GigaScience

Optimized Distributed Systems Achieve Significant Performance Improvement on Sorted Merging of Massive VCF Files --Manuscript Draft--

Manuscript Number:	GIGA-D-17-00267R2	
Full Title:	Optimized Distributed Systems Achieve Sig Sorted Merging of Massive VCF Files	nificant Performance Improvement on
Article Type:	Technical Note	
Funding Information:	Sandler Family Foundation	Dr Esteban Burchard
	American Asthma Foundation	Dr Esteban Burchard
	RWJF Amos Medical Faculty Development Program	Dr Esteban Burchard
	National Heart, Lung, and Blood Institute (R01HL104608)	Dr Kathleen Barnes
	National Institute of Neurological Disorders and Stroke (R01NS051630)	Dr Peng Jin
	National Institute of Neurological Disorders and Stroke (P01NS097206)	Dr Peng Jin
	National Institute of Neurological Disorders and Stroke (U54NS091859)	Dr Peng Jin
	National Science Foundation (ACI 1443054)	Dr Fusheng Wang
	National Science Foundation (IIS 1350885)	Dr Fusheng Wang
	National Heart, Lung, and Blood Institute (R01HL117004)	Dr Esteban Burchard
	National Heart, Lung, and Blood Institute (R01HL128439)	Dr Esteban Burchard
	National Heart, Lung, and Blood Institute (R01HL135156)	Dr Esteban Burchard
	National Heart, Lung, and Blood Institute (X01HL134589)	Dr Esteban Burchard
	National Institute of Environmental Health Sciences (R01ES015794)	Dr Esteban Burchard
	National Institute of Environmental Health Sciences (R21ES24844)	Dr Esteban Burchard
	National Institute on Minority Health and Health Disparities (P60MD006902)	Dr Esteban Burchard
	National Institute on Minority Health and Health Disparities (R01MD010443)	Dr Esteban Burchard
	National Institute on Minority Health and Health Disparities (RL5GM118984)	Dr Esteban Burchard
	Tobacco-Related Disease Research Program (24RT-0025)	Dr Esteban Burchard
Abstract:	Background: Sorted merging of genomic da in many sequencing-based studies. It invol- different subjects by their genomic locations Variant Call Format (VCF) files is frequently sequencing or whole exome sequencing pr methods become increasingly inefficient wh due to the excessive computation time and	ata is a common data operation necessary ves sorting and merging genomic data from s. In particular, merging a large number of v required in large scale whole genome ojects. Traditional single machine based nen processing large numbers of VCF files I/O bottleneck. Distributed systems and

	more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance.
	Findings: In this study, we custom design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks which are conquered in an ordered, parallel and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI) based high performance computing (HPC) implementation and the popular VCFTools.
	Conclusions: Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.
Corresponding Author:	Zhaohui Qin
	UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	
Corresponding Author's Secondary Institution:	
First Author:	Xiaobo Sun
First Author Secondary Information:	
Order of Authors:	Xiaobo Sun
	Jingjing Gao
	Peng Jin
	Celeste Eng
	Esteban Burchard
	Terri Beaty
	Ingo Ruczinski
	Rasika Mathias
	Kathleen Barnes
	Fusheng Wang
	Zhaohui Qin
Order of Authors Secondary Information:	
Response to Reviewers:	Major modifications in this revision are summarized below:
	 Corrected grammar mistakes and minor wording issues. Add members of CAAPA consortium to authorship. Add "Ethics Approval and Consent to Participate" section. Add "Funding" section. Add CAAPA Consortium members to the "Authors Contributions" section. Add CAAPA Consortium members in the "Acknowledgements" section Add a complete list of CAAPA Consortium members and their affiliations at the end Added our test datasets and codes to the GigaDB database.

•Added a citation of test datasets in GigaDB to the reference list, and cited it in appropriate places in the manuscript.

•Added all URLs as references in the bibliography, and cited them in the corresponding places in the manuscript.

Below we present itemized responses to all the comments, organized by editors and reviewers. The reviewers' comments are in bold. Our responses are in dark blue color.

Editor comments:

Before we hand over your manuscript to our production team:

- please go over the list of minor wording issues below, kindly provided by reviewer 1, and correct them in a revised submission.

Done

- please add a statement on ethical considerations to the manuscript. You are using encrypted VCFs, but as the original data set from reference [33] is under an authorized access scheme, if I understand correctly, I assume you needed IRB approval to access and work with the un-encrypted data for this project? Please also clarify in the manuscript whether this encrypted use of the subjects' data is covered by the consent they gave.

Done, please see "Ethics Approval and Consent to Participate" section in the manuscript.

Regarding your code and test data, one of our data curators will contact you shortly. Usually we host an archival copy of any code and test data in our repository GigaDB, which will be cited in the manuscript. Our data curators will discuss this with you.

Done

Please include a citation to any upcoming GigaDB dataset to your reference list (including the DOI link you will get from our data curators), and please cite this in the data availability section and elswehere in the manuscript, where appropriate.

Please follow this example format for the reference:

[xx] Author1 N, Author2 N, AuthorX N. Supporting data for "Title of your manuscript". GigaScience Database. 2018. http://dx.doi.orgxxxxxxxxxxx

(If you don't have a GigaDB doi at the time of resubmission, please leave the "dummy" version and we can exchange this for you.)

Please see reference 43 in the manuscript

Finally, a very minor point: Please include all URLs (except the "availability" section") as references in the bibliography, and cite them from the text rather than inserting them directly.

Done. On line 321: The source codes are available at our GitHub website [35] (CloudMerge; RRID: SCR_016051).

Reviewer #1:

This paper has undergone substantial improvements since the original submission and the authors are to be commended on their efforts to address all the main issues raised in the initial review. I am satisfied that all of my concerns from the initial review have been adequately addressed, and I am happy to recommend that this paper is accepted for publication.

We are grateful to the reviewer for the comment.

I have a few minor comments below that the authors might wish to consider when editing the final version: "merging a large number of Variant Call Format (VCF) files are frequently encountered" -> "merging a large number of Variant Call Format (VCF) files is frequently encountered".

Done. See line 19.

"when processing hundreds or even thousands of VCF files" -> "when processing large volumes of VCF files".

Done. See line 22.

"The distributed systems and the more recent cloud-based systems" -> "Distributed systems and more recent cloud-based systems".

Done. See line 23.

"working flow" -> "workflow".

Done. See line 24.

"Apache Foundation has" -> "The Apache Foundation"

Done. See line 56.

"took advantage" -> "take advantage"

Thanks for brings this out. It is done, see line 66. In addition, we also make additional similar changes from past tense to current tense: On line 64, "made" -> "make". On line 68, "adopted" -> "adopts".

On line 69, "utilized" -> "utilizes".

Are two citations really needed for the "sorted full-outer-joining problem"? If it is well known, as the authors claim, then one citation should be sufficient.

Yes, we agree with the reviewer, and delete one reference: "28. Silberschatz A, Korth HF and Sudarshan S. DatabaseSystem Concepts. 2010."

"cumbersome" is probably the wrong word to describe the behaviour of PLINK and VCFTools on moderate numbers of input files. Cumbersome suggests that they are awkward or difficult to use, but really the problem is that their performance is unacceptable.

Yes, we agree with the reviewer. On line 90: "Currently, they are handled by software such as VCFTools [28] and PLINK, which become very cumbersome even in the face of a moderate number of VCF files." Changed to: Currently, they are handled by software such as VCFTools [28] and PLINK, which become considerably inefficient even in the face of a moderate number of VCF files.

"literally makes it sequential on writing" -> "makes it sequential on writing" (remove "literally", it is redundant) "

Done. See line 94.

and memory limitation" -> "and memory limits"

Done. See line 96.

"ideally fit" -> "is an ideal fit"

	Done. See line 131.
	"megabyte in size" -> "megabytes in size" (plural). Maybe use MB instead, to be consistent with the rest of the article using GB.
	Done. See line 163.
	"Key-value pais" -> "key-value pairs" (capitalisation)
	Done. See line 209.
	It is not clear what this means "we only need to merge records from selected chromosomes of interest rather than from all of them". Can you please clarify?
	We thank the reviewer 1 for bringing this up. Here we mean if we are only interested in the merged results of some specific chromosomes, say chr1-chr3, then we can just merge the records in the corresponding bins, instead of merging the records of all chromosomes. And on line 210, we have rephrased this sentence from "With this grouping, we only need to merge records from selected chromosomes of interest rather than from all of them." to "With this grouping, if SNPs of interest located in a few selected chromosomes only, we can choose to just merge records from these selected chromosomes rather than from all chromosomes."
	delete: "which necessitates the adding of this phase"
	Done. See line 261.
	"finishing writings" -> "finishing writing" (not plural)
	Done. See line 269.
	It is likely that the HPC tests (namely the MPI version) would have performed better on a system with a high-performance file system such as GPFS or Lustre instead of NFS.
	We totally agree with reviewer 1's opinion. Both Lustre and GPFS has better I/O scalability than NFS. And we expect our HPC benchmark would perform better using these file systems. However, I/O is not only the reason why the HPC benchmark does not scale well. Rather, the increasing in the number of merging rounds when increasing the number of input files is the main reason for decreasing efficiency. So we expect the scalability will improve to some extent but not too much when running it with the GPFS or Lustre file system. Another reason we choose NFS because we test our benchmark using StarCluster, which currently doesn't support either GPFS or Lustre.
	Use GB for gigabytes instead of G.
	Done.
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	

Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	

1 2 3	1	Optimized Distributed Systems Achieve Significant Performance
4 5 6 7	2	Improvement on Sorted Merging of Massive VCF Files
9 10 11 12	3	Xiaobo Sun ¹ , Jingjing Gao ² , Peng Jin ³ , Celeste Eng ⁵ , Esteban G. Burchard ⁵ , Terri H. Beaty ⁶ ,
13 14 15 16	4	Ingo Ruczinski ⁷ , Rasika A. Mathias ⁸ , Kathleen C. Barnes ⁴ , Fusheng Wang ^{9*} , Zhaohui Qin ^{2,10*} ,
17 18 19 20	5	CAAPA consortium ¹¹
20 21 22 23	6	
24 25 26 27	7	¹ Department of Computer Sciences, Emory University, Atlanta, GA 30322, USA.
28 29 30 31	8	² Department of Medical Informatics, Emory University School of medicine, Atlanta, GA 30322, USA.
32 33 34 35	9	³ Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
36 37 38 39	10	⁴ Department of Medicine, University of Colorado Denver, Aurora, CO 80045
40 41 42 43	11	⁵ Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
44 45 46 47	12	⁶ Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, MD 21205 USA
48 49 50 51	13	⁷ Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, MD 21205 USA
52 53 54	14	⁸ Department of Medicine, Johns Hopkins University, Baltimore, MD 21224 USA
55 56 57 58 59 60 61 62 63 64 65	15	⁹ Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA.

16	¹⁰ Department of Biostatistics, Emory University, Atlanta, GA 30322, USA.
17	¹¹ See end of the paper for a complete list of CAAPA members
18	
19	X.S. Email: <u>xsun28@emory.edu</u>
20	J.G. Email: gaodoris@gmail.com
21	P.J. Email: peng.jin@emory.edu
22	C.E. Email: celeste.eng@ucsf.edu
23	E.G.B. Email: esteban.burchard@ucsf.edu
24	T.H.B. Email: tbeaty1@jhu.edu
25	I.R. Email: <u>iruczin1@jhu.edu</u>
26	R.A.M. Email: <u>rmathias@jhmi.edu</u>
27	K.C.B. Email: kathleen.barnes@ucdenver.edu
28	F.W. Email: <u>fusheng.wang@stonybrook.edu</u>
29	Z.Q. Email: <u>zhaohui.gin@emory.edu</u>
30	*Correspondence: <u>zhaohui.qin@emory.edu</u> , <u>fusheng.wang@stonybrook.edu</u>
31	

32 Abstract

33	Background: Sorted merging of genomic data is a common data operation necessary in many
34	sequencing-based studies. It involves sorting and merging genomic data from different subjects by
35	their genomic locations. In particular, merging a large number of Variant Call Format (VCF) files
36	is frequently required in large scale whole genome sequencing or whole exome sequencing
37	projects. Traditional single machine based methods become increasingly inefficient when
38	processing large numbers of VCF files due to the excessive computation time and I/O bottleneck.
39	Distributed systems and more recent cloud-based systems offer an attractive solution. However,
40	carefully designed and optimized workflow patterns and execution plans (schemas) are required to
41	take full advantage of the increased computing power while overcoming bottlenecks to achieve
42	high performance.
43	
44	Findings: In this study, we custom design optimized schemas for three Apache big data platforms,
45	Hadoop (MapReduce), HBase and Spark, to perform sorted merging of a large number of VCF
46	files. These schemas all adopt the divide-and-conquer strategy to split the merging job into
47	sequential phases/stages consisting of subtasks which are conquered in an ordered, parallel and

48	bottleneck-free way. In two illustrating examples, we test the performance of our schemas on
49	merging multiple VCF files into either a single TPED or VCF file, which are benchmarked with
50	the traditional single/parallel multiway-merge methods, message passing interface (MPI) based
51	high performance computing (HPC) implementation and the popular VCFTools.
52	
53	Conclusions: Our experiments suggest all three schemas either deliver a significant improvement
54	in efficiency or render much better strong and weak scalabilities over traditional methods. Our
55	findings provide generalized scalable schemas for performing sorted merging on genetics and
56	genomics data using these Apache distributed systems.
57	Keywords: Sorted merging, whole genome sequencing, MapReduce, Hadoop, HBase, Spark.
58	
59	Findings
60	Introduction
61	With the rapid development of high-throughput biotechnologies, genetic studies have entered the
62	Big Data era. Studies like Genome Wide Association Studies (GWASs), Whole Genome
63	Sequencing (WGS) and whole exome sequencing (WES) studies have produced massive amounts

64	of data. The ability to efficiently manage and process such massive data becomes increasingly
65	important for successful large scale genetics studies [1-3]. Single machine based methods are
66	inefficient when processing such big data due to the prohibitive computation time, I/O bottleneck,
67	as well as CPU and memory limitations. Traditional HPC techniques based on MPI/OpenMP also
68	suffer from limitations such as not allowing addition of computing nodes at runtime, shortage of a
69	fault-tolerant and high available file system, inflexibility of customizing the computing
70	environment without administrator permission of a cluster [3, 4]. It becomes increasingly
71	attractive for investigators to take advantage of more powerful distributed computing resources or
72	the cloud to perform data processing and analyses [3, 5]. The Apache Foundation has been a
73	leading force in this endeavor, and has developed multiple platforms and systems including
74	Hadoop [6, 7], HBase [8] and Spark [9]. All these three Apache platforms have gained substantial
75	popularity in recent years, and have been endorsed and supported by major vendors such as
76	Amazon Web Services (AWS).
77	
78	In bioinformatics, researchers have already started to embrace Apache distributed systems to

79	manage and process large amounts of high throughput '-omics' data. For example, the Cancer
80	Genome Atlas project makes use of the Hadoop framework to split genome data into chunks
81	distributed over the cluster for parallel processing[3, 10]. The CloudBurst [11], Seal [12], Hadoop-
82	BAM [13] and Crossbow software [14] take advantage of the Hadoop framework to accelerate
83	sequencing read mapping, aligning and manipulations as well as SNP calling. The Collaborative
84	Genomic Data Model (CGDM) [15] adopts HBase to boost the querying speed for the main
85	classes of queries on genomic databases. MetaSpark [16] utilizes Spark's distributed data set to
86	recruit large scale of metagenomics reads to reference genomes, achieves better scalability and
87	sensitivity than single-machine based programs [17]. Industry cloud computing vendors such as
88	Amazon [18] and Google [19] are also beginning to provide specialized environments to ease
89	genomics data processing in the cloud.
90	
91	Although numerous Apache cluster-based applications have already been developed for
92	processing and analyzing large scale genomics data including ADAM [1], VariantSpark [20],
93	SparkSeq [21], Halvade [22], SeqHBase [23] among others, we believe there are still many

94	opportunities in biomedical data analyses to take advantage of distributed systems as the scale and
95	scope of data become larger and more complex. A particular example is sorted merging, which is a
96	ubiquitous operation in processing genetics and genomics data. As an example, in WGS, variants
97	identified from individuals are often called and stored in separate Variant Call Format (VCF) files.
98	Eventually these VCF files need to be merged (into a VCF or TPED file) as required by
99	downstream analysis tools such as PLINK [24] and BlueSNP [25, 26]. Either a VCF or TPED file
100	requires the data to be sorted by their genomic locations, thus these tasks are equivalent to the
101	well-known sorted full-outer-joining problem [27]. Currently, they are handled by software such
102	as VCFTools [28] and PLINK, which become considerably inefficient even in the face of a
103	moderate number of VCF files. The main reason is that these tools adopt the multiway-merge-like
104	method [29] with a priority queue as the underlying data structure to ensure the correct output
105	order. Although such a method only requires one round of read through of the input files, a key
106	deficiency is that it can only have one consumer access items from the data queue, which makes it
107	sequential upon writing. This problem cannot be eliminated even if the multiway-merging is
108	implemented as parallel processes due to I/O saturation, workload imbalance among computing
109	units, and memory limits. Therefore, these single-machine based tools are inefficient and time-

110 consuming when handling large datasets.

In this study, we use the case of sorted-merging multiple VCF files to demonstrate the benefits of using Apache distributed platforms. However, simply running sorted merging on such distributed systems runs into problems of bottlenecks, hotspots and unordered results commonly seen in parallel computations. Rather, we believe working schemas custom designed for each specific distributed platform are required to unleash their full potential. To overcome the limitations of single-machine, traditional parallel/distributed, and simple Apache distributed system based methods, we propose and implement three schemas running on Hadoop, Spark and HBase respectively. We choose these three platforms because they represent cloud distributed systems providing data partitioning based parallelism with distributed storage, data partitioning based parallelism with in-memory based processing, and high dimensional tables like distributed storage, respectively. Hadoop [6] is the open source implementation of MapReduce [7] based on parallel key-value processing technique, and has the advantage of transparency and simplicity. HBase [8] is a data warehousing platform which adopts Google's BigTable data storing structure

125	[30] to achieve high efficiency in storing and reading/writing large scale of sparse data. Spark [9]
126	introduces the concept of Resilient Distributed Dataset (RDD) and Directed Acyclic Graph (DAG)
127	execution to parallel key-value processing, thus enabling fast, robust and repetitive in-memory
128	data manipulations. Specifically, our schemas involve dividing the job into multiple phases
129	corresponding to tasks of loading, mapping, filtering, sampling, partitioning, shuffling, merging
130	and outputting. Within each phase, data and tasks are evenly distributed across the cluster,
131	enabling processing large scale of data in a parallel and scalable manner, which in turn improves
132	both speed and scalability.
133	
134	Methods
135	Overview
136	The benefits of using these three Apache distributed platforms to perform sorted merging are four-
137	fold when compared to using the multiway-merge method [29], a relational database based
138	approach, or a HPC framework. First, with genomic locations as keys and genotypes as values, it
139	is readily transformed into the key-value model in which all three platforms offer a rich set of

140	parallel operations. Second, data in VCF files are semi-structured. This type of data is an ideal fit
141	for the three platforms which allow defining the schema during data loading, avoiding the
142	preprocessing of raw data into a rigid schema as in a relational database. Third, all these
143	platforms provide built-in efficient task coordination, high fault tolerance, data availability and
144	locality which are absent in the traditional HPC framework. Fourth, the merged results are directly
145	saved onto a distributed file system such as HDFS or Amazon S3 which can be directly used for
146	subsequent cluster-based GWAS or WGS analytical tools such as BlueSNP.
147	
148	Despite these advantages, simply performing sorted merging on these Apache distributed systems
149	will not deliver the expected results for the following reasons. First, it can lead to globally
149 150	will not deliver the expected results for the following reasons. First, it can lead to globally unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data
149 150 151	will not deliver the expected results for the following reasons. First, it can lead to globally unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data to parallel working units in the system. However, shuffling will lead to globally unsorted results.
149 150 151 152	will not deliver the expected results for the following reasons. First, it can lead to globally unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data to parallel working units in the system. However, shuffling will lead to globally unsorted results. Second, bottlenecks and hotspots can happen during the processing in the cluster. Bypassing the
149 150 151 152 153	will not deliver the expected results for the following reasons. First, it can lead to globally unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data to parallel working units in the system. However, shuffling will lead to globally unsorted results. Second, bottlenecks and hotspots can happen during the processing in the cluster. Bypassing the hashing based shuffling can lead to unbalanced workloads across the cluster, result in straggling
149 150 151 152 153 154	will not deliver the expected results for the following reasons. First, it can lead to globally unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data to parallel working units in the system. However, shuffling will lead to globally unsorted results. Second, bottlenecks and hotspots can happen during the processing in the cluster. Bypassing the hashing based shuffling can lead to unbalanced workloads across the cluster, result in straggling computing units which become bottlenecks for response time. In addition, for parallel loading of

156	simultaneously while other nodes may be idling, creating an I/O hotspot. Third, sampling costs
157	could become prohibitive. Although Hadoop provides a built-in utility named total-order-merging
158	[27] to achieve both workload balance and global order, it involves transferring to and sampling
159	all the data on a single node. The communication costs over the network and disk I/O can be
160	prohibitive when data size becomes very large. In the following sections, we will illustrate how
161	our custom designed schemas are able to overcome these limitations in detail.
162	
163	Data Formats and Operations
164	In a typical WGS experiment, data analysis often starts from individual genotype files in the VCF
165	format [31]. A VCF file contains data arranged into a table consisting of eight mandatory fields
166	including chromosome (CHROM), the genomic coordinate of the start of the variant (POS), the
167	reference allele (REF), a comma separated list of alternate alleles (ALT), among others. In our
168	experiments, we use a dataset consisting of the VCF files of 186 individuals [32] generated from
169	Illumina's BaseSpace software (Left tables in Figure 1). Each VCF file has around 4-5 million
170	rows, each row contains information on one of the individual's genomic variants. Each VCF file is
171	about 300 MB in size. In an attempt to protect privacy of study subjects, we apply the following

172	strategy to conceal their real genetic variant information contained in the VCF files: we first
173	transform each original genomic location by multiplying it with an undisclosed constant real
174	number, taking the floor integer of the result, and then add another undisclosed constant integer
175	number.
176	
177	It is common that multiple VCF files need to be merged into a single TPED file for analysis tools
178	such as PLINK. A TPED file resembles a big table, aggregating genotypes of all individuals under
179	investigation by genomic locations (right table in Figure 1). The merging follows several rules.
180	First, each record is associated with a data quality value in the FILTER column, which records the
181	status of this genomic position passing all filters. Usually only qualified records with a "PASS"
182	filter value are retained. Second, genotypes in VCF files are stored in the form of allele values,
183	where 0 stands for the reference allele, 1 stands for the first mutant allele, 2 stands for the second
184	mutant allele, and so on. Allele values must be translated into corresponding types of nucleotides
185	in the TPED file. Third, all individuals need to have a genotype for genomic locations appearing
186	in at least one VCF file. The default genotype for a missing value is a pair of homozygous
187	reference alleles. The merging of multiple VCF files into a single VCF file follows the rules as:

188	First, the ALT and INFO columns of a genomic location in the merged file are set as the
189	concatenated values of the corresponding columns on that location from all input files with
190	duplicated values removed. Second, the QUAL column of a genomic location in the merged file is
191	set as a weight-averaged quality value of all individuals on that location. Third, a genomic
192	location is kept only when it appears in at least one input file and has a FILTER column value of
193	"PASS". Fourth, if an individual does not have allele values on a genomic location in the input
194	file, their missing allele values are designated as "." in the merged file.
195	
196	For our Apache cluster-based schemas, the merging of multiple VCF files into a single TPED file
197	and the merging of multiple VCF files into a single VCF file differ only in the value contents of
198	the key-value pairs, so they should have the same scalability property. Although we implement
199	the applications of both merging types using our Apache cluster-based schemas, which are
200	available on our project website, we focused our experiments on the merging of multiple VCF
201	files into a single TPED file and only evaluate the execution speed of the merging of multiple
202	VCF files into a single VCF file with VCFTools as the benchmark.
203	

204 MapReduce (Hadoop) Schema

205	This schema is built on Hadoop's underlying model MapReduce and running on Hadoop clusters.
206	MapReduce [7] is a parallel computing model based on a <i>split-apply-combine</i> strategy for data
207	analysis, in which data are mapped to key-values for splitting (mapping), shuffling and combining
208	(reducing) for final results. We use Apache Hadoop-2.7 as the system for our implementation. Our
209	optimized schema consists of two MapReduce phases, as shown in Figure 2 (the pseudocodes are
210	shown in Figure S1).
211	
212	1) First MapReduce phase.
213	Raw data are loaded from HDFS into parallel mappers to perform the following tasks: First,
214	unqualified data are filtered out and qualified ones are mapped to key-value pairs. The mapper
215	output key is the genomic location and output value is the genotype and individual ID. Second,
216	key-value pairs are grouped together by chromosomes and temporarily saved as compressed
217	Hadoop sequence files [33] for faster I/O in the second MapReduce phase. With this grouping, if
218	SNPs of interest located in a few selected chromosomes only, we can choose to just merge records
219	from these selected chromosomes rather than from all chromosomes. Meanwhile, these records are

220	sampled to explore their distribution profile of keys along chromosomes to determine boundaries.
221	The boundaries are determined so there is an approximately equal number of records within each
222	segment. Because all records falling in the same segment will be assigned to the same reducer in a
223	later phase, boundaries calculated in this way ensure the workload of each reducer is balanced.
224	There are two rounds of samplings. The first one happens in each mapper with a pre-specified
225	sampling rate, which in our case is set to be 0.0001. Sampled records are then separated and
226	distributed to different reducers in this phase by chromosomes, where they are sampled again with
227	a rate equal to the reciprocal of the number of input files. This second sampling effectively limits
228	the number of final sampled records even in the face of a very large number of input files. Because
229	the number of reducers instantiated in the second phase equals the number of boundaries, which in
230	turn is decided by the number of sampled records, we can therefore avoid launching unnecessary
231	reducers thus minimizing task overheads.
232	
233	2) Second MapReduce phase.
234	In this phase, multiple parallel MapReduce jobs are created, one for each chromosome, to handle
235	all the records in sequence files generated from the first phase. Within each job, a partitioner

236	redirects records to the appropriate reducer by referring to the splitting boundaries from the
237	previous phase, so records falling in between the same pair of boundaries are aggregated together.
238	Finally, each reducer sorts and merges aggregated records by genomic locations before saving
239	them to a TPED file. In this way, globally sorted merging can be fulfilled.
240	
241	HBase Schema
242	HBase [8] is a column-oriented database where data are grouped into column families and split
243	horizontally into regions spreading across the cluster. With this data storing structure, it supports
244	efficient sequential reading and writing of large-scale data as well as fast random data accessing.
245	Also, HBase is storage efficient because it can remember null values without saving them on disk.
246	These features make HBase an ideal platform for managing large, sparse data with relatively low
247	latency which naturally fits the sorted merging case. We use the HBase-1.3 as the system for our
248	implementation. As shown in Figure 3, our optimized HBase schema is divided into three phases
249	as discussed next (refer to Figure S2 for pseudocodes).
250	
251	1) Sampling phase

252	The main challenge of HBase is to avoid computational hotspots in the cluster which can happen
253	when it starts loading a table from a single region hosted by a single node. Therefore, we need to
254	presplit the table into regions of approximately equal size before loading. The sampling phase is
255	introduced to determine reasonable presplitting regional boundaries. The total number of regions
256	is set to half of the number of input files so the size of each region is approximately 1GB.
257	Meanwhile, mappers of this phase also save qualified records as compressed Hadoop sequence
258	files on HDFS which are used as inputs in the next phase. In addition, filtering and key-value
259	mapping also take place in this phase.
260	
260 261	2) Bulk loading phase
260 261 262	 <i>Bulk loading phase</i> Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can
260 261 262 263	 <i>Bulk loading phase</i> Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can still emerge because sorted records are loaded sequentially, and at any instant they still access the
260 261 262 263 264	2) Bulk loading phase Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can still emerge because sorted records are loaded sequentially, and at any instant they still access the same region and server. During the bulk loading, the key and value of each record produced from
260 261 262 263 264 265	2) Bulk loading phase Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can still emerge because sorted records are loaded sequentially, and at any instant they still access the same region and server. During the bulk loading, the key and value of each record produced from the previous phase is converted into HBase's binary row-key and column-value respectively, and
260 261 262 263 264 265 266	2) Bulk loading phase Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can still emerge because sorted records are loaded sequentially, and at any instant they still access the same region and server. During the bulk loading, the key and value of each record produced from the previous phase is converted into HBase's binary row-key and column-value respectively, and saved into a HFile, HBase's native storage format. The row-key here is in the form of

268	genotype. The bulk loading populates each HFile with records falling in the same pair of presplit
269	regional boundaries. Because HFiles are written simultaneously by parallel mappers/reducers, all
270	working nodes are actively involved and the regional hotspot is thus circumvented. Upon finishing
271	writing, the HBase can readily load HFiles in parallel into the table by simply moving them into
272	local HBase storage folders. This procedure is therefore at least an order of magnitude faster than
273	the normal loading in which data are loaded sequentially via HBase servers' I/O routines. The
274	order of records in the table is guaranteed because they are internally sorted by writing reducers
275	and HBase's Log-Structured Merge-tree [34]. It worth mentioning that VCF records are always
276	sparse, thus HBase is very storage-efficient.
277	
278	3) Exporting phase
279	A scan of a specified genomic window is performed on the table. It involves launching parallel
280	mappers each receiving records from a single HBase region, filling in missing genotypes,
281	concatenating records with the same row-key, and outputting final results into TPED files.
282	
283	Spark Schema

284	Spark [9] is a distributed engine built upon the ideas of MapReduce and RDD. It can save
285	intermediate results in the form of RDD in memory, and perform computations on them. Also, its
286	computations are lazily evaluated, which means the execution plan can be optimized to include as
287	many computational steps as possible. As a result, it is ideal for iterative computations such as
288	sorted merging. We implement our optimized Spark schema on Spark-2.1. It has three stages
289	which we describe below and present in Figure 4 (refer to Figure S3 for pseudocodes).
290	
291	1) RDD preprocessing stage
292	This stage involves loading raw data as RDDs, filtering, and mapping RDDs to paired-RDDs with
293	keys (chromosome and genomic position) and values (reference allele, sample ID and genotype).
294	This stage ends with a sorting-by-key action which extends to the next stage.
295	
296	2) Sorting and merging stage
297	The sort-by-key shuffling repartitions and sorts PairRDD records so records with the same key
298	are aggregated together, which are then merged into the TPED format and converted back to RDD
299	records for outputting. However, Spark's native family of group-by-key functions for merging

300	should not be used here because their default partitioner is hash-based and different from the
301	range-based partitioner used by previous sort-by-key function. Consequently, the merged results
302	would be reshuffled into an unsorted status. We therefore optimize the merging to bypass these
303	functions so merging can be performed locally without data reshuffling to ensure both order and
304	high speed.
305	
306	3) Exporting stage
307	In this stage, merged RDD records are saved as TPED files on HDFS.
308	
309	Execution parallelism has an important impact on the performance. To maximize performance, the
310	number of parallel tasks is set to be the number of input files. In this way, data locality is
311	maximized and each task is assigned a proper amount of work. In addition, unlike using
312	MapReduce or HBase, when performing sorting by keys, no explicit sampling is needed because
313	Spark keeps track of the number of records before determining repartition boundaries.
314	
315	Parallel Multiway-Merge and MPI-based High Performance Computing Implementations

316	For most bioinformatics researchers, their daily working environment is still traditional in-house
317	HPC clusters or stand-alone powerful servers (with cores ≥ 16 and memory $\ge 200GB$) rather than
318	heterogeneous cloud-based clusters. Therefore, we also implement a parallel multiway-merge
319	program running on a single machine and a MPI-based (mpi4py v3.0) "single program, multiple
320	data (SPMD)" program running on a HPC cluster as benchmarks. The source codes are available
321	at our GitHub website [35] (CloudMerge; RRID: SCR_016051). We choose to implement
322	multiway-merge, because many existing bioinformatics tools, including VCFTools and PLINK,
323	adopt it as the underlying algorithm for sorted merging. Multiway-merge is highly efficient on
324	single machine as it requires only one scan of sorted input files, so it can theoretically run at the
325	speed of disk I/O.
326	
327	Generally, there are two types of parallelismdata parallelism and task parallelism. The former
328	splits data horizontally into blocks of roughly equal sizes (the size of genomic intervals in our
329	case) before assigning them to all available processes; the latter assigns a roughly equal number of
330	input files to each process. For parallel multiway-merge, we choose data parallelism because the
331	implementation of task parallelism would be the same as the HPC-based implementation running

332	on a single node. Perhaps the most difficult part of data parallelism is uncertainty about the data
333	distribution across all input files, which usually leads to the problem of workload imbalance
334	among processes. If we pre-sample all the input files to estimate the record distribution, then a full
335	scan of the input files is required which will almost certainly takes more time than the single-
336	process multiway-merge method. As a compromise, we assume the distributions of SNP locations
337	in all VCF files are uniform and the input files can be split into regions of approximately equal
338	sizes. The total number of regions are set to be the number of concurrent processes, so that each
339	region is specifically handled by a process. To avoid seeking of a process's file reader to its
340	starting offset from the beginning of the file, we take advantage of the Tabix indexer [36], which
341	builds indices on data blocks of the input file and place the reader's pointer directly onto the
342	desired offset. One important aspect of the Tabix indexer is that it requires the input file to be
343	compressed in bgzip format which is not supported by Hadoop, HBase or Spark. The
344	compression and decompression of a file in bgzip format can be much faster than in bz2 format
345	used in our cluster-based schemas, single multiway-merge and HPC-based implementations, so
346	parallel multiway-merge can run much faster than other methods/schemas when input data size is
347	small.

349	For the HPC-based implementation, we adopt the task parallelism (Figure 5) to avoid sampling
350	and workload imbalance. Otherwise the workflow of HPC-based implementation is the same as
351	that of the MapReduce-based schema with the same operations and the same order: sampling in
352	parallel, dividing the dataset into splits of equal sizes, and assigning the splits to processes to
353	perform the merging. But this implementation is without data locality offered by HDFS and task
354	coordination offered by YARN and thus has a performance no better than the MapReduce-based
355	schema. Specifically, input files are shared across all nodes in the cluster via a Network File
356	System (NFS). In the first round, each core/process fetches roughly the same number of files from
357	the NFS and performs multiway-merging locally. In the following rounds, we adopted a tree-
358	structured execution strategy. In the second round, processes with even ID numbers (process id
359	starts from 0) retrieve the merged file from its adjacent process to the right, which are then merged
360	with its local merged file. Processes with odd ID number are terminated. In the third round,
361	processes with ID divisible by four retrieve the merged file from its adjacent process to the right in
362	the second round to merge with its local merged file. This process continues until all the files are
363	merged into a single file for a total of $log(n)$ rounds, where <i>n</i> is the number of the input files.

364	
365	Strong and Weak Scalabilities
366	In this study, we quantify scalability by measuring computing efficiency in tests of strong and
367	weak scalabilities. We define efficiency as the average time cost of processing a file per core:
368	Efficiency = $(T_b * C_b / N_b) / (T_i * C_i / N_i)$
369	where T_b is the baseline running time, C_b is the baseline number of cores, N_b is the baseline number
370	of input files, T_i is the current running time, C_i is the current number of cores, N_i is the current
371	number of input files. We also incorporated the parallel multiway-merge and MPI-based HPC
372	implementations as benchmarks in the tests.
372 373	implementations as benchmarks in the tests.
372 373 374	implementations as benchmarks in the tests. For the strong scalability test, we fix the number of input files at 93 and increase the computing
372373374375	implementations as benchmarks in the tests. For the strong scalability test, we fix the number of input files at 93 and increase the computing resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all
 372 373 374 375 376 	implementations as benchmarks in the tests. For the strong scalability test, we fix the number of input files at 93 and increase the computing resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all methods/schemas except for the parallel multiway-merge in which only a single core is used
 372 373 374 375 376 377 	implementations as benchmarks in the tests. For the strong scalability test, we fix the number of input files at 93 and increase the computing resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all methods/schemas except for the parallel multiway-merge in which only a single core is used because it can only run on a single machine. For the weak scalability test, we increase both
 372 373 374 375 376 377 378 	implementations as benchmarks in the tests. For the strong scalability test, we fix the number of input files at 93 and increase the computing resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all methods/schemas except for the parallel multiway-merge in which only a single core is used because it can only run on a single machine. For the weak scalability test, we increase both computing resources and input data size at the same pace. The ratio is ten file/core for parallel

380	
381	Results
382	We conducted experiments of Apache cluster-based schemas using Amazon's Elastic MapReduce
383	(EMR) service and experiments of the HPC-based implementation using MIT's StarCluster TM
384	toolkit which launches an AWS openMP virtual private cluster (VPC). Within both infrastructures,
385	we choose EC2 working nodes of m3.xlarge type, which has four High Frequency Intel Xeon E5-
386	2670 v2 (Ivy Bridge) Processors and 15GB memory. We conducted experiments of parallel
387	multiway-merge on a single EC2 r4.8xlarge instance with 32 High Frequency Intel Xeon E5-2686
388	v4 (Broadwell) processors and 244 GB memory. We used a dataset consisting of 186 VCF files
389	[32] generated from Illumina's BaseSpace software.
390	
391	Overall Performance Analysis of Clustered-based Schemas
392	Our primary goal is to explore the scalabilities of the three schemas on input data size and
393	available computing resources, namely CPUs. To achieve this, in this experiment we adjust the
394	number of input files from 10 to 186, with an approximate total uncompressed size from 2.5 GB to
395	40 GB, and used a varying number of working nodes from 3 to 18, namely 12 to 72 cores.

397	As Figure 6 shows, for all three schemas, given a fixed number of cores, the execution time
398	increases at a slower pace than that of the input data size. On the one hand, the increase of
399	execution time is more obvious with fewer cores because each core is fully utilized. As the
400	number of input files increases, so does the number of parallel tasks assigned to each core. For
401	example, given 12 cores, as the number of input files increases from 10 to 186 (18.6 fold), the
402	execution time increases from 739 to 4,366 seconds (~5.9 fold) for the MapReduce schema, from
403	375 to 5,479 seconds (~14.6 fold) for the HBase schema, and from 361 to 1,699 seconds (~4.7
404	fold) for the Spark schema. On the other hand, with relatively more cores such as 72, this linear
405	increasing trend is less pronounced because there are more cores than tasks so that all cores are
406	assigned at most one task. We also notice when input data size is small or moderate, the Spark
407	schema does not always show a consistent improvement in terms of execution time with more
408	cores. This is reflected, for example, in the intersection of curves occurred between 24 and 72
409	cores in Figure 6c. This phenomenon is attributed to the limitation of Spark's internal task
410	assignment policy which gives rise to the possibility that some nodes are assigned more than one
411	tasks while others remain idle.

413	Comparing Strong and Weak Scalabilities between Apache Cluster-based Schemas and
414	Traditional Parallel Methods
415	Figure 7 shows the results of the strong scalability. In accordance with the Amdahl's law [37], all
416	schemas/methods show degraded efficiency with increasing computing nodes/cores. Parallel
417	multiway-merge has the steepest degradation because the more parallel processes, the higher
418	likelihood of workload imbalances among them. In addition, disk I/O reaches saturation as more
419	processes write simultaneously. Furthermore, to achieve data parallelism and improve execution
420	speed, we used Tabix indexer to index data blocks of input files. While reading, each process
421	needs to maintain a full copy of file descriptors, indices and uncompressed current data blocks of
422	all input files in memory. When both the number of processes and input files are large, great
423	pressure is placed on the memory management. For instance, a test with 93 files and 16 processes
424	requires over 100GB memory, which results in a very long memory swap and garbage collection
425	(GC) time. In contrast, the MapReduce-based schema has the best efficiency. Surprisingly, its
426	efficiency even improves when the number of cores doubles from the baseline. This is because it
427	has many parallel tasks in its second MapReduce phase, and when the core allowance is low, the

428	overheads of repetitive task launching and terminating on a single core become non-negligible.
429	Consequently, as the number of cores starts to increase, the actual proportion of overheads in the
430	total running time decreases, leading to an improved efficiency. Nonetheless, as the number of
431	cores further increases, the unparalleled parts of the schema gradually dominated the total running
432	time, leading to a reduced efficiency eventually.
433	
434	For the weak scalability test (Figure 8), following Gustafson's law [38], all methods/schemas
435	show a much better efficiency than in the strong scalability test. Meanwhile, for the same reasons
436	as the strong scalability, the MapReduce-based schema enjoys the best efficiency while the HPC-
437	based implementation has the worst. This is because, for the HPC-based implementation, as the
438	number of input files increases, the total number of merging rounds also increases, leading to a
439	significantly reduced efficiency. Finally, all three Apache cluster-based schemas demonstrate
440	significantly better weak scalability than the two traditional parallel methods.
441	
442	The Anatomic Performances Analysis of Apache Cluster-based Schemas
443	Another important goal of our study is to identify potential performance bottlenecks, so we

444	evaluate the execution time of each phase/stage of all three schemas. Figure 9 shows the trends of
445	the anatomic computing time spent on merging increasing number of VCF files (from 10 to 186)
446	using 48 cores. For the MapReduce schema (Figure 9a), its two phases account for a comparable
447	proportion of total time and both show a linear or sublinear scalability. The reason that the time
448	cost of the first phase between 40 and 93 input files remains flat is because both runs use two
449	rounds of mappers. As the number of files doubles to 186, four rounds of mappers are required
450	which results in about a two-fold increase in the time cost as expected. For the three phases of the
451	HBase schema (Figure 9b), they are scalable with input data size. Meanwhile, the second phase
452	becomes more dominant with more input files owing to the larger amount of shuffled data during
453	the writing of HFiles. However, we do not consider it as a bottleneck since all tasks of this phase
454	are parallelized with no workload or computational hotspot. We do not observe a super-linear
455	(relative to input data size) increment pattern from the figure neither. Finally, Figure 9c shows the
456	time costs of the three stages of the Spark schema. They show a uniform increasing trend with the
457	number of input files. Among them, the second stage takes up a considerable proportion of the
458	total execution time as it has a relatively expensive sort-by-key shuffling operation. Although no
459	data is shuffled in the first stage, its time lapse is close to the second stage. This is because at the

460	end of the first stage, data are sampled to determine the boundaries used by sort-by-key's range
461	partitioner. This operation demands a considerable execution time because it scans all the data and
462	balances them if necessary.
463	
464	Given that no super-linear increasing trend is observed in running time for all phases/stages of the
465	three schemas, and they generally scale well with the input data size, we conclude although the
466	performances of these schemas might degrade to some extent when dealing with even larger input
467	data due to overheads such as data transmission over network, we would not expect any
468	significant bottleneck.
468 469	significant bottleneck.
468 469 470	significant bottleneck. Comparing Execution Speed between Apache Cluster-based Schemas and Traditional
468 469 470 471	significant bottleneck. Comparing Execution Speed between Apache Cluster-based Schemas and Traditional Methods
468 469 470 471 472	significant bottleneck. Comparing Execution Speed between Apache Cluster-based Schemas and Traditional Methods Another intriguing question is: how does the speed of the Apache cluster-based schemas compare
468 469 470 471 472 473	significant bottleneck. Comparing Execution Speed between Apache Cluster-based Schemas and Traditional Methods Another intriguing question is: how does the speed of the Apache cluster-based schemas compare to single machine based and traditional parallel/distributed methods/applications on merging
468 469 470 471 472 473 474	significant bottleneck. Comparing Execution Speed between Apache Cluster-based Schemas and Traditional Methods Another intriguing question is: how does the speed of the Apache cluster-based schemas compare to single machine based and traditional parallel/distributed methods/applications on merging multiple VCF files into a single VCF or TPED file? To answer this question, we choose the
476	process benchmarks and parallel multiway-merge and HPC-based implementations as
-----	---
477	parallel/distributed benchmarks, which are the same ones used in the experiments of strong and
478	weak scalabilities shown above.
479	
480	In the first experiment, we merged 40 VCF files into one VCF file using VCFTools as the
481	benchmark. As shown in Table 2, VCFTools takes 30,189 seconds while the fastest Apache
482	cluster-based schema among the three, the MapReduce-based, takes only 484 seconds using 72
483	cores, representing about a 62-fold faster. In the second experiment (Figure 10), we tested the
484	time costs of merging of multiple VCF files into a single TPED file using single/parallel
485	multiway-merge and HPC-based implementations as benchmarks. The single multiway merger is
486	run on a node with the hardware configuration (4 cores and 15GB memory) identical to the nodes
487	on which the Apache cluster-based schemas are run. The parallel multiway merger is run on a
488	node with a maximum of 18 simultaneously running processes. The HPC-based implementation is
489	run on an 18-node cluster with the same hardware configuration as the cluster where the Apache
490	cluster-based schemas are run. Initially, with ten input files, the parallel multiway-merge (~30
491	seconds) is much faster than all the other methods: about 7.3-fold faster than the fastest Apache

492	cluster-based schema (MapReduce, 221 seconds). On the other hand, the slowest method is the
493	single-process multiway merger which takes 620 seconds to finish (about 2.8-fold slower than the
494	MapReduce-based schema). It is worth mentioning in this test the parallel multiway-merge is
495	essentially the same as the single-process multiway-merge, and the speed difference (~378
496	seconds) between them is the result of a different compression format (bz2 vs bgzip) of the input
497	files as explained above. As we gradually increase the number of input files to 186, the difference
498	in speed between the fastest overall method (parallel multiway merger, 602 seconds) and the
499	fastest Apache cluster-based schema (MapReduce, 809 seconds) reduces to about 1.3-fold, while
500	the difference between the slowest overall method (single multiway merger, 13,219 seconds) and
501	the MapReduce-based schema increases to 16.3-fold. In addition, all three Apache schemas
502	significantly outperform the HPC-based implementation. As explained in the strong and weak
503	scalabilities section above, we expect the larger the input data size, the faster the Apache cluster-
504	based schemas would run compared to the other traditional methods.
505	
506	We also compare the time cost among the three schemas (Figure 10). They have a comparable
507	speed. More specifically, the MapReduce schema performs best if enough cores are available and

508	the input data size is large; the HBase schema performs best with moderate input data size; the
509	Spark schema performs best if only a limited number of cores are available and the input data size
510	is large. The rationale behind this observation is that, when the number of cores is sufficient, the
511	MapReduce-based schema can make the most use of the available computing resources because it
512	runs a constant 25 parallel jobs (one for each of chromosomes 1-22, X Y and M (Mitochondria))
513	in its second phase. In contrast, the Spark-based schema has fewer tasks whose number equals to
514	the number of input files to achieve maximum data-task locality. When the input data size is
515	moderate, the HBase-schema triumphs because its internal sorting and relative compact storage
516	format of intermediate data. When the input data size is large and computing resource is relatively
517	limited, the Spark-based schema outperforms the other two owing to its least number of data
518	shuffling (only one), execution plan optimization, and ability to cache intermediate results in
519	memory. We caution, however, the computing time may fluctuate depending on the distribution of
520	genomic locations in the input files as well as data loading balance of the HDFS.
521	
522	Discussion
523	In this report, we describe three cluster-based schemas running on the Apache Hadoop

524	(MapReduce), HBase and Spark platforms respectively for performing sorted merging of variants
525	identified from WGS. We show all three schemas are scalable on both input data size and
526	computing resources, suggesting large scale of '-omics' data can be merged efficiently given the
527	computing resources readily available in the cloud. Furthermore, the three schemas show better
528	strong and weak scalabilities than traditional single machine-based parallel multiway-merge and
529	cluster-based HPC methods owing to the absence of I/O bottleneck, better workload balance
530	among nodes, less pressure on memory, as well as data locality and efficient task coordination
531	mechanisms provided by HDFS and YARN. We also show even with a moderate-sized cluster and
532	input data, all three schemas significantly outperform the broadly-used, single-machine based
533	VCFTools, single-process multiway-merge and HPC-based implementations. Although initially
534	the parallel multiway-merge implementation is much faster than the Apache schemas owing to its
535	advantage of local I/O and light compression of input files, its poor scalability diminishes its
536	initial advantage as the number of concurrent processes and input files increases. Consequently,
537	we expect the Apache cluster-based schemas eventually outperform the parallel multiway-merge
538	when merging a much larger scale of data using a larger number of cores.

540	Unlike normal merging, efficient sorted merging of many large tables has always been a difficult
541	problem in the field of data management. Multiway-merge is the most efficient single-machine
542	based method for sorted merging, but its performance is limited by the disk I/O [39]. Sorted
543	merging also places challenges to distributed system based solutions because neither the efficient
544	hash-based merging nor caching the intermediate table in shared memory is feasible [40].
545	Although a utility named <i>total-order-joining</i> is provided by the Hadoop for addressing this
546	problem, it suffers from both network communication and local disk I/O bottlenecks, thus is not
547	scalable [27, 41]. In contrast, our schemas divide this problem into different phases/stages of tasks
548	each conquered in parallel to bypass these bottlenecks and achieve maximum parallelism.
549	Furthermore, in addition to merging sequencing variant data, these schemas can be generalized for
550	other key-based, sorted merging problems are frequently encountered in genetics and genomics
551	data processing. As an example, they can be slightly modified to merge multiple BED format files
552	such as ChIP-seq peak lists [42] and other genomic regions of interest. Other potentially useful
553	features include: 1) Unlike traditional sorted merging algorithms which usually require presorted

inputs for a better performance, our schemas are free of such a requirement; 2) Our implementations automatically take care of multi-allelic positions which are frequent in large scale VCF flies by retaining the information of all alleles until the merging actually occurs. Finally, in light of these different features and specialties of these three platforms, each of the three schemas we developed has its own advantages and disadvantages under different application scenarios as summarized in Table 1. For example, the MapReduce schema is good for a static one-time, non-incremental merging on large-size data provided sufficient cores are available since it has the most parallel jobs, the least overheads, and the most transparent workflow. The HBase schema, supported by data warehousing technologies, fits for an incremental merging since it does not need to re-merge existing results with new ones from the scratch only if the incremental merging is performed on the same chromosomes. Also, it provides a highly-efficient storage and On-Line Analytical Processing (OLAP) on merged results. The Spark schema is ideal for merging large scale data with relatively limited computing resources because it has the least data shuffling and keeps intermediate results in memory. A bonus brought by Spark is the subsequent statistical analyses can be carried out directly on the merged results using its rich set of parallel statistical

1 2 3 4	570	utilities.
5 6 7	571	
8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8	572	Availability and Requirements
	573	Project name: CloudMerge
	574	Project home page: <u>https://github.com/xsun28/CloudMerge</u>
	575	Operating system(s): Linux
	576	Programming language: Java, Python
	577	Other requirements: Java 1.7 or higher, Python 2.7 or 3.6, Hadoop-2.7, HBase-1.3, Spark-2.1,
	578	StarCluster 0.95, MPI for Python 3.0.0
	579	License: Apache License 2.0
	580	
	581	Availability of Data and Materials
	582	The source codes of the project are available in GitHub. The 186 individual VCF files used in our
	583	experiments are modified from the original VCF files obtained from WGS conducted by the
	584	Consortium on Asthma among African-ancestry Population in the Americas (CAAPA) [32]. To

202	conceal the potential individual identifiable genotype information from the public, we encrypt the
586	authentic genomic location of the original 93 VCF files to generate a new batch of encrypted VCF
587	files for test purposes. Please refer to Data Formats and Operations section for details. These
588	supporting data and a snapshot of project codes are available at the GigaScience database,
589	GigaDB [43]. Via GigaDB, we also provide sample results of merging 93VCF files into either one
590	VCF or one TPED file using our Apache cluster-based schemas.
591	
592	Abbreviations
593	VCE: Variant Call Format: MPI: Message Passing Interface: HPC: High Performance Computing:
	ver variant ean ronnat, wir i. wessage rassing interface, in e. mgi renormance computing,
594	GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole
594 595	GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model;
594 595 596	GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model; SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed Dataset; DAG: Directed
594 595 596 597	GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model; SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed Dataset; DAG: Directed Acyclic Graph; SPMD: Single Program, Multiple Data; NFS: Network File System; EMR: Elastic-
594 595 596 597 598	 GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model; SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed Dataset; DAG: Directed Acyclic Graph; SPMD: Single Program, Multiple Data; NFS: Network File System; EMR: Elastic- MapReduce; VPC: Virtual Private Cluster; GC: Garbage Collection; CAAPA: Consortium on
594 595 596 597 598 599	GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model; SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed Dataset; DAG: Directed Acyclic Graph; SPMD: Single Program, Multiple Data; NFS: Network File System; EMR: Elastic- MapReduce; VPC: Virtual Private Cluster; GC: Garbage Collection; CAAPA: Consortium on Asthma among African-ancestry Population in the Americas;

Ethics approval for the CAAPA program was provided by the Johns Hopkins University Institutional Review Board following commencement of the study in 2011 (IRB00045892 The Consortium on Asthma among African-ancestry Populations), and included study team members from each CAAPA site, including Emory University (site PI, Zhaohui Qin). Access to the raw data as CAAPA team members is granted according to the guideline of the IRB-approved study. Informed consent has been obtained from all study participants of CAAPA. **Competing Interests** The authors declare they have no competing interests. Funding This study was supported by grants from National Heart, Lung, and Blood Institute [R01HL104608, R01HL117004, R01HL128439, R01HL135156, X01HL134589]; National Institute of

Ethics Approval and Consent to Participate

615 Health and Health Disparities [P60MD006902, R01MD010443, RL5GM118984]; National

Environmental Health Sciences [R01ES015794, R21ES24844]; National Institute on Minority

616 Institute of Neurological Disorders and Stroke [R01NS051630, P01NS097206, U54NS091859];

617	National Science Foundation [ACI 1443054, IIS 1350885,]; Tobacco-Related Disease Research
618	Program [24RT-0025]. The Genes-Environments and Admixture in Latino Americans (GALA II)
619	Study, the Study of African Americans, Asthma, Genes and Environments (SAGE) Study and E.G.B.
620	are supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF
621	Amos Medical Faculty Development Program and the Harry Wm. and Diana V. Hind Distinguished
622	Professor in Pharmaceutical Sciences II.
623	
624	Authors' Contributions
625	J.G. introduced the problem. X.S., F.W. initiated this project. X.S. designed and implemented the
626	CloudMerge project. X.S. drafted the manuscript. X.S., J.P., F.W. and Z.Q. revised the manuscript.
627	K.C.B. conceived the initial consortium design, acquired biospecimens for NGS, facilitated generation
628	of NGS data. K.C.B., R.A.M., I.R., T.H.B. conceived initial experiments, interpreted NGS data.
629	E.G.B., C.E. acquired biospecimens for NGS, facilitated generation of NGS data.
630	
631	Acknowledgements
632	We thank the three referees for their constructive critiques and detailed comments. We are grateful to Ms.

Mary Taylor Mann and Ms. Alyssa Leann Duck for their editorial help during writing and revising of the manuscript. E.G.B. wish to acknowledge the following GALA II and SAGE co-investigators for subject recruitment, sample processing and quality control: Sandra Salazar, Scott Huntsman, MSc, Donglei Hu, PhD, Lisa Caine, Shannon Thyne, MD, Harold J. Farber, MD, MSPH, Pedro C. Avila, MD, Denise Serebrisky, MD, William Rodriguez-Cintron, MD, Jose R. Rodriguez-Santana, MD, Rajesh Kumar, MD, Luisa N. Borrell, DDS, PhD, Emerita Brigino-Buenaventura, MD, Adam Davis, MA, MPH, Michael A. LeNoir, MD, Kelley Meade, MD, Saunak Sen, PhD and Fred Lurmann, MS. References Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. Adam: Genomics formats 1. and processing patterns for cloud scale computing. University of California, Berkeley Technical Report, No UCB/EECS-2013. 2013;207. 2. Siretskiy A, Sundqvist T, Voznesenskiy M and Spjuth O. A quantitative assessment of the hadoop framework for analyzing massively parallel dna sequencing data. Gigascience. 2015;4 1:26. Merelli I, Pérez-Sánchez H, Gesing S and D'Agostino D. Managing, analysing, and integrating big 3. data in medical bioinformatics: open problems and future perspectives. BioMed research international. 2014;2014. Reyes-Ortiz JL, Oneto L and Anguita D. Big data analytics in the cloud: Spark on hadoop vs 4. mpi/openmp on beowulf. Procedia Computer Science. 2015;53:121-30. Burren OS, Guo H and Wallace C. VSEAMS: a pipeline for variant set enrichment analysis using 5. summary GWAS data identifies IKZF3, BATF and ESRRA as key transcription factors in type 1 diabetes. Bioinformatics. 2014;30 23:3342-8. doi:10.1093/bioinformatics/btu571.

Apache Hadoop. http://hadoop.apache.org/. Accessed 10 Oct 2017. 6. 7. Dean J and Ghemawat S. Mapreduce: Simplified data processing on large clusters. Commun Acm. 2008;51 1:107-13. doi:Doi 10.1145/1327452.1327492. Vora MN. Hadoop-HBase for large-scale data. In: Computer science and network technology 8. (ICCSNT), 2011 international conference on 2011, pp.601-5. IEEE. 9. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation 2012, pp.2-. USENIX Association. 10. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research. 2010;20 9:1297-303. 11. Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009;25 11:1363-9. doi:10.1093/bioinformatics/btp236. 12. Pireddu L, Leo S and Zanetti G. SEAL: a distributed short read mapping and duplicate removal tool. Bioinformatics. 2011;27 15:2159-60. 13. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E and Heljanko K. Hadoop-BAM: directly manipulating next generation sequencing data in the cloud. Bioinformatics. 2012;28 6:876-7. 14. Langmead B, Schatz MC, Lin J, Pop M and Salzberg SL. Searching for SNPs with cloud computing. Genome Biol. 2009;10 11:R134. doi:10.1186/gb-2009-10-11-r134. 15. Wang S, Mares MA and Guo YK. CGDM: collaborative genomic data model for molecular profiling data using NoSQL. Bioinformatics. 2016;32 23:3654-60. doi:10.1093/bioinformatics/btw531. 16. Zhou W, Li R, Yuan S, Liu C, Yao S, Luo J, et al. MetaSpark: a spark-based distributed processing tool to recruit metagenomic reads to reference genomes. Bioinformatics. 2017;33 7:1090-2. 17. Niu B, Zhu Z, Fu L, Wu S and Li W. FR-HIT, a very fast program to recruit metagenomic reads to homologous reference genomes. Bioinformatics. 2011;27 12:1704-5. 18. AWS Genomics Guide. https://d0.awsstatic.com/Industries/HCLS/Resources/AWS Genomics WP.pdf. Accessed 10 Oct 2017. 19. Gruber K. Google for genomes. Nature Research, 2014. 20. O'Brien AR, Saunders NF, Guo Y, Buske FA, Scott RJ and Bauer DC. VariantSpark: population scale

- clustering of genotype information. BMC genomics. 2015;16 1:1052. 21. Wiewiórka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P and Okoniewski MJ. SparkSeg: fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide б precision. Bioinformatics. 2014;30 18:2652-3. 22. Decap D, Reumers J, Herzeel C, Costanza P and Fostier J. Halvade: scalable sequence analysis with MapReduce. Bioinformatics. 2015;31 15:2482-8. 23. He M, Person TN, Hebbring SJ, Heinzen E, Ye Z, Schrodi SJ, et al. SeqHBase: a big data toolset for family based sequencing data analysis. Journal of medical genetics. 2015; jmedgenet-2014-102907. 24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81 3:559-75. doi:10.1086/519795. 25. Mohammed EA, Far BH and Naugler C. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min. 2014;7:22. doi:10.1186/1756-0381-7-22. 26. Huang H, Tata S and Prill RJ. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop Bioinformatics. 2013;29 1:135-6. clusters. doi:10.1093/bioinformatics/bts647. 27. White T. Hadoop: The definitive guide. "O'Reilly Media, Inc."; 2012. 28. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27 15:2156-8. doi:10.1093/bioinformatics/btr330. 29. Multiway-Merge Algorithm. https://en.wikipedia.org/wiki/K-Way Merge Algorithms. Accessed 10 Oct 2017. 30. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, et al. Bigtable: A distributed storage system for structured data. Acm T Comput Syst. 2008;26 2 doi:Artn 4 10.1145/1365815.1365816. 31. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467 7319:1061-73. doi:10.1038/nature09534. 32. Mathias RA, Taub MA, Gignoux CR, Fu W, Musharoff S, O'Connor TD, et al. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat Commun.

1	717		2016;7:12522. doi:10.1038/ncomms12522.
2	718	33.	Kwon Y, Balazinska M, Howe B and Rolia J. A study of skew in mapreduce applications. Open Cirrus
4 5	719		Summit. 2011;11.
6 7	720	34.	O'Neil P, Cheng E, Gawlick D and O'Neil E. The log-structured merge-tree (LSM-tree). Acta
, 8 9	721		Informatica. 1996;33 4:351-85.
10 11	722	35.	CloudMerge. https://github.com/xsun28/CloudMerge
12 12	723	36.	Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics.
13 14 15	724		2011;27 5:718-9.
15 16 17	725	37.	Amdahl GM. Validity of the single processor approach to achieving large scale computing
18	726		capabilities. In: Proceedings of the April 18-20, 1967, spring joint computer conference 1967,
19 20	727		pp.483-5. ACM.
21 22	728	38.	Gustafson JL. Reevaluating Amdahl's law. Commun Acm. 1988;31 5:532-3.
23	729	39.	Sedgewick R and Flajolet P. An introduction to the analysis of algorithms. Addison-Wesley; 2013.
25 26	730	40.	Özsu MT and Valduriez P. Principles of distributed database systems. Springer Science & Business
27 28	731		Media; 2011.
29 30	732	41.	Miner D and Shook A. MapReduce Design Patterns: Building Effective Algorithms and Analytics for
31 32	733		Hadoop and Other Systems. " O'Reilly Media, Inc."; 2012.
33 34	734	42.	Chen L, Wang C, Qin ZS and Wu H. A novel statistical method for quantitative comparison of
35 36	735		multiple ChIP-seq datasets. Bioinformatics. 2015;31 12:1889-96.
37 38	736	43.	Sun X, Gao J, Jin P, Celeste Eng, Esteban G. Burchard, Terri H. Beaty, Ingo Ruczinski, Rasika A.
39 40	737		Mathias, Kathleen C. Barnes, Wang F and Qin Z. Supporting data for "Optimized Distributed
41 42	738		Systems Achieve Significant Performance Improvement on Sorted Merging of Massive VCF
43 44	739		Files" GigaScience Database 2018. <u>http://dx.doi.org/10.5524/100423</u> .
45 46	740		
47 48	, 10		
49 50	741		
51 52	742		
53 54	, 12		
55 56	743		
57 58	, 15		
59 60	744		
61 62			
63 64			
65			

745 Complete List of CAAPA Consortium Members and Their Affiliations

Kathleen C. Barnes, PhD^{1;2}, Terri H. Beaty, PhD², Meher Preethi Boorgula MS¹, Monica Campbell, BS¹, Sameer Chavan, MS¹, Jean G. Ford, MD^{2;3}, Cassandra Foster, CCRP¹, Li Gao, MD, PhD¹, Nadia N. Hansel, MD, MPH¹, Edward Horowitz, BA¹, Lili Huang, MPH¹, Rasika Ann Mathias, ScD^{1;2}, Romina Ortiz, MA¹, Joseph Potee, MS¹, Nicholas Rafaels, MS¹, Ingo Ruczin-ski, PhD⁴, Alan F. Scott, PhD¹, Margaret A. Taub, PhD⁴, Candelaria Ver-gara, PhD¹, Jingjing Gao, PhD⁵, Yijuan Hu, PhD⁶, Henry Richard Johnston, PhD⁶, Zhaohui S. Qin, PhD⁶, Albert M. Levin, PhD⁷, Badri Padhukasahas-ram, PhD⁸, L. Keoki Williams, MD, MPH^{8;9}, Georgia M. Dunston, PhD^{10;11}, Mezbah U. Faruque, MD, PhD¹¹, Eimear E. Kenny, PhD^{12;13}, Kimberly Gi-etzen, PhD¹⁴, Mark Hansen, PhD¹⁴, Rob Genuario, PhD¹⁴, Dave Bullis, MBA¹⁴, Cindy Lawley, PhD¹⁴, Aniket Deshpande, MS¹⁵, Wendy E. Grus, PhD¹⁵, Devin P. Locke, PhD¹⁵, Marilyn G. Foreman, MD¹⁶, Pedro C. Avila, MD¹⁷, Leslie Grammer, MD¹⁷, Kwang-Youn A. Kim, PhD¹⁸, Rajesh Kumar, MD^{19;20}, Robert Schleimer, PhD²¹, Carlos Bustamante, PhD¹², Francisco M. De La Vega, DS¹², Chris R. Gignoux, MS¹², Suyash S. Shringarpure, PhD¹², Shaila Musharo, MS¹², Genevieve Wojcik, PhD¹², Esteban G. Burchard, MD, MPH^{22;23}, Celeste Eng, BS²³, Pierre-Antoine Gourraud, PhD²⁴, Ryan D. Hernandez, PhD^{22;25;26}, Antoine Lizee, PhD²⁴, Maria Pino-

761	Yanes, PhD ^{23;27} , Dara G. Torgerson, PhD ²³ , Zachary A. Szpiech, PhD ²² , Raul Torres, BS ²⁸ , Dan L.
762	Nicolae, PhD ^{29;30} , Carole Ober, PhD ³¹ , Christopher O Olopade, MD, MPH ³² , Olufunmilayo
763	Olopade, MD ²⁹ , Oluwafemi Oluwole, MSc ²⁹ , Ganiyu Arinola, PhD ³³ , Timothy D. O'Connor,
764	PhD ^{34;35;36} ,Wei Song, PhD ^{34;35;36} , Goncalo Abecasis, DPhil ³⁷ , Adolfo Correa, MD, MPH, PhD ³⁸ ,
765	Solomon Musani, PhD ³⁸ , James G. Wilson, MD ³⁹ , Leslie A. Lange, PhD ⁴⁰ , Joshua Akey, PhD ⁴¹ ,
766	Michael Bamshad, MD ⁴² , Jessica Chong, PhD ⁴² , Wenqing Fu, PhD ⁴¹ , Deborah Nickerson, PhD ⁴¹ ,
767	Alexander Reiner, MD, MSc ⁴³ , Tina Hartert, MD, MPH ⁴⁴ , Lorraine B. Ware, MD ^{44;45} , Eugene
768	Bleecker, MD ⁴⁶ , Deborah Meyers, PhD ⁴⁶ , Victor E. Ortega, MD ⁴⁶ , Pissamai Maul, BSc, RN ⁴⁷ ,
769	Trevor Maul, RN ⁴⁷ , Harold Watson, MD ^{48;49} , Maria Ilma Araujo, MD, PhD ⁵⁰ , Ricardo Riccio
770	Oliveira, PhD ⁵¹ , Luis Caraballo, MD, PhD ⁵² , Javier Marrugo, MD ⁵³ , Beatriz Martinez, MSc ⁵² ,
771	Catherine Meza, LB ⁵² , Gerardo Ayestas ⁵⁴ , Edwin Francisco Herrera-Paz, MD, MSc ^{55;56;57} , Pamela
772	Landaverde-Torres ⁵⁵ , Said Omar Leiva Erazo ⁵⁵ , Rosella Martinez, BSc ⁵⁵ , varo Mayorga, MD ⁵⁶ ,
773	Luis F. Mayorga, MD ⁵⁵ , Delmy-Aracely Mejia-Mejia, MD ^{56;57} , Hector Ramos ⁵⁵ , Allan Saenz ⁵⁴ ,
774	Gloria Varela ⁵⁴ , Olga Marina Vasquez ⁵⁷ , Trevor Ferguson, MBBS, DM, MSc ⁵⁸ , Jennifer Knight-
775	Madden, MBBS, PhD ⁵⁸ , Maureen Samms-Vaughan, MBBS, DM, Ph ⁵⁹ , Rainford J. Wilks, MBBS,

776	DM, MSc ⁵⁸ , Akim Adegnika, MD, PhD ^{60;61;62} , Ulysse Ateba-Ngoa, MD ^{60;61;62} , Maria
777	Yazdanbakhsh, PhD ⁶²
778	1 Department of Medicine, Johns Hopkins University, Baltimore, MD.
779	2 Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, MD.
780	3 Department of Medicine, The Brooklyn Hospital Center, Brooklyn, NY.
781	4 Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, MD.
782	5 Data and Statistical Sciences, AbbVie, North Chicago, IL.
783	6 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA.
784	7 Department of Public Health Sciences, Henry Ford Health System, Detroit, MI.
785	8 Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, MI.
786	9 Department of Internal Medicine, Henry Ford Health System, Detroit, MI.
787	10 Department of Microbiology, Howard University College of Medicine, Washington, DC.
788	11 National Human Genome Center, Howard University College of Medicine, Washington, DC.
789	12 Department of Genetics, Stanford University School of Medicine, Stanford, CA.
790	13 Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York
791	14 Illumina, Inc., San Diego, CA.

792	15 Knome Inc., Cambridge, MA.
793	16 Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA.
794	17 Department of Medicine, Northwestern University, Chicago, IL.
795	18 Department of Preventive Medicine, Northwestern University, Chicago, IL.
796	19 Department of Pediatrics, Northwestern University, Chicago, IL.
797	20 The Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago.
798	21 Department of Medicine, Northwestern Feinberg School of Medicine, Chicago,
799	22 Department of Bioengineering and Therapeutic Sciences, University of California, San
800	Francisco, San Francisco, CA.
801	23 Department of Medicine, University of California, San Francisco, San Francisco, CA.
802	24 Department of Neurology, University of California, San Francisco, San Francisco, CA.
803	25 Institute for Human Genetics, Institute for Human Genetics, University of California, San
804	Francisco, San Francisco.
805	26 California Institute for Quantitative Biosciences, University of California, San Francisco, San
806	Francisco, CA.
807	27 CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid.

808	28 Biomedical Sciences Graduate Program, University of California, San Francisco, San
809	Francisco, CA.
810	29 Department of Medicine, University of Chicago, Chicago, IL.
811	30 Department of Statistics, University of Chicago, Chicago, IL.
812	31 Department of Human Genetics, University of Chicago, Chicago, IL.
813	32 Department of Medicine and Center for Global Health, University of Chicago, Chicago, IL.
814	33 Department of Chemical Pathology, University of Ibadan, Ibadan, Nigeria.
815	34 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD.
816	35 Program in Personalized and Genomic Medicine, University of Maryland School of Medicine,
817	Baltimore.
818	36 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
819	37 Department of Biostatistics, SPH II, University of Michigan, Ann Arbor, MI.
820	38 Department of Medicine, University of Mississippi Medical Center, Jackson, MS.
821	39 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson,
822	MS.
823	40 Department of Genetics, University of North Carolina, Chapel Hill, NC.

824	41 Department of Genomic Sciences, University of Washington, Seattle, WA.
825	42 Department of Pediatrics, University of Washington, Seattle, WA.
826	43 University of Washington, Seattle, WA.
827	44 Department of Medicine, Vanderbilt University, Nashville, TN.
828	45 Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville.
829	46 Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine,
830	Winston-Salem, NC.
831	47 Genetics and Epidemiology of Asthma in Barbados, The University of the West Indies.
832	48 Faculty of Medical Sciences Cave Hill Campus, The University of the West Indies.
833	49 Queen Elizabeth Hospital, Queen Elizabeth Hospital, The University of the West Indies.
834	50 Immunology Service, Universidade Federal da Bahia, Salvador, BA.
835	51 Laboratrio de Patologia Experimental, Centro de Pesquisas Gonalo Moniz, Salvador, BA.
836	52 Institute for Immunological Research, Universidad de Cartagena, Cartagena.
837	53 Instituto de Investigaciones Immunologicas, Universidad de Cartagena, Cartagena.
838	54 Faculty of Medicine, Universidad Nacional Autonoma de Honduras en el Valle de Sula, San
839	Pedro Sula.

840	55 Facultad de Medicina, Universidad Catolica de Honduras, San Pedro Sula.
841	56 Centro de Neumologia y Alergias, San Pedro Sula.
842	57 Faculty of Medicine, Centro Medico de la Familia, San Pedro Sula.
843	58 Tropical Medicine Research Institute, The University of the West Indies.
844	59 Department of Child Health, The University of the West Indies.
845	60 Centre de Recherches Mdicales de Lambarn.
846	61 Institut fr Tropenmedizin, Universitt Tbingen.
847	62 Department of Parasitology, Leiden University Medical Center, Netherlands.
848	
848 849	Figure legends
848 849 850	Figure legends Figure 1. Merging multiple VCF files into a single TPED file. Left tables represent input VCF
848 849 850 851	Figure legends Figure 1. Merging multiple VCF files into a single TPED file. Left tables represent input VCF files. Table to the right represents the merged TPED file. Records are filtered out if their Filter
848 849 850 851 852	Figure legends Figure 1. Merging multiple VCF files into a single TPED file. Left tables represent input VCF files. Table to the right represents the merged TPED file. Records are filtered out if their Filter value does not equal to "PASS" (Pos 10147). Individual genotypes from multiple VCF files with
848 849 850 851 852 853	Figure legends Figure 1. Merging multiple VCF files into a single TPED file. Left tables represent input VCF files. Table to the right represents the merged TPED file. Records are filtered out if their Filter value does not equal to "PASS" (Pos 10147). Individual genotypes from multiple VCF files with the same genomic location are aggregated together in one row. The resulting TPED file thus has
848 849 850 851 852 853 854	Figure legends Figure 1. Merging multiple VCF files into a single TPED file. Left tables represent input VCF files. Table to the right represents the merged TPED file. Records are filtered out if their Filter value does not equal to "PASS" (Pos 10147). Individual genotypes from multiple VCF files with the same genomic location are aggregated together in one row. The resulting TPED file thus has an inclusive set of sorted genomic locations of all variants found in the input VCF files.

856	Figure 2. The workflow chart of the MapReduce schema. The workflow is divided into two
857	phases: In the first phase, variants are filtered, grouped by chromosomes into bins, and mapped
858	into key-value records. Two sampling steps are implemented to generate partition lists of all
859	chromosomes. In the second phase, parallel jobs of specified chromosomes are launched. Within
860	each job, records from corresponding bins are loaded, partitioned, sorted and merged by genomic
861	locations before being saved into a TPED file.
862	
863	Figure 3. The workflow chart of the HBase schema. The workflow is divided into three phases.
864	The first is a sampling, filtering and mapping phase. A MapReduce job samples out variants
865	whose genomic positions are used as region boundaries when creating the HBase table. Only
866	qualified records are mapped as key-values and saved as Hadoop sequence files. The second is the
867	HBase bulk loading phase in which a MapReduce job loads and writes records generated from the
868	previous phase, aggregating them into corresponding regional HFiles in the form of HBase's row
869	key and column families. Finished HFiles are moved into HBase data storage folders on region
870	servers. In the third phase, parallel scans were launched over regions of the whole table to retrieve
871	desired records which are subsequently merged and exported to the TPED file.

873	Figure 4. The workflow chart of the Spark schema. The workflow is divided into three stages.
874	In the first stage, VCF records are loaded, filtered, and mapped to PairRDDs with keys of genomic
875	position and values of genotype. The sort-by-key shuffling spans across the first two stages,
876	sorting and grouping together records by keys. Then grouped records with the same key are
877	locally merged into one record in TPED format. Finally, merged records are exported to the TPED
878	file.
879	
880	Figure 5. The execution plan of the HPC-based implementation. The execution plan resembles
881	a branched-tree. In the first round, each process is assigned an approximately equal number of
882	files to merge locally. In the second round, even-numbered process retrieves the merged file of its
883	right adjacent process to merge with its local merged file. In the third round, processes whose ID
884	can be fully divided by four retrieve the merged file of its right adjacent process in the second
885	round and do the merging. This process continues recursively until all files are merged into a
886	
	single TPED file (round four).

889 schema. B. HBase schema. C. Spark schema. As the number of input files increases from	10 to than that
	than that
890 186, the time costs of all three schemas with 12, 24 or 72 cores increase in a slower pace t	
891 of the input data size, especially when the number of cores is relatively large. The HBase	schema
with 12 cores has the largest increase (from 375 to $5,479$ seconds, ~ 14.6 fold).	
893	
894 Figure 7. Comparing the strong scalability between traditional parallel/distributed n	nethods
and Apache cluster-based schemas. We fix the number of files at 93 and increase the nu	mber of
896 nodes/cores. The baseline for the parallel multiway-merge is one single core, while for the	e others
897 is one single node (4 cores). All methods/schemas show a degraded efficiency as computing	ng
898 resources increase 16 fold from the baseline. Specifically, the efficiency of MapReduce-, I	HBase-,
899 Spark-based schemas drops to 0.83, 0.63 and 0.61 respectively, while the efficiency of particular schemas drops to 0.83, 0.63 and 0.61 respectively.	rallel
900 multiway-merge and HPC-based implementations drops to 0.06 and 0.53 respectively.	
901	
902 Figure 8. Comparing the weak scalability between traditional parallel/distributed me	ethods
903 and Apache cluster-based schemas. We simultaneously increase the number of cores and	d input

904	data sizes while fixing the ratio of file/core (parallel multiway-merge) or file/node (all others) at
905	ten. The baseline is the same as in the test of strong scalability. All but the MapReduce-based
906	schema have degraded efficiency, among which the HPC-based implementation has the steepest
907	degradation. Specifically, when computing resource increases 16 fold from the baseline, the
908	efficiency of MapReduce-, HBase- and Spark-based schemas changes to 3.1, 0.87 and 0.75
909	respectively, and for parallel multiway-merge and HPC-based implementations, the efficiency
910	reduces to 0.42 and 0.35 respectively.
911	
912	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size.
912 913	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all phases of the three
912 913 914	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all phases of the three schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema:
912 913 914 915	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all phases of the three schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold
912 913 914 915 916	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all phases of the three schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold respectively as the number of input files increases from 10 to 186. b) HBase schema: The time
912 913 914 915 916 917	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all phases of the three schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold respectively as the number of input files increases from 10 to 186. b) HBase schema: The time spent in each phase increases 4.2-, 5.6- and 5.0-fold respectively as the number of input files
 912 913 914 915 916 917 918 	Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all phases of the three schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold respectively as the number of input files increases from 10 to 186. b) HBase schema: The time spent in each phase increases 4.2-, 5.6- and 5.0-fold respectively as the number of input files increases from 10 to 186. The bulk loading and exporting phases together take up more than 80%

920	respectively for the three stages as the number of input files increases from 10 to 186 files. Like
921	the HBase schema, the first two stages of the Spark schema together account for more than 80% of
922	the total time cost.
923	
924	Figure 10. Execution speed comparison among Apache cluster-based schemas and
925	traditional methods. Firstly, we compare of the speeds of the three Apache schemas with that of
926	three traditional methods which are single-process multiway-merge, parallel multiway-merge and
927	HPC-based implementations. As the number of input files increases from 10 to 186, the speeds of
928	Apache cluster-based schemas improve much more significantly than traditional methods. The
929	numbers in the figures indicate the ratio of the time cost of each traditional method to that of the
930	fastest Apache cluster-based schema. Secondly, we compare the processing speed among the three
931	Apache cluster-based schemas which are comparable to each other regardless of the input data
932	size. The MapReduce schema performs the best in merging 10 and 186 files; The HBase schema
933	performs the best in merging 20, 40 and 60 files; The Spark schema performs the best in merging
934	93 files.
935	

936 Figure S1. Pseudocodes of the MapReduce sche
--

938 Figure S2. Pseudocodes of the HBase schema.

940 Figure S3. Pseudocodes of the Spark schema.

942 Tables

943 Table 1. Performance comparisons between VCTools and Apache cluster-based schemas

	VCFTools	MapReduce	HBase	Spark
Time cost (seconds)	30,189	484	577	596
Fold (faster)	-	62.4	52.3	50.7

945 Table 2. Pros and Cons of MapReduce, HBase and Spark schemas

Schemas	Pros	Cons
MapReduce	• Good for large input data	Merging is not
	size and sufficient	incremental.
	computing resources.	• Much overheads when
	• Simple architecture and	computing resources are
	least overheads given	limited
	sumetent computing	

		resources.		
	•	Best parallelism		
	•	Good for one-time		
		merging.		
	•	Performance is stable.		
HBase	•	Good for intermediate	•	Users must determine
		input data size (>=20 and		region number in
		<=100 VCF files).		advance.
	•	Supports incremental	•	Has most local I/O.
		merging.	•	Complex performance
	•	Supports On-Line		tuning.
		Analytical Processing		
		(OLAP).		
	•	Best storage efficiency.		
Spark	•	Good for large input data	•	Possibly weakened data
		size (>100 VCF files) and		locality during loading.
		relative limited	•	Slight unstable
		computing resources.		performance when
	•	Keeps intermediate		computing resources
		results in memory and		exceeds needs of input
		least local I/O.		data size.
	•	Good for subsequent	•	Actual execution plan is
		statistical analysis on		not transparent.
		merged results.	•	Complex performance
				tuning.

1	946			
2				
3				
4				
5				
6				
7				
8				
10				
11 11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25 26				
20				
28				
29				
30				
31				
32				
33				
34				
35				
37				
38				
39				
40				
41				
42				
43				
44				
45				
47				
48				
49				
50				
51				
52				
53				
54				
56				
57				
58				
59				
60				
61				
62				
63				
64				
65				

Figure1

VCF File

2

igurei	Chr	Pos	Ref	Alt	Filter	•••	Genotype
VCF File	1	10147	А	Т	q20		1/0:43
1	1	10240	Т	G	PASS		1/0:5
	Y	11590	G	С	PASS		0/0:10

Chr Pos Ref Alt Filter Genotype 10186 G 1/0:9 1 Α PASS G 1/1:11 10240 Т PASS 1 ••• ••• ••• ••• ••• ••• ••• 0/1:10 11872 G Т PASS Y

Click here to download Figure Figure 1.pdf 🛓

Genotypes

Chr	Rs	Distance	Pos	Ind_1	Ind_2
1	•	0	10186	GG	G A
1	•	0	10240	ΤG	GG
Y	•	0	11590	G G	GG
Y	•	0	11872	GG	GT

Merged TPED file

VCF Files

Partition Lists

Click here to download Figure Figure3.pdf 🛓

Figure3 Sampling, Mapping& Filtering

VCF Files

HBase Bulk Loading

Fi**§tage** 1

Stage 2 Click here

Click here to download Figur Stager S4.pdf ±

-12 cores -24 cores -72 cores

■ Loading, Filtering & Mapping Sorting & Merging Exporting

Supplementary Figure S1

Click here to access/download Supplementary Material FigureS1.pdf Supplementary Figure S2

Click here to access/download Supplementary Material FigureS2.pdf Supplementary Figure S3

Click here to access/download Supplementary Material FigureS3.pdf Manuscript with highlighted changes

Click here to access/download Supplementary Material minor_revision_1.10_marked.docx