorted results. 114 

Hash-based shuffling of input data is the default mechanism for distributing data to parallel 115 

working units in the system. However, shuffling will lead to globally unsorted results.  Second, 116 

bottleneck and hotspot can happen during the processing in the cluster. Bypassing the hashing 117 

based shuffling can lead to unbalanced workload across the cluster, result in straggling computing 118 

units which become the bottlenecks for response time. In addition, for parallel loading of presorted 119 

data into HBase, data being loaded from all the loading tasks will hit the same node 120 

simultaneously while other machines are idling, leading to an I/O hotspot. Third, sampling costs 121 

could become prohibitive. Although Hadoop provides a native utility named total-order-merging 122 

[16] to achieve both workload balance and global order, it involves transferring to and sampling 123 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 
 

all the data onto a single node. The communication cost over the network and disk I/O can be 124 

prohibitive when data size is very large. In the following sections, we will illustrate how our 125 

custom designed schema are able to overcome these limitations in detail. 126 

 127 

 Data Formats and Operations 128 

In a typical WGS, data analysis often starts from individual genotype files in VCF format [21]. A 129 

VCF file contains data arranged into a table consisting of eight mandatory fields including 130 

chromosome (CHROM), the genomic coordinate of the start of the variant (POS), the reference 131 

allele (REF), a comma separated list of alternate alleles (ALT), among others. In our experiments, 132 

we use a dataset consisting of the VCF files of 93 individuals [22] generated from Illumina's 133 

BaseSpace software (Left tables in Figure 1). Each file has around 4-5 million rows, each 134 

representing one of the individual’s genomic variants, with a size of about 300 megabytes. In an 135 

attempt to protect the privacy of the study subjects, we apply the following strategy to conceal 136 

their real genetic variant information contained in the VCF files: we first transform each original 137 

genomic location by multiplying it with an undisclosed constant real number, taking the floor 138 

integer of the result, and then add another undisclosed constant integer number. 139 
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 140 

It is common that multiple VCF files need to be merged into a single TPED file for analysis tools 141 

such as PLINK. A TPED file resembles a big table, aggregating genotypes of all individuals under 142 

investigation by genomic location (Right table in Figure 1). The merging follows several rules. 143 

First, records having an unqualified filter value are discarded. Second, genotypes in VCF files are 144 

stored as binary codes where 0 stands for reference allele while 1 stands for mutant allele. Binary 145 

codes must be translated into corresponding types of nucleotides in the TPED file. Third, all 146 

individuals need to have a genotype for genomic locations that appears in at least one VCF file. 147 

The default genotype for missing values is homozygous reference alleles.  148 

 149 

MapReduce Schema 150 

MapReduce [5] is a parallel computing model based on a split-apply-combine strategy for data 151 

analysis, in which data are mapped to key-values for splitting (mapping), shuffling and combining 152 

(reducing) for final results. We use Apache Hadoop-2.7 as the system for our implementation. Our 153 

optimized schema consists of two MapReduce phases, as shown in Figure 2.  154 

 155 
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First MapReduce phase. Raw data are loaded from HDFS into parallel mappers to perform the 156 

following tasks: First, unqualified data are filtered out and qualified ones are mapped to key-value 157 

pairs. The mapper output key is a genomic location and output value is genotype and individual 158 

ID. Second, Key-value pairs are grouped together by their chromosome and temporarily saved as 159 

compressed Hadoop sequence files [23] for faster I/O in the second MapReduce phase. With this 160 

grouping, we can merge records from selected chromosomes of interests rather than from all of 161 

them. Meantime, these records are sampled to explore their key distribution profile along the 162 

chromosomes for determining boundaries in between each pair of which there is approximately an 163 

equal number of records. Specifically, the genomic locations of sampled-out records for each 164 

chromosome are used as boundaries to split the chromosome into disjoint segments. Because 165 

records falling in the same segment will be assigned to the same reducer in the later phase, 166 

boundaries calculated in this way ensure that the workload of each reducer is balanced.  There are 167 

two rounds of samplings. The first one happens in each mapper with a pre-specified sampling rate, 168 

which in our case is set to 0.0001. To separate sampled records by chromosome they are 169 

distributed to different reducers in this phase based on their chromosomes, where they are sampled 170 

again with a rate equal to the reciprocal of input file number. This second sampling limits the 171 
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number of final sampled records even in the face of a large number of input files. Because the 172 

number of reducers instantiated in the second phase is decided by the number of sampled records, 173 

we can therefore avoid launching unnecessary reducers thus reducing task overhead. 174 

 175 

Second MapReduce phase. In this phase, multiple parallel MapReduce jobs are created, and each 176 

job specifically handles all records of a single chromosome outputted as sequence files in the first 177 

phase. Within each job, a partitioner shuffles records to the appropriate reducer by referring to the 178 

boundaries from the previous phase, so that records falling in between the same pair of boundaries 179 

are aggregated together. Finally, each reducer sorts and merges aggregated records by genomic 180 

location before outputting them to a TPED file. In this way, globally sorted merging can be 181 

fulfilled.  182 

 183 

HBase Schema 184 

HBase [6] is a column-oriented database where data are grouped into column families and split 185 

horizontally into regions spreading across the cluster. With this data storing structure, it supports 186 

efficient sequential reading and writing of large-scale data as well as fast random data accessing. 187 
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Also, HBase is storage efficient because it can remember null values without saving them on disk. 188 

These features make HBase an ideal platform for managing large, sparse data with relatively low 189 

latency which naturally fits the sorted merging case. We use the HBase-1.3 as the system for our 190 

implementation. As shown in Figure 3, our optimized HBase schema is divided into three phases 191 

as discussed next.    192 

 193 

1) Sampling phase  194 

The main challenge of HBase lies in that it is not uncommon to find that one server of the cluster 195 

becomes a computational hotspot. This can happen when it starts loading a table from a single 196 

region hosted by a single node. Therefore, we need to presplit the table into regions of 197 

approximately equal size before loading. The sampling phase is introduced to determine 198 

reasonable presplitting regional boundaries. The total region number is set to be half of the 199 

number of input files so that the size of each region is approximately 1GB. Meanwhile, mappers 200 

of this phase also output qualified records as compressed Hadoop sequence files on HDFS which 201 

are used as inputs in the next phase. In addition, filtering and key-value mapping also take place in 202 

this phase. 203 
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  204 

2) Bulk loading phase  205 

Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs is not 206 

yet fully solved because sorted records are loaded sequentially and all the records being loaded at 207 

any instant still hit the same region and server. This necessitates the adding of this phase. During 208 

the bulk loading, the key and value of each record outputted from previous phase is converted into 209 

HBase’s binary row-key and column-value respectively, and saved as HFile, HBase’s native 210 

storage format. The row-key here is in the form of chromosome-genomic location, and column-211 

value refers to reference allele, individual ID and genotype. The bulk loading populates each 212 

HFile with records falling in the same pair of presplit regional boundaries. Because HFiles are 213 

written simultaneously by parallel mappers/reducers, all working nodes are actively involved and 214 

the regional hotspot is thus circumvented. Upon finishing writings, the HBase can readily load 215 

HFiles in parallel into the table by simply moving them into local storage folders. This procedure 216 

is therefore at least a magnitude faster than the normal loading.  The order of records in the table is 217 

guaranteed because they are internally sorted by writing reducers and HBase’s Log-Structured 218 

Merge-tree [24]. It is noteworthy to mention that VCF records are sparse, thus HBase is very 219 
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storage-efficient.  220 

 221 

3) Exporting Phase  222 

A scan is performed on the table. It involves launching parallel mappers each receiving records 223 

from a HBase region, filling in missing genotypes, concatenating records with the same row-key, 224 

and outputting final results into TPED files.   225 

 226 

Spark Schema 227 

Spark [7]  is a distributed engine that embraces the ideas of MapReduce and Resilient Distributed 228 

Dataset (RDD).  It can save intermediate results in the form of RDD in memory, and perform 229 

computation on them. Also, its computations are lazily evaluated, which means the execution plan 230 

can be optimized since it tries to include as many computational steps as possible. As a result, it is 231 

ideal for iterative computations such as sorted merging. We implement our optimized Spark 232 

schema on Spark-2.1. It has three stages as shown in Figure 4. Stage I involves loading raw data 233 

as RDDs, filtering, and mapping RDDs to paired-RDDs with keys (chromosome-genomic 234 

position) and values (reference allele, individual ID and genotype). This stage ends with a sort-by-235 
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key shuffling that repartitions and sorts PairRDD records so that records with the same key are 236 

aggregated together. In Stage II, aggregated PairRDD records of the same key are merged into 237 

TPED format and converted back to RDD records for outputting. However, Spark’s native family 238 

of group-by-key functions cannot be used here because their default partitioner is hash-based and 239 

different from the range-based partitioner used by previous sort-by-key function. Consequently, 240 

the merged results would be reshuffled into an unsorted status. We therefore optimize the merging 241 

to bypass these functions, being performed locally without data reshuffling to ensure both order 242 

and high speed. Finally in Stage III, merged RDD records are saved as TPED files.  243 

 244 

Execution parallelism has an important impact on the performance. To maximize performance, the 245 

number of parallel tasks is set to the number of input files. In this way, the data locality is 246 

maximized and each task is assigned a proper amount of work. In addition, unlike using 247 

MapReduce or HBase, when performing sorting by key, no explicit sampling is needed because 248 

Spark keeps track of the number of records before determining repartition boundaries.  249 

 250 

Results 251 
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We conduct all experiments using Amazon’s Elastic MapReduce (EMR) service. Within the 252 

infrastructure, we choose EC2 working nodes of m3.xlarge type, which has four High Frequency 253 

Intel Xeon E5-2670 v2 (Ivy Bridge) Processors and 15GB memory. We use a dataset consisting of 254 

the VCF files of 93 individuals [22] generated from Illumina's BaseSpace software. 255 

 256 

 Overall Performance Analysis of Clustered-based Schemas 257 

Our primary goal is to explore the scalability of the three schemas on input data size and available 258 

computing resources, namely CPUs. To achieve this, in this experiment we adjust the number of 259 

input files from 10 to 93, with an approximate total uncompressed size from 2.5 G to 20 G, and 260 

conduct the experiment using a varying number of working nodes from 3 to 18, namely 12 to 72 261 

cores.   262 

 263 

As Figure 5 shows, for all three schemas, given a fixed number of cores, the execution time 264 

increases linearly with the increased number of input files. On the one hand, the increasing trend is 265 

apparent with fewer cores because each core is fully utilized and the more input files, the larger 266 

number of parallel tasks are assigned to it. For example, given 12 cores, as the file number 267 
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increases from 10 to 93, the execution time increases from 739 to 2,281 seconds for the 268 

MapReduce schema, from 375 to 2,751 seconds for the HBase schema, and from 361 to 1,699 269 

seconds for the Spark schema, respectively. On the other hand, with relatively more cores such as 270 

72, this linear increasing trend is less pronounced because there are more cores than tasks so that 271 

all cores are assigned at most one task. We also notice that when input file size is small to 272 

moderate, the Spark schema does not always show consistent improvement in terms of execution 273 

time when using more cores, for example, the intersection of curves of 24 and 72 cores in Figure 274 

5c. This phenomenon is attributed to the limitation of Spark’s internal task assignment policy 275 

which gives rise to the possibility that some nodes are assigned more than one tasks while others 276 

remain idle.   277 

 278 

In another experiment in which the input file number is fixed at 93, the core number increases 279 

from 12 to 72 (Figure 6). For all three schemas, execution time is reduced with more cores, from 280 

2,281 to 514 seconds for MapReduce, from 2,751 to 591 seconds for HBase, and from 1,699 to 281 

460 seconds for Spark, respectively. Therefore, all three schemas demonstrate nice scalability on 282 

input data size and computing resources. 283 
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 284 

The Anatomic Performances Analysis of Cluster-based Schemas 285 

Another important goal of our study is to identify potential performance bottlenecks, so we 286 

evaluate the execution time of each phase/stage of all three schemas. Figure 7 shows the trend of 287 

anatomic computing time spent on merging increasing number of VCF files using 48 cores. For 288 

the MapReduce schema (Figure 7a), its two phases account for a comparable proportion of total 289 

time and both show a linear or sublinear increasing pattern. For the three phases of the HBase 290 

schema (Figure 7b), they generally scale well with the input file number. Meanwhile, the second 291 

phase becomes more dominant with more input files owing to the larger amount of shuffled data 292 

during the writing of HFiles. However, we do not consider it as a bottleneck since all tasks of this 293 

phase are parallelized with no workload or computational hotspot. We do not observe an obvious 294 

super-linear increment pattern from the figure either.  Finally, Figure 7c shows the time costs of 295 

three stages of the Spark schema. They show a uniform increasing trend with input file number. 296 

Among them, the second one takes up a considerable proportion of the total execution time as it 297 

has the relatively expensive sort-by-key shuffling operation. Although no data is shuffled in the 298 

first stage, its time lapse is close to that of the second stage. This is because at the end of the first 299 
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stage, data are sampled for determining the boundaries used by sort-by-key’s range partitioner. 300 

This operation demands a considerable execution time because it scans all the data and balances 301 

them if necessary.     302 

 303 

Put together, these results suggest that all phases/stages of the three schemas scale well on input 304 

data size. Therefore we are not expecting to see any bottleneck when dealing with even larger 305 

scale of data. 306 

 307 

Comparisons between Single Machine Based Methods and Cluster-based Schemas 308 

Another intriguing question in our experiments is how much can our schemas outperform the 309 

current single machine based methods and applications.  To achieve this, in the first experiment, 310 

we test the performance of merging 40 VCF files into one VCF using VCFTools v4.2 as a 311 

benchmark.  As shown in Table 2, VCFTools takes 30,189 seconds while the fastest cluster-based 312 

schema, MapReduce-based, takes only 484 seconds using 72 cores, which is 62-fold faster.  In the 313 

second experiment, we test the performance of merging of VCF files into a TPED using multiway-314 

merge based implementation as a benchmark. We choose to implement multiway-merge because, 315 
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to our best knowledge, currently no software/application is available to perform this task with a 316 

simple call. Rather, VCF files need to be manually converted to individual TPED files first which 317 

in turn are merged together using merging utility of PLINK which essentially is based on 318 

multiway-merge. Our multi-way merge implementation saves this manual conversion step, and is 319 

also more concise and efficient than PLINK.  The multiway-merge implementation is tested on a 320 

single node while the three schemas on a cluster of nodes with 72 cores. Initially with fewer input 321 

files, the execution time difference is 399 seconds or about 2.8-fold between multiway-merge and 322 

the fastest cluster-based schema, MapReduce. However, this difference becomes significant with 323 

more input files. For example, the largest difference is 5,585 seconds or about 13-fold (Figure 8) 324 

on merging 93 files. As an extreme test of merging 642 VCF files (not shown), the computing time 325 

is 1,228 minutes for multiway merge implementation versus 11.3 minutes of the MapReduce 326 

schema running on a 400-core cluster, more than 100-fold of speed up.  327 

 328 

We also compare the performances among the three schemas all of which are evaluated on a 72-329 

core cluster with increasing number of files as inputs (Figure 8). It turns out that the three schemas 330 

have comparable performance. More specifically, MapReduce-based schema performs best with 331 
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small input size, HBase-based schema performs best with moderate input size, while Spark-based 332 

schema performs best with large input size. The rationale behind such an observation is when the 333 

input data size is small, MapReduce can make the most usage of computing resources because it 334 

has a constant 25 parallel jobs (one for each of chromosomes 1-22, X Y and M (Mitochondria)) in 335 

its second phase. In contrast, Spark has much fewer tasks with a number equals to the number of 336 

input files for achieving maximized data-task locality. When the input data size is moderate, 337 

HBase triumphs due to its internal sorting and relative compact storage format of intermediate 338 

data. When the input data size is large, Spark-based schema outperforms the other two owing to its 339 

least number of data shuffling (only one), execution plan optimization, and ability to cache 340 

intermediate results in memory. We caution that the computing time may fluctuate depending on 341 

the genomic location profile of input files as well as the data loading balance of the HDFS.  342 

  343 

Discussion 344 

In this report, we describe three cluster-based schemas running on Apache Hadoop (MapReduce), 345 

HBase and Spark platforms respectively for performing sorted merging of variants identified from 346 

WGS.  We manage to show that all three schemas are highly scalable on both input data size and 347 
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computing resources, suggesting that large scale sequencing of variant data can be merged 348 

efficiently given computing resources that are readily available in the cloud. We also show that 349 

even with a moderate-sized cluster and input data, all three schemas are able to significantly 350 

outperform the broadly-used, single-machine based VCFTools and multiway-merge 351 

implementation. We expect a much more significant performance improvement when merging a 352 

much larger scale of data using a larger cluster or the cloud.   353 

 354 

Unlike normal merging, efficient sorted merging of many large tables has always been a difficult 355 

problem in the field of data management. Multiway-merge is the most efficient single-machine 356 

based method for sorted merging, but its performance is limited by the disk I/O [25]. Sorted 357 

merging also places challenges to distributed system based solutions because neither the efficient 358 

hash-based merging nor caching the intermediate table in shared memory is feasible [26]. 359 

Although a utility named total-order-joining is provided by the Hadoop for addressing this 360 

problem, it suffers from both network communication and local disk I/O bottleneck, thus is not 361 

scalable [16, 27]. In contrast, our schemas divide this problem into different phases of tasks each 362 
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conquered in parallel to bypass these bottlenecks and achieve maximum parallelism and 363 

scalability. Furthermore, in addition to merging sequencing variant data, the schemas can be 364 

generalized for other key-based, sorted merging problems that are frequently encountered in 365 

genetics and genomics data processing. As an example, they can be slightly modified to merge 366 

multiple BED format files such as ChIP-seq peak lists [28] and other genomic regions of interest. 367 

Another potentially useful feature is that, unlike traditional sorted merging algorithms which 368 

usually require presorted inputs for better performance, our schemas are free of such a 369 

requirement.  370 

 371 

Finally, in light of the different features and specialties of the three platforms, each of the three 372 

schemas we developed has its own advantages and disadvantages in different application scenarios 373 

as summarized in Table 1. For example, the MapReduce schema is good for static one-time, non-374 

incremental merging on small to moderate-sized data since it can have the most parallel jobs, the 375 

least overhead, and the most transparent workflow. The HBase schema, supported by data 376 

warehousing technologies, fits for incremental merging since it does not need to re-merge existing 377 

results with new ones from the scratch only if the incremental merging is performed on the same 378 
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chromosomes. Also, it provides highly-efficient storage and On-Line Analytical Processing 379 

(OLAP) on merged results. The Spark schema is ideal for merging large scale of data because it 380 

has the least data shuffling and keeps intermediate results in memory. A bonus brought by Spark is 381 

that subsequent statistical analyses can be carried out directly on the merged results using its rich 382 

set of parallel statistical utilities.  383 

 384 

Availability and Requirements 385 

Project name: CloudMerge 386 

Project home page: https://github.com/xsun28/CloudMerge 387 

Operating system(s): Linux 388 

Programming language: Java 389 

Other requirements: Java 1.7 or higher, Hadoop-2.7, HBase-1.3, Spark-2.1 390 

License: Apache License 2.0 391 

 392 

Availability of Data and Materials 393 
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The source code of the project is available on GitHub. The original 93 individual VCF files used 394 

in our experiments are from the Consortium on Asthma among African-ancestry Population in the 395 

Americas (CAAPA) [22]. To conceal the potential individual identifiable genotype information 396 

from the public, we encrypt the authentic genomic location of all VCF files to generate a new 397 

batch of encrypted VCF files, which are available on AWS S3 as 398 

https://s3.amazonaws.com/xsun316/encrypted/encrypted.tar.gz. We also provide sample results of 399 

merging 93 VCF files into either one VCF or one TPED file using our cluster-based schemas, 400 

which are available on AWS S3 as 401 

https://s3.amazonaws.com/xsun316/sample_results/result.tar.gz. 402 

 403 

Abbreviations 404 

VCF: Variant Call Format; GWAS: Genome Wide Association Studies; WGS: Whole Genome 405 

Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative 406 

Genomic Data Model; SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed 407 

Dataset; DAG: Directed Acyclic Graph; EMR: Elastic-MapReduce; CAAPA: Consortium on Asthma 408 

among African-ancestry Population in the Americas; 409 
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 484 

Figure legends 485 

Figure 1. Converting VCF files to TPED.  Left tables are input VCF files. Right table is the 486 

merged TPED file. Records are filtered out if their Filter value doesn’t equal to ‘PASS’ (Pos 487 
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10147). Individual genotypes with the same genomic location that exist in any VCF file are 488 

aggregated together on one row. The resulting TPED file thus has an inclusive set of sorted 489 

genomic locations from all VCF files.  490 

 491 

Figure 2. The workflow chart of MapReduce schema. It consists of two phases: In the first 492 

phase, input VCF records are filtered, grouped around chromosomes into bins, and mapped into 493 

key-value records. Two samplings are performed to generate partition lists of chromosomes. In the 494 

second phase, parallel jobs of specified chromosomes are launched. Within each job, records from 495 

corresponding bins are loaded, partitioned, sorted and merged by genomic locations before being 496 

outputted as TPED files. 497 

 498 

Figure 3. The workflow chart of HBase schema. The workflow is divided into three phases. The 499 

first one is a sampling, filtering and mapping phase.  A MapReduce job samples out VCF records 500 

whose genomic positions are used as region boundaries when creating the HBase table. Only 501 

qualified records are mapped as key-values and saved as Hadoop sequence files. The second phase 502 

is HBase bulk loading in which a MapReduce job load and writes  records outputted from the 503 
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previous phase, aggregating them into corresponding regional HFiles in the form of HBase’s row 504 

key and column families. Finished HFiles are moved into data folders on region servers. In the 505 

third phase, we launch parallel scans over regions of the whole table to retrieve desired records 506 

which are subsequently merged and exported as TPED files.   507 

 508 

Figure 4. The workflow chart of Spark schema.  It is a single Spark job consisting of three 509 

stages. In the first stage, VCF records are loaded, filtered, and mapped to PairRDDs with keys of 510 

genomic position and values of genotype. The sort-by-key shuffling spans across the first two 511 

stages, sorting and grouping together records by keys. Then grouped records with the same key 512 

are locally merged into one record in TPED format. Finally, merged records are exported as TPED 513 

files. 514 

 515 

Figure 5. The scalability of clustered based schemas on input size. Subfigures a, b and c refer 516 

to MapReduce, HBase and Spark schemas respectively. As input file number increases from 10 to 517 

93, the time cost of all three schemas with 12, 24 or 72 cores show at most a linear increasing 518 

trend which suggests good scalabilities. The HBase schema with 12 cores has the largest increase 519 
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from 375 to 2,751 seconds, or 7.3-fold.   520 

 521 

Figure 6. The scalability of cluster based schemas on available computing core number. 522 

Subfigures a, b and c refer to MapReduce, HBase and Spark schemas respectively. In these 523 

experiments, the number of input files is fixed at 93.  As core number increases from 12 to 72, the 524 

time cost of the three schemas decrease linearly until a plateau is reached where computing 525 

resources become excessive. The Spark schema shows lowest reduction of time cost from 1,699 to 526 

460 seconds, or 3.7-fold. These results suggest good scalabilities of these schemas on computing 527 

resources. 528 

 529 

Figure 7. The performance anatomy of cluster-based schemas on increasing input size. The 530 

number of cores in these experiments is fixed at 48. All phases of the three schemas show good 531 

scalabilities with input data size. a) MapReduce schema: The two MapReduce phases have a 532 

comparable time cost, increasing 3.0- and 2.2-fold respectively as input file number increases 533 

from 10 to 93. b) HBase schema: The time spent in each phase increases 2.0-, 2.7- and 2.2-fold 534 

respectively as input file number increases from 10 to 93. The bulk loading and exporting phases 535 
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together take up more than 90% of total time expense. c) Spark schema:  The time cost increases 536 

3.1-, 3.0- and 3.4-fold respectively for the three stages as input file number increases from 10 to 537 

93. Like the HBase schema, the first two stages of the Spark schema together account for more 538 

than 90% of total time cost.     539 

 540 

Figure 8. Performance comparison among multiway-merge implementations and cluster-541 

based schemas: Firstly, we compare of the performances of the three schemas with that of the 542 

multiway-merge implementation.  When input file number is 10, the time differences between 543 

multiway-merge and our schemas are relatively small, ranging from 2- to 2.8-fold. As file number 544 

increases to 93, the differences turn out to be more significant, ranging from 10.2- to 13.1-fold. 545 

Secondly, we compare the performances among the three schemas which are comparable to each 546 

other regardless of the input file number. MapReduce schema has best performance in merging 10 547 

files; HBase schema performs best in merging 20, 40 and 60 files; Spark schema is fastest in 548 

merging 93 files.  549 
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Tables 552 

Table 1. Performance comparisons of VCTools versus MapReduce, HBase and Spark 553 

schemas 554 

 VCFTools MapReduce HBase Spark 

Time cost (seconds) 30,189 484 577 596 

Fold (faster) - 62.4 52.3 50.7 

We compare the time cost of VCFTools and our three schemas using 72 cores on merging 40VCF 555 

files into one VCF file. VCFTools takes more than 30,000 seconds to finish. In contrast, all three 556 

schemas take less than 600 seconds to finish. MapReduce schema has the largest performance 557 

improvement which is about 62-fold.  558 

 559 

Table 2. Pros and Cons of MapReduce, HBase and Spark schemas   560 

Schemas Pros Cons 

MapReduce  Simple architecture and 

least overhead. 

 Best parallelism for small 

input size (<= 20). 

 Good for one-time 

merging. 

 Performance is stable. 

 

 Merging is not 

incremental.  
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HBase  Good for intermediate 

input size (>=20 and 

<=100). 

 Supports incremental 

merging. 

 Supports On-Line 

Analytical Processing 

(OLAP). 

 Best storage efficiency. 

 Users must determine 

region number in 

advance. 

 Has most local I/O. 

 Complex performance 

tuning. 

Spark  Good for large input size 

(>100). 

 Keeps intermediate 

results in memory and 

least local I/O. 

 Good for subsequent 

statistical analysis on 

merged results. 

 

 

 

 Possibly weakened data 

locality during loading. 

 Slight unstable 

performance when 

computing resources 

exceeds needs of input 

size. 

 Actual execution plan is 

not transparent. 

 Complex performance 

tuning. 

 

Each of the three distributed systems has its own specialties and limitations. As a result, the 561 

schemas running on them have different pros and cons, and application scenarios as listed above. 562 
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In the present manuscript, we describe three novel optimized schemas, running on Apache Hadoop, 

HBase and Spark respectively, for performing sorted merging on Omics data. Sorted merging is one of 

important data manipulation tools for Omics data, for example, the merged VCF or TPED files are 

required to perform statistical analysis in association studies on sequencing data. However, most 

existing tools for handling this task, such as VCFTools and PLINK, are running on single machine and 

implemented based on the multiway-merge algorithm. As a result, they suffer from the limitations of 

disk I/O and become very inefficient in face of large data size. The recent distributed systems offer an 

alternative solution. However, without optimized working schemas, naively using these systems does 

not lead to scalability.   

 

In this study, we custom design optimized schemas for three Apache big data platforms. All three 

schemas are able to overcome the bottleneck problem by maintaining cluster’s workload balance and 

achieving maximum parallelism. We have compared our schemas with VCFTools on merging 40 VCF 

files into a single one, as well as with a multiway-merge based implementation on merging up to 93 

VCF files into a single TPED file. It turns out that even using a moderate sized cluster, we can archive 

speedup up to 62-fold compared to VCFTools. All three schemas show good scalability on both input 

size and number of cores, suggesting given enough computing resources we can guarantee the 

performance even in face of very large scale of data. Therefore our findings provide generalized 

scalable schemas for performing sorted merging on genetics and genomics data using these Apache 

distributed systems. Our schemas can be easily generalized to merge other types of Omics data such as 

ChIP-seq peak lists. Therefore, we believe our schemas will have a high impact in the omics field 

as we enter the big data era.  
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