
GigaScience

Optimized Distributed Systems Achieve Significant Performance Improvement on
Sorted Merging of Massive VCF Files

--Manuscript Draft--

Manuscript Number: GIGA-D-17-00267R2

Full Title: Optimized Distributed Systems Achieve Significant Performance Improvement on
Sorted Merging of Massive VCF Files

Article Type: Technical Note

Funding Information: Sandler Family Foundation Dr Esteban Burchard

American Asthma Foundation Dr Esteban Burchard

RWJF Amos Medical Faculty
Development Program

Dr Esteban Burchard

National Heart, Lung, and Blood Institute
(R01HL104608)

Dr Kathleen Barnes

National Institute of Neurological
Disorders and Stroke
(R01NS051630)

Dr Peng Jin

National Institute of Neurological
Disorders and Stroke
(P01NS097206)

Dr Peng Jin

National Institute of Neurological
Disorders and Stroke
(U54NS091859)

Dr Peng Jin

National Science Foundation
(ACI 1443054)

Dr Fusheng Wang

National Science Foundation
(IIS 1350885)

Dr Fusheng Wang

National Heart, Lung, and Blood Institute
(R01HL117004)

Dr Esteban Burchard

National Heart, Lung, and Blood Institute
(R01HL128439)

Dr Esteban Burchard

National Heart, Lung, and Blood Institute
(R01HL135156)

Dr Esteban Burchard

National Heart, Lung, and Blood Institute
(X01HL134589)

Dr Esteban Burchard

National Institute of Environmental Health
Sciences
(R01ES015794)

Dr Esteban Burchard

National Institute of Environmental Health
Sciences
(R21ES24844)

Dr Esteban Burchard

National Institute on Minority Health and
Health Disparities
(P60MD006902)

Dr Esteban Burchard

National Institute on Minority Health and
Health Disparities
(R01MD010443)

Dr Esteban Burchard

National Institute on Minority Health and
Health Disparities
(RL5GM118984)

Dr Esteban Burchard

Tobacco-Related Disease Research
Program
(24RT-0025)

Dr Esteban Burchard

Abstract: Background: Sorted merging of genomic data is a common data operation necessary
in many sequencing-based studies. It involves sorting and merging genomic data from
different subjects by their genomic locations. In particular, merging a large number of
Variant Call Format (VCF) files is frequently required in large scale whole genome
sequencing or whole exome sequencing projects. Traditional single machine based
methods become increasingly inefficient when processing large numbers of VCF files
due to the excessive computation time and I/O bottleneck. Distributed systems and

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

more recent cloud-based systems offer an attractive solution. However, carefully
designed and optimized workflow patterns and execution plans (schemas) are required
to take full advantage of the increased computing power while overcoming bottlenecks
to achieve high performance.

Findings: In this study, we custom design optimized schemas for three Apache big data
platforms, Hadoop (MapReduce), HBase and Spark, to perform sorted merging of a
large number of VCF files. These schemas all adopt the divide-and-conquer strategy to
split the merging job into sequential phases/stages consisting of subtasks which are
conquered in an ordered, parallel and bottleneck-free way. In two illustrating examples,
we test the performance of our schemas on merging multiple VCF files into either a
single TPED or VCF file, which are benchmarked with the traditional single/parallel
multiway-merge methods, message passing interface (MPI) based high performance
computing (HPC) implementation and the popular VCFTools.

Conclusions: Our experiments suggest all three schemas either deliver a significant
improvement in efficiency or render much better strong and weak scalabilities over
traditional methods. Our findings provide generalized scalable schemas for performing
sorted merging on genetics and genomics data using these Apache distributed
systems.

Corresponding Author: Zhaohui Qin

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Xiaobo Sun

First Author Secondary Information:

Order of Authors: Xiaobo Sun

Jingjing Gao

Peng Jin

Celeste Eng

Esteban Burchard

Terri Beaty

Ingo Ruczinski

Rasika Mathias

Kathleen Barnes

Fusheng Wang

Zhaohui Qin

Order of Authors Secondary Information:

Response to Reviewers: Major modifications in this revision are summarized below:

•Corrected grammar mistakes and minor wording issues.
•Add members of CAAPA consortium to authorship.
•Add “Ethics Approval and Consent to Participate” section.
•Add “Funding” section.
•Add CAAPA Consortium members to the “Authors Contributions” section.
•Add CAAPA Consortium members in the “Acknowledgements” section
•Add a complete list of CAAPA Consortium members and their affiliations at the end
•Added our test datasets and codes to the GigaDB database.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

•Added a citation of test datasets in GigaDB to the reference list, and cited it in
appropriate places in the manuscript.
•Added all URLs as references in the bibliography, and cited them in the corresponding
places in the manuscript.

Below we present itemized responses to all the comments, organized by editors and
reviewers. The reviewers' comments are in bold. Our responses are in dark blue color.

Editor comments:

Before we hand over your manuscript to our production team:

- please go over the list of minor wording issues below, kindly provided by reviewer 1,
and correct them in a revised submission.

Done

- please add a statement on ethical considerations to the manuscript. You are using
encrypted VCFs, but as the original data set from reference [33] is under an authorized
access scheme, if I understand correctly, I assume you needed IRB approval to access
and work with the un-encrypted data for this project? Please also clarify in the
manuscript whether this encrypted use of the subjects' data is covered by the consent
they gave.

Done, please see “Ethics Approval and Consent to Participate” section in the
manuscript.

Regarding your code and test data, one of our data curators will contact you shortly.
Usually we host an archival copy of any code and test data in our repository GigaDB,
which will be cited in the manuscript. Our data curators will discuss this with you.

Done

Please include a citation to any upcoming GigaDB dataset to your reference list
(including the DOI link you will get from our data curators), and please cite this in the
data availability section and elswehere in the manuscript, where appropriate.

Please follow this example format for the reference:

[xx] Author1 N, Author2 N, AuthorX N. Supporting data for "Title of your manuscript".
GigaScience Database. 2018. http://dx.doi.orgxxxxxxxxxxxx

(If you don't have a GigaDB doi at the time of resubmission, please leave the "dummy"
version and we can exchange this for you.)

Please see reference 43 in the manuscript

Finally, a very minor point: Please include all URLs (except the "availability" section")
as references in the bibliography, and cite them from the text rather than inserting them
directly.

Done. On line 321:
The source codes are available at our GitHub website [35] (CloudMerge; RRID:
SCR_016051).

Reviewer #1:
This paper has undergone substantial improvements since the original submission and
the authors are to be commended on their efforts to address all the main issues raised
in the initial review. I am satisfied that all of my concerns from the initial review have
been adequately addressed, and I am happy to recommend that this paper is accepted
for publication.

We are grateful to the reviewer for the comment.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

I have a few minor comments below that the authors might wish to consider when
editing the final version: "merging a large number of Variant Call Format (VCF) files are
frequently encountered" -> "merging a large number of Variant Call Format (VCF) files
is frequently encountered".

Done. See line 19.

"when processing hundreds or even thousands of VCF files" -> "when processing large
volumes of VCF files".

Done. See line 22.

 "The distributed systems and the more recent cloud-based systems" -> "Distributed
systems and more recent cloud-based systems".

Done. See line 23.

"working flow" -> "workflow".

Done. See line 24.

"Apache Foundation has" -> "The Apache Foundation"

Done. See line 56.

"took advantage" -> "take advantage"

Thanks for brings this out. It is done, see line 66. In addition, we also make additional
similar changes from past tense to current tense:
On line 64, “made” -> “make”.
On line 68, “adopted” -> “adopts”.
On line 69, “utilized” -> “utilizes”.

Are two citations really needed for the "sorted full-outer-joining problem"? If it is well
known, as the authors claim, then one citation should be sufficient.

Yes, we agree with the reviewer, and delete one reference: “28. Silberschatz A, Korth
HF and Sudarshan S. DatabaseSystem Concepts. 2010.”

"cumbersome" is probably the wrong word to describe the behaviour of PLINK and
VCFTools on moderate numbers of input files. Cumbersome suggests that they are
awkward or difficult to use, but really the problem is that their performance is
unacceptable.

Yes, we agree with the reviewer.
On line 90:
“Currently, they are handled by software such as VCFTools [28] and PLINK, which
become very cumbersome even in the face of a moderate number of VCF files.”
Changed to:
Currently, they are handled by software such as VCFTools [28] and PLINK, which
become considerably inefficient even in the face of a moderate number of VCF files.

"literally makes it sequential on writing" -> "makes it sequential on writing" (remove
"literally", it is redundant) "

Done. See line 94.

and memory limitation" -> "and memory limits"

Done. See line 96.

"ideally fit" -> "is an ideal fit"

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Done. See line 131.

"megabyte in size" -> "megabytes in size" (plural). Maybe use MB instead, to be
consistent with the rest of the article using GB.

Done. See line 163.

"Key-value pais" -> "key-value pairs" (capitalisation)

Done. See line 209.

 It is not clear what this means "we only need to merge records from selected
chromosomes of interest rather than from all of them". Can you please clarify?

We thank the reviewer 1 for bringing this up. Here we mean if we are only interested in
the merged results of some specific chromosomes, say chr1-chr3, then we can just
merge the records in the corresponding bins, instead of merging the records of all
chromosomes. And on line 210, we have rephrased this sentence from
“With this grouping, we only need to merge records from selected chromosomes of
interest rather than from all of them.”
to
“With this grouping, if SNPs of interest located in a few selected chromosomes only,
we can choose to just merge records from these selected chromosomes rather than
from all chromosomes.”

delete: "which necessitates the adding of this phase"

Done. See line 261.

"finishing writings" -> "finishing writing" (not plural)

Done. See line 269.

It is likely that the HPC tests (namely the MPI version) would have performed better on
a system with a high-performance file system such as GPFS or Lustre instead of NFS.

We totally agree with reviewer 1’s opinion. Both Lustre and GPFS has better I/O
scalability than NFS. And we expect our HPC benchmark would perform better using
these file systems. However, I/O is not only the reason why the HPC benchmark does
not scale well. Rather, the increasing in the number of merging rounds when
increasing the number of input files is the main reason for decreasing efficiency. So we
expect the scalability will improve to some extent but not too much when running it with
the GPFS or Lustre file system. Another reason we choose NFS because we test our
benchmark using StarCluster, which currently doesn’t support either GPFS or Lustre.

Use GB for gigabytes instead of G.

Done.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Optimized Distributed Systems Achieve Significant Performance 1

Improvement on Sorted Merging of Massive VCF Files 2

Xiaobo Sun1, Jingjing Gao2, Peng Jin3, Celeste Eng5, Esteban G. Burchard5, Terri H. Beaty6, 3

Ingo Ruczinski7, Rasika A. Mathias8, Kathleen C. Barnes4, Fusheng Wang9*, Zhaohui Qin2,10* , 4

CAAPA consortium11 5

 6

1Department of Computer Sciences, Emory University, Atlanta, GA 30322, USA. 7

2Department of Medical Informatics, Emory University School of medicine, Atlanta, GA 30322, USA. 8

3Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA. 9

4Department of Medicine, University of Colorado Denver, Aurora, CO 80045 10

5Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA 11

6Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, MD 21205 USA 12

7Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, MD 21205 USA 13

8Department of Medicine, Johns Hopkins University, Baltimore, MD 21224 USA 14

9Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA. 15

Manuscript Click here to download Manuscript
VCFminor_revision_GS_1_5_18.docx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=40516&guid=0cc2cf05-434e-4c52-826a-19266cc4d60f&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=40516&guid=0cc2cf05-434e-4c52-826a-19266cc4d60f&scheme=1

2

10Department of Biostatistics, Emory University, Atlanta, GA 30322, USA. 16

11See end of the paper for a complete list of CAAPA members 17

 18

X.S. Email: xsun28@emory.edu 19

J.G. Email: gaodoris@gmail.com 20

P.J. Email: peng.jin@emory.edu 21

C.E. Email: celeste.eng@ucsf.edu 22

E.G.B. Email: esteban.burchard@ucsf.edu 23

T.H.B. Email: tbeaty1@jhu.edu 24

I.R. Email: iruczin1@jhu.edu 25

R.A.M. Email: rmathias@jhmi.edu 26

K.C.B. Email: kathleen.barnes@ucdenver.edu 27

F.W. Email: fusheng.wang@stonybrook.edu 28

Z.Q. Email: zhaohui.qin@emory.edu 29

*Correspondence: zhaohui.qin@emory.edu, fusheng.wang@stonybrook.edu 30

 31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:xsun28@emory.edu
mailto:gaodoris@gmail.com
mailto:peng.jin@emory.edu
mailto:celeste.eng@ucsf.edu
mailto:esteban.burchard@ucsf.edu
mailto:tbeaty1@jhu.edu
mailto:iruczin1@jhu.edu
mailto:rmathias@jhmi.edu
mailto:kathleen.barnes@ucdenver.edu
mailto:fusheng.wang@stonybrook.edu
mailto:zhaohui.qin@emory.edu
mailto:zhaohui.qin@emory.edu
mailto:fusheng.wang@stonybrook.edu

3

Abstract 32

Background: Sorted merging of genomic data is a common data operation necessary in many 33

sequencing-based studies. It involves sorting and merging genomic data from different subjects by 34

their genomic locations. In particular, merging a large number of Variant Call Format (VCF) files 35

is frequently required in large scale whole genome sequencing or whole exome sequencing 36

projects. Traditional single machine based methods become increasingly inefficient when 37

processing large numbers of VCF files due to the excessive computation time and I/O bottleneck. 38

Distributed systems and more recent cloud-based systems offer an attractive solution. However, 39

carefully designed and optimized workflow patterns and execution plans (schemas) are required to 40

take full advantage of the increased computing power while overcoming bottlenecks to achieve 41

high performance. 42

 43

Findings: In this study, we custom design optimized schemas for three Apache big data platforms, 44

Hadoop (MapReduce), HBase and Spark, to perform sorted merging of a large number of VCF 45

files. These schemas all adopt the divide-and-conquer strategy to split the merging job into 46

sequential phases/stages consisting of subtasks which are conquered in an ordered, parallel and 47

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

bottleneck-free way. In two illustrating examples, we test the performance of our schemas on 48

merging multiple VCF files into either a single TPED or VCF file, which are benchmarked with 49

the traditional single/parallel multiway-merge methods, message passing interface (MPI) based 50

high performance computing (HPC) implementation and the popular VCFTools. 51

 52

Conclusions: Our experiments suggest all three schemas either deliver a significant improvement 53

in efficiency or render much better strong and weak scalabilities over traditional methods. Our 54

findings provide generalized scalable schemas for performing sorted merging on genetics and 55

genomics data using these Apache distributed systems. 56

Keywords: Sorted merging, whole genome sequencing, MapReduce, Hadoop, HBase, Spark. 57

 58

Findings 59

Introduction 60

With the rapid development of high-throughput biotechnologies, genetic studies have entered the 61

Big Data era. Studies like Genome Wide Association Studies (GWASs), Whole Genome 62

Sequencing (WGS) and whole exome sequencing (WES) studies have produced massive amounts 63

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

of data. The ability to efficiently manage and process such massive data becomes increasingly 64

important for successful large scale genetics studies [1-3]. Single machine based methods are 65

inefficient when processing such big data due to the prohibitive computation time, I/O bottleneck, 66

as well as CPU and memory limitations. Traditional HPC techniques based on MPI/OpenMP also 67

suffer from limitations such as not allowing addition of computing nodes at runtime, shortage of a 68

fault-tolerant and high available file system, inflexibility of customizing the computing 69

environment without administrator permission of a cluster [3, 4]. It becomes increasingly 70

attractive for investigators to take advantage of more powerful distributed computing resources or 71

the cloud to perform data processing and analyses [3, 5]. The Apache Foundation has been a 72

leading force in this endeavor, and has developed multiple platforms and systems including 73

Hadoop [6, 7], HBase [8] and Spark [9]. All these three Apache platforms have gained substantial 74

popularity in recent years, and have been endorsed and supported by major vendors such as 75

Amazon Web Services (AWS). 76

 77

In bioinformatics, researchers have already started to embrace Apache distributed systems to 78

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

manage and process large amounts of high throughput ‘-omics’ data. For example, the Cancer 79

Genome Atlas project makes use of the Hadoop framework to split genome data into chunks 80

distributed over the cluster for parallel processing[3, 10]. The CloudBurst [11], Seal [12], Hadoop-81

BAM [13] and Crossbow software [14] take advantage of the Hadoop framework to accelerate 82

sequencing read mapping, aligning and manipulations as well as SNP calling. The Collaborative 83

Genomic Data Model (CGDM) [15] adopts HBase to boost the querying speed for the main 84

classes of queries on genomic databases. MetaSpark [16] utilizes Spark’s distributed data set to 85

recruit large scale of metagenomics reads to reference genomes, achieves better scalability and 86

sensitivity than single-machine based programs [17]. Industry cloud computing vendors such as 87

Amazon [18] and Google [19] are also beginning to provide specialized environments to ease 88

genomics data processing in the cloud. 89

 90

Although numerous Apache cluster-based applications have already been developed for 91

processing and analyzing large scale genomics data including ADAM [1], VariantSpark [20], 92

SparkSeq [21], Halvade [22], SeqHBase [23] among others, we believe there are still many 93

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

opportunities in biomedical data analyses to take advantage of distributed systems as the scale and 94

scope of data become larger and more complex. A particular example is sorted merging, which is a 95

ubiquitous operation in processing genetics and genomics data. As an example, in WGS, variants 96

identified from individuals are often called and stored in separate Variant Call Format (VCF) files. 97

Eventually these VCF files need to be merged (into a VCF or TPED file) as required by 98

downstream analysis tools such as PLINK [24] and BlueSNP [25, 26]. Either a VCF or TPED file 99

requires the data to be sorted by their genomic locations, thus these tasks are equivalent to the 100

well-known sorted full-outer-joining problem [27]. Currently, they are handled by software such 101

as VCFTools [28] and PLINK, which become considerably inefficient even in the face of a 102

moderate number of VCF files. The main reason is that these tools adopt the multiway-merge-like 103

method [29] with a priority queue as the underlying data structure to ensure the correct output 104

order. Although such a method only requires one round of read through of the input files, a key 105

deficiency is that it can only have one consumer access items from the data queue, which makes it 106

sequential upon writing. This problem cannot be eliminated even if the multiway-merging is 107

implemented as parallel processes due to I/O saturation, workload imbalance among computing 108

units, and memory limits. Therefore, these single-machine based tools are inefficient and time-109

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

consuming when handling large datasets. 110

 111

In this study, we use the case of sorted-merging multiple VCF files to demonstrate the benefits of 112

using Apache distributed platforms. However, simply running sorted merging on such distributed 113

systems runs into problems of bottlenecks, hotspots and unordered results commonly seen in 114

parallel computations. Rather, we believe working schemas custom designed for each specific 115

distributed platform are required to unleash their full potential. To overcome the limitations of 116

single-machine, traditional parallel/distributed, and simple Apache distributed system based 117

methods, we propose and implement three schemas running on Hadoop, Spark and HBase 118

respectively. We choose these three platforms because they represent cloud distributed systems 119

providing data partitioning based parallelism with distributed storage, data partitioning based 120

parallelism with in-memory based processing, and high dimensional tables like distributed 121

storage, respectively. Hadoop [6] is the open source implementation of MapReduce [7] based on 122

parallel key-value processing technique, and has the advantage of transparency and simplicity. 123

HBase [8] is a data warehousing platform which adopts Google’s BigTable data storing structure 124

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

[30] to achieve high efficiency in storing and reading/writing large scale of sparse data. Spark [9] 125

introduces the concept of Resilient Distributed Dataset (RDD) and Directed Acyclic Graph (DAG) 126

execution to parallel key-value processing, thus enabling fast, robust and repetitive in-memory 127

data manipulations. Specifically, our schemas involve dividing the job into multiple phases 128

corresponding to tasks of loading, mapping, filtering, sampling, partitioning, shuffling, merging 129

and outputting. Within each phase, data and tasks are evenly distributed across the cluster, 130

enabling processing large scale of data in a parallel and scalable manner, which in turn improves 131

both speed and scalability. 132

 133

Methods 134

Overview 135

The benefits of using these three Apache distributed platforms to perform sorted merging are four-136

fold when compared to using the multiway-merge method [29], a relational database based 137

approach, or a HPC framework. First, with genomic locations as keys and genotypes as values, it 138

is readily transformed into the key-value model in which all three platforms offer a rich set of 139

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

parallel operations. Second, data in VCF files are semi-structured. This type of data is an ideal fit 140

for the three platforms which allow defining the schema during data loading, avoiding the 141

preprocessing of raw data into a rigid schema as in a relational database. Third, all these 142

platforms provide built-in efficient task coordination, high fault tolerance, data availability and 143

locality which are absent in the traditional HPC framework. Fourth, the merged results are directly 144

saved onto a distributed file system such as HDFS or Amazon S3 which can be directly used for 145

subsequent cluster-based GWAS or WGS analytical tools such as BlueSNP. 146

 147

Despite these advantages, simply performing sorted merging on these Apache distributed systems 148

will not deliver the expected results for the following reasons. First, it can lead to globally 149

unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data 150

to parallel working units in the system. However, shuffling will lead to globally unsorted results. 151

Second, bottlenecks and hotspots can happen during the processing in the cluster. Bypassing the 152

hashing based shuffling can lead to unbalanced workloads across the cluster, result in straggling 153

computing units which become bottlenecks for response time. In addition, for parallel loading of 154

presorted data into HBase, data being loaded from all the loading tasks access the same node 155

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

simultaneously while other nodes may be idling, creating an I/O hotspot. Third, sampling costs 156

could become prohibitive. Although Hadoop provides a built-in utility named total-order-merging 157

[27] to achieve both workload balance and global order, it involves transferring to and sampling 158

all the data on a single node. The communication costs over the network and disk I/O can be 159

prohibitive when data size becomes very large. In the following sections, we will illustrate how 160

our custom designed schemas are able to overcome these limitations in detail. 161

 162

 Data Formats and Operations 163

In a typical WGS experiment, data analysis often starts from individual genotype files in the VCF 164

format [31]. A VCF file contains data arranged into a table consisting of eight mandatory fields 165

including chromosome (CHROM), the genomic coordinate of the start of the variant (POS), the 166

reference allele (REF), a comma separated list of alternate alleles (ALT), among others. In our 167

experiments, we use a dataset consisting of the VCF files of 186 individuals [32] generated from 168

Illumina's BaseSpace software (Left tables in Figure 1). Each VCF file has around 4-5 million 169

rows, each row contains information on one of the individual’s genomic variants. Each VCF file is 170

about 300 MB in size. In an attempt to protect privacy of study subjects, we apply the following 171

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

strategy to conceal their real genetic variant information contained in the VCF files: we first 172

transform each original genomic location by multiplying it with an undisclosed constant real 173

number, taking the floor integer of the result, and then add another undisclosed constant integer 174

number. 175

 176

It is common that multiple VCF files need to be merged into a single TPED file for analysis tools 177

such as PLINK. A TPED file resembles a big table, aggregating genotypes of all individuals under 178

investigation by genomic locations (right table in Figure 1). The merging follows several rules. 179

First, each record is associated with a data quality value in the FILTER column, which records the 180

status of this genomic position passing all filters. Usually only qualified records with a “PASS” 181

filter value are retained. Second, genotypes in VCF files are stored in the form of allele values, 182

where 0 stands for the reference allele, 1 stands for the first mutant allele, 2 stands for the second 183

mutant allele, and so on. Allele values must be translated into corresponding types of nucleotides 184

in the TPED file. Third, all individuals need to have a genotype for genomic locations appearing 185

in at least one VCF file. The default genotype for a missing value is a pair of homozygous 186

reference alleles. The merging of multiple VCF files into a single VCF file follows the rules as: 187

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

First, the ALT and INFO columns of a genomic location in the merged file are set as the 188

concatenated values of the corresponding columns on that location from all input files with 189

duplicated values removed. Second, the QUAL column of a genomic location in the merged file is 190

set as a weight-averaged quality value of all individuals on that location. Third, a genomic 191

location is kept only when it appears in at least one input file and has a FILTER column value of 192

“PASS”. Fourth, if an individual does not have allele values on a genomic location in the input 193

file, their missing allele values are designated as “.” in the merged file. 194

 195

For our Apache cluster-based schemas, the merging of multiple VCF files into a single TPED file 196

and the merging of multiple VCF files into a single VCF file differ only in the value contents of 197

the key-value pairs, so they should have the same scalability property. Although we implement 198

the applications of both merging types using our Apache cluster-based schemas, which are 199

available on our project website, we focused our experiments on the merging of multiple VCF 200

files into a single TPED file and only evaluate the execution speed of the merging of multiple 201

VCF files into a single VCF file with VCFTools as the benchmark. 202

 203

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

MapReduce (Hadoop) Schema 204

This schema is built on Hadoop’s underlying model MapReduce and running on Hadoop clusters. 205

MapReduce [7] is a parallel computing model based on a split-apply-combine strategy for data 206

analysis, in which data are mapped to key-values for splitting (mapping), shuffling and combining 207

(reducing) for final results. We use Apache Hadoop-2.7 as the system for our implementation. Our 208

optimized schema consists of two MapReduce phases, as shown in Figure 2 (the pseudocodes are 209

shown in Figure S1). 210

 211

1) First MapReduce phase. 212

Raw data are loaded from HDFS into parallel mappers to perform the following tasks: First, 213

unqualified data are filtered out and qualified ones are mapped to key-value pairs. The mapper 214

output key is the genomic location and output value is the genotype and individual ID. Second, 215

key-value pairs are grouped together by chromosomes and temporarily saved as compressed 216

Hadoop sequence files [33] for faster I/O in the second MapReduce phase. With this grouping, if 217

SNPs of interest located in a few selected chromosomes only, we can choose to just merge records 218

from these selected chromosomes rather than from all chromosomes. Meanwhile, these records are 219

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

sampled to explore their distribution profile of keys along chromosomes to determine boundaries. 220

The boundaries are determined so there is an approximately equal number of records within each 221

segment. Because all records falling in the same segment will be assigned to the same reducer in a 222

later phase, boundaries calculated in this way ensure the workload of each reducer is balanced. 223

There are two rounds of samplings. The first one happens in each mapper with a pre-specified 224

sampling rate, which in our case is set to be 0.0001. Sampled records are then separated and 225

distributed to different reducers in this phase by chromosomes, where they are sampled again with 226

a rate equal to the reciprocal of the number of input files. This second sampling effectively limits 227

the number of final sampled records even in the face of a very large number of input files. Because 228

the number of reducers instantiated in the second phase equals the number of boundaries, which in 229

turn is decided by the number of sampled records, we can therefore avoid launching unnecessary 230

reducers thus minimizing task overheads. 231

 232

2) Second MapReduce phase. 233

In this phase, multiple parallel MapReduce jobs are created, one for each chromosome, to handle 234

all the records in sequence files generated from the first phase. Within each job, a partitioner 235

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

redirects records to the appropriate reducer by referring to the splitting boundaries from the 236

previous phase, so records falling in between the same pair of boundaries are aggregated together. 237

Finally, each reducer sorts and merges aggregated records by genomic locations before saving 238

them to a TPED file. In this way, globally sorted merging can be fulfilled. 239

 240

HBase Schema 241

HBase [8] is a column-oriented database where data are grouped into column families and split 242

horizontally into regions spreading across the cluster. With this data storing structure, it supports 243

efficient sequential reading and writing of large-scale data as well as fast random data accessing. 244

Also, HBase is storage efficient because it can remember null values without saving them on disk. 245

These features make HBase an ideal platform for managing large, sparse data with relatively low 246

latency which naturally fits the sorted merging case. We use the HBase-1.3 as the system for our 247

implementation. As shown in Figure 3, our optimized HBase schema is divided into three phases 248

as discussed next (refer to Figure S2 for pseudocodes). 249

 250

1) Sampling phase 251

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

The main challenge of HBase is to avoid computational hotspots in the cluster which can happen 252

when it starts loading a table from a single region hosted by a single node. Therefore, we need to 253

presplit the table into regions of approximately equal size before loading. The sampling phase is 254

introduced to determine reasonable presplitting regional boundaries. The total number of regions 255

is set to half of the number of input files so the size of each region is approximately 1GB. 256

Meanwhile, mappers of this phase also save qualified records as compressed Hadoop sequence 257

files on HDFS which are used as inputs in the next phase. In addition, filtering and key-value 258

mapping also take place in this phase. 259

 260

2) Bulk loading phase 261

Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can 262

still emerge because sorted records are loaded sequentially, and at any instant they still access the 263

same region and server. During the bulk loading, the key and value of each record produced from 264

the previous phase is converted into HBase’s binary row-key and column-value respectively, and 265

saved into a HFile, HBase’s native storage format. The row-key here is in the form of 266

chromosome-genomic location, and column-value refers to reference allele, individual ID and 267

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

genotype. The bulk loading populates each HFile with records falling in the same pair of presplit 268

regional boundaries. Because HFiles are written simultaneously by parallel mappers/reducers, all 269

working nodes are actively involved and the regional hotspot is thus circumvented. Upon finishing 270

writing, the HBase can readily load HFiles in parallel into the table by simply moving them into 271

local HBase storage folders. This procedure is therefore at least an order of magnitude faster than 272

the normal loading in which data are loaded sequentially via HBase servers’ I/O routines. The 273

order of records in the table is guaranteed because they are internally sorted by writing reducers 274

and HBase’s Log-Structured Merge-tree [34]. It worth mentioning that VCF records are always 275

sparse, thus HBase is very storage-efficient. 276

 277

3) Exporting phase 278

A scan of a specified genomic window is performed on the table. It involves launching parallel 279

mappers each receiving records from a single HBase region, filling in missing genotypes, 280

concatenating records with the same row-key, and outputting final results into TPED files. 281

 282

Spark Schema 283

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

Spark [9] is a distributed engine built upon the ideas of MapReduce and RDD. It can save 284

intermediate results in the form of RDD in memory, and perform computations on them. Also, its 285

computations are lazily evaluated, which means the execution plan can be optimized to include as 286

many computational steps as possible. As a result, it is ideal for iterative computations such as 287

sorted merging. We implement our optimized Spark schema on Spark-2.1. It has three stages 288

which we describe below and present in Figure 4 (refer to Figure S3 for pseudocodes). 289

 290

1) RDD preprocessing stage 291

This stage involves loading raw data as RDDs, filtering, and mapping RDDs to paired-RDDs with 292

keys (chromosome and genomic position) and values (reference allele, sample ID and genotype). 293

This stage ends with a sorting-by-key action which extends to the next stage. 294

 295

2) Sorting and merging stage 296

 The sort-by-key shuffling repartitions and sorts PairRDD records so records with the same key 297

are aggregated together, which are then merged into the TPED format and converted back to RDD 298

records for outputting. However, Spark’s native family of group-by-key functions for merging 299

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

should not be used here because their default partitioner is hash-based and different from the 300

range-based partitioner used by previous sort-by-key function. Consequently, the merged results 301

would be reshuffled into an unsorted status. We therefore optimize the merging to bypass these 302

functions so merging can be performed locally without data reshuffling to ensure both order and 303

high speed. 304

 305

3) Exporting stage 306

In this stage, merged RDD records are saved as TPED files on HDFS. 307

 308

Execution parallelism has an important impact on the performance. To maximize performance, the 309

number of parallel tasks is set to be the number of input files. In this way, data locality is 310

maximized and each task is assigned a proper amount of work. In addition, unlike using 311

MapReduce or HBase, when performing sorting by keys, no explicit sampling is needed because 312

Spark keeps track of the number of records before determining repartition boundaries. 313

 314

Parallel Multiway-Merge and MPI-based High Performance Computing Implementations 315

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

For most bioinformatics researchers, their daily working environment is still traditional in-house 316

HPC clusters or stand-alone powerful servers (with cores ≥ 16 and memory ≥ 200GB) rather than 317

heterogeneous cloud-based clusters. Therefore, we also implement a parallel multiway-merge 318

program running on a single machine and a MPI-based (mpi4py v3.0) “single program, multiple 319

data (SPMD)” program running on a HPC cluster as benchmarks. The source codes are available 320

at our GitHub website [35] (CloudMerge; RRID: SCR_016051). We choose to implement 321

multiway-merge, because many existing bioinformatics tools, including VCFTools and PLINK, 322

adopt it as the underlying algorithm for sorted merging. Multiway-merge is highly efficient on 323

single machine as it requires only one scan of sorted input files, so it can theoretically run at the 324

speed of disk I/O. 325

 326

Generally, there are two types of parallelism---data parallelism and task parallelism. The former 327

splits data horizontally into blocks of roughly equal sizes (the size of genomic intervals in our 328

case) before assigning them to all available processes; the latter assigns a roughly equal number of 329

input files to each process. For parallel multiway-merge, we choose data parallelism because the 330

implementation of task parallelism would be the same as the HPC-based implementation running 331

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

on a single node. Perhaps the most difficult part of data parallelism is uncertainty about the data 332

distribution across all input files, which usually leads to the problem of workload imbalance 333

among processes. If we pre-sample all the input files to estimate the record distribution, then a full 334

scan of the input files is required which will almost certainly takes more time than the single-335

process multiway-merge method. As a compromise, we assume the distributions of SNP locations 336

in all VCF files are uniform and the input files can be split into regions of approximately equal 337

sizes. The total number of regions are set to be the number of concurrent processes, so that each 338

region is specifically handled by a process. To avoid seeking of a process’s file reader to its 339

starting offset from the beginning of the file, we take advantage of the Tabix indexer [36], which 340

builds indices on data blocks of the input file and place the reader’s pointer directly onto the 341

desired offset. One important aspect of the Tabix indexer is that it requires the input file to be 342

compressed in bgzip format which is not supported by Hadoop, HBase or Spark. The 343

compression and decompression of a file in bgzip format can be much faster than in bz2 format 344

used in our cluster-based schemas, single multiway-merge and HPC-based implementations, so 345

parallel multiway-merge can run much faster than other methods/schemas when input data size is 346

small. 347

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

 348

For the HPC-based implementation, we adopt the task parallelism (Figure 5) to avoid sampling 349

and workload imbalance. Otherwise the workflow of HPC-based implementation is the same as 350

that of the MapReduce-based schema with the same operations and the same order: sampling in 351

parallel, dividing the dataset into splits of equal sizes, and assigning the splits to processes to 352

perform the merging. But this implementation is without data locality offered by HDFS and task 353

coordination offered by YARN and thus has a performance no better than the MapReduce-based 354

schema. Specifically, input files are shared across all nodes in the cluster via a Network File 355

System (NFS). In the first round, each core/process fetches roughly the same number of files from 356

the NFS and performs multiway-merging locally. In the following rounds, we adopted a tree-357

structured execution strategy. In the second round, processes with even ID numbers (process id 358

starts from 0) retrieve the merged file from its adjacent process to the right, which are then merged 359

with its local merged file. Processes with odd ID number are terminated. In the third round, 360

processes with ID divisible by four retrieve the merged file from its adjacent process to the right in 361

the second round to merge with its local merged file. This process continues until all the files are 362

merged into a single file for a total of log(n) rounds, where n is the number of the input files. 363

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

 364

Strong and Weak Scalabilities 365

In this study, we quantify scalability by measuring computing efficiency in tests of strong and 366

weak scalabilities. We define efficiency as the average time cost of processing a file per core: 367

Efficiency = (Tb*Cb/Nb) / (Ti*Ci/Ni) 368

where Tb is the baseline running time, Cb is the baseline number of cores, Nb is the baseline number 369

of input files, Ti is the current running time, Ci is the current number of cores, Ni is the current 370

number of input files. We also incorporated the parallel multiway-merge and MPI-based HPC 371

implementations as benchmarks in the tests. 372

 373

For the strong scalability test, we fix the number of input files at 93 and increase the computing 374

resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all 375

methods/schemas except for the parallel multiway-merge in which only a single core is used 376

because it can only run on a single machine. For the weak scalability test, we increase both 377

computing resources and input data size at the same pace. The ratio is ten file/core for parallel 378

multiway-merge and ten file/node for all others. 379

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

 380

Results 381

We conducted experiments of Apache cluster-based schemas using Amazon’s Elastic MapReduce 382

(EMR) service and experiments of the HPC-based implementation using MIT’s StarClusterTM 383

toolkit which launches an AWS openMP virtual private cluster (VPC). Within both infrastructures, 384

we choose EC2 working nodes of m3.xlarge type, which has four High Frequency Intel Xeon E5-385

2670 v2 (Ivy Bridge) Processors and 15GB memory. We conducted experiments of parallel 386

multiway-merge on a single EC2 r4.8xlarge instance with 32 High Frequency Intel Xeon E5-2686 387

v4 (Broadwell) processors and 244 GB memory. We used a dataset consisting of 186 VCF files 388

[32] generated from Illumina's BaseSpace software. 389

 390

 Overall Performance Analysis of Clustered-based Schemas 391

Our primary goal is to explore the scalabilities of the three schemas on input data size and 392

available computing resources, namely CPUs. To achieve this, in this experiment we adjust the 393

number of input files from 10 to 186, with an approximate total uncompressed size from 2.5 GB to 394

40 GB, and used a varying number of working nodes from 3 to 18, namely 12 to 72 cores. 395

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

 396

As Figure 6 shows, for all three schemas, given a fixed number of cores, the execution time 397

increases at a slower pace than that of the input data size. On the one hand, the increase of 398

execution time is more obvious with fewer cores because each core is fully utilized. As the 399

number of input files increases, so does the number of parallel tasks assigned to each core. For 400

example, given 12 cores, as the number of input files increases from 10 to 186 (18.6 fold), the 401

execution time increases from 739 to 4,366 seconds (~5.9 fold) for the MapReduce schema, from 402

375 to 5,479 seconds (~14.6 fold) for the HBase schema, and from 361 to 1,699 seconds (~4.7 403

fold) for the Spark schema. On the other hand, with relatively more cores such as 72, this linear 404

increasing trend is less pronounced because there are more cores than tasks so that all cores are 405

assigned at most one task. We also notice when input data size is small or moderate, the Spark 406

schema does not always show a consistent improvement in terms of execution time with more 407

cores. This is reflected, for example, in the intersection of curves occurred between 24 and 72 408

cores in Figure 6c. This phenomenon is attributed to the limitation of Spark’s internal task 409

assignment policy which gives rise to the possibility that some nodes are assigned more than one 410

tasks while others remain idle. 411

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

 412

Comparing Strong and Weak Scalabilities between Apache Cluster-based Schemas and 413

Traditional Parallel Methods 414

Figure 7 shows the results of the strong scalability. In accordance with the Amdahl’s law [37], all 415

schemas/methods show degraded efficiency with increasing computing nodes/cores. Parallel 416

multiway-merge has the steepest degradation because the more parallel processes, the higher 417

likelihood of workload imbalances among them. In addition, disk I/O reaches saturation as more 418

processes write simultaneously. Furthermore, to achieve data parallelism and improve execution 419

speed, we used Tabix indexer to index data blocks of input files. While reading, each process 420

needs to maintain a full copy of file descriptors, indices and uncompressed current data blocks of 421

all input files in memory. When both the number of processes and input files are large, great 422

pressure is placed on the memory management. For instance, a test with 93 files and 16 processes 423

requires over 100GB memory, which results in a very long memory swap and garbage collection 424

(GC) time. In contrast, the MapReduce-based schema has the best efficiency. Surprisingly, its 425

efficiency even improves when the number of cores doubles from the baseline. This is because it 426

has many parallel tasks in its second MapReduce phase, and when the core allowance is low, the 427

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

overheads of repetitive task launching and terminating on a single core become non-negligible. 428

Consequently, as the number of cores starts to increase, the actual proportion of overheads in the 429

total running time decreases, leading to an improved efficiency. Nonetheless, as the number of 430

cores further increases, the unparalleled parts of the schema gradually dominated the total running 431

time, leading to a reduced efficiency eventually. 432

 433

For the weak scalability test (Figure 8), following Gustafson’s law [38], all methods/schemas 434

show a much better efficiency than in the strong scalability test. Meanwhile, for the same reasons 435

as the strong scalability, the MapReduce-based schema enjoys the best efficiency while the HPC-436

based implementation has the worst. This is because, for the HPC-based implementation, as the 437

number of input files increases, the total number of merging rounds also increases, leading to a 438

significantly reduced efficiency. Finally, all three Apache cluster-based schemas demonstrate 439

significantly better weak scalability than the two traditional parallel methods. 440

 441

The Anatomic Performances Analysis of Apache Cluster-based Schemas 442

Another important goal of our study is to identify potential performance bottlenecks, so we 443

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

evaluate the execution time of each phase/stage of all three schemas. Figure 9 shows the trends of 444

the anatomic computing time spent on merging increasing number of VCF files (from 10 to 186) 445

using 48 cores. For the MapReduce schema (Figure 9a), its two phases account for a comparable 446

proportion of total time and both show a linear or sublinear scalability. The reason that the time 447

cost of the first phase between 40 and 93 input files remains flat is because both runs use two 448

rounds of mappers. As the number of files doubles to 186, four rounds of mappers are required 449

which results in about a two-fold increase in the time cost as expected. For the three phases of the 450

HBase schema (Figure 9b), they are scalable with input data size. Meanwhile, the second phase 451

becomes more dominant with more input files owing to the larger amount of shuffled data during 452

the writing of HFiles. However, we do not consider it as a bottleneck since all tasks of this phase 453

are parallelized with no workload or computational hotspot. We do not observe a super-linear 454

(relative to input data size) increment pattern from the figure neither. Finally, Figure 9c shows the 455

time costs of the three stages of the Spark schema. They show a uniform increasing trend with the 456

number of input files. Among them, the second stage takes up a considerable proportion of the 457

total execution time as it has a relatively expensive sort-by-key shuffling operation. Although no 458

data is shuffled in the first stage, its time lapse is close to the second stage. This is because at the 459

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

end of the first stage, data are sampled to determine the boundaries used by sort-by-key’s range 460

partitioner. This operation demands a considerable execution time because it scans all the data and 461

balances them if necessary. 462

 463

Given that no super-linear increasing trend is observed in running time for all phases/stages of the 464

three schemas, and they generally scale well with the input data size, we conclude although the 465

performances of these schemas might degrade to some extent when dealing with even larger input 466

data due to overheads such as data transmission over network, we would not expect any 467

significant bottleneck. 468

 469

Comparing Execution Speed between Apache Cluster-based Schemas and Traditional 470

Methods 471

Another intriguing question is: how does the speed of the Apache cluster-based schemas compare 472

to single machine based and traditional parallel/distributed methods/applications on merging 473

multiple VCF files into a single VCF or TPED file? To answer this question, we choose the 474

widely-used VCFTools (v4.2) and a single-process multiway-merge implementation as single-475

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31

process benchmarks and parallel multiway-merge and HPC-based implementations as 476

parallel/distributed benchmarks, which are the same ones used in the experiments of strong and 477

weak scalabilities shown above. 478

 479

In the first experiment, we merged 40 VCF files into one VCF file using VCFTools as the 480

benchmark. As shown in Table 2, VCFTools takes 30,189 seconds while the fastest Apache 481

cluster-based schema among the three, the MapReduce-based, takes only 484 seconds using 72 482

cores, representing about a 62-fold faster. In the second experiment (Figure 10), we tested the 483

time costs of merging of multiple VCF files into a single TPED file using single/parallel 484

multiway-merge and HPC-based implementations as benchmarks. The single multiway merger is 485

run on a node with the hardware configuration (4 cores and 15GB memory) identical to the nodes 486

on which the Apache cluster-based schemas are run. The parallel multiway merger is run on a 487

node with a maximum of 18 simultaneously running processes. The HPC-based implementation is 488

run on an 18-node cluster with the same hardware configuration as the cluster where the Apache 489

cluster-based schemas are run. Initially, with ten input files, the parallel multiway-merge (~30 490

seconds) is much faster than all the other methods: about 7.3-fold faster than the fastest Apache 491

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32

cluster-based schema (MapReduce, 221 seconds). On the other hand, the slowest method is the 492

single-process multiway merger which takes 620 seconds to finish (about 2.8-fold slower than the 493

MapReduce-based schema). It is worth mentioning in this test the parallel multiway-merge is 494

essentially the same as the single-process multiway-merge, and the speed difference (~378 495

seconds) between them is the result of a different compression format (bz2 vs bgzip) of the input 496

files as explained above. As we gradually increase the number of input files to 186, the difference 497

in speed between the fastest overall method (parallel multiway merger, 602 seconds) and the 498

fastest Apache cluster-based schema (MapReduce, 809 seconds) reduces to about 1.3-fold, while 499

the difference between the slowest overall method (single multiway merger, 13,219 seconds) and 500

the MapReduce-based schema increases to 16.3-fold. In addition, all three Apache schemas 501

significantly outperform the HPC-based implementation. As explained in the strong and weak 502

scalabilities section above, we expect the larger the input data size, the faster the Apache cluster-503

based schemas would run compared to the other traditional methods. 504

 505

We also compare the time cost among the three schemas (Figure 10). They have a comparable 506

speed. More specifically, the MapReduce schema performs best if enough cores are available and 507

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

33

the input data size is large; the HBase schema performs best with moderate input data size; the 508

Spark schema performs best if only a limited number of cores are available and the input data size 509

is large. The rationale behind this observation is that, when the number of cores is sufficient, the 510

MapReduce-based schema can make the most use of the available computing resources because it 511

runs a constant 25 parallel jobs (one for each of chromosomes 1-22, X Y and M (Mitochondria)) 512

in its second phase. In contrast, the Spark-based schema has fewer tasks whose number equals to 513

the number of input files to achieve maximum data-task locality. When the input data size is 514

moderate, the HBase-schema triumphs because its internal sorting and relative compact storage 515

format of intermediate data. When the input data size is large and computing resource is relatively 516

limited, the Spark-based schema outperforms the other two owing to its least number of data 517

shuffling (only one), execution plan optimization, and ability to cache intermediate results in 518

memory. We caution, however, the computing time may fluctuate depending on the distribution of 519

genomic locations in the input files as well as data loading balance of the HDFS. 520

 521

Discussion 522

In this report, we describe three cluster-based schemas running on the Apache Hadoop 523

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34

(MapReduce), HBase and Spark platforms respectively for performing sorted merging of variants 524

identified from WGS. We show all three schemas are scalable on both input data size and 525

computing resources, suggesting large scale of ‘-omics’ data can be merged efficiently given the 526

computing resources readily available in the cloud. Furthermore, the three schemas show better 527

strong and weak scalabilities than traditional single machine-based parallel multiway-merge and 528

cluster-based HPC methods owing to the absence of I/O bottleneck, better workload balance 529

among nodes, less pressure on memory, as well as data locality and efficient task coordination 530

mechanisms provided by HDFS and YARN. We also show even with a moderate-sized cluster and 531

input data, all three schemas significantly outperform the broadly-used, single-machine based 532

VCFTools, single-process multiway-merge and HPC-based implementations. Although initially 533

the parallel multiway-merge implementation is much faster than the Apache schemas owing to its 534

advantage of local I/O and light compression of input files, its poor scalability diminishes its 535

initial advantage as the number of concurrent processes and input files increases. Consequently, 536

we expect the Apache cluster-based schemas eventually outperform the parallel multiway-merge 537

when merging a much larger scale of data using a larger number of cores. 538

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35

 539

Unlike normal merging, efficient sorted merging of many large tables has always been a difficult 540

problem in the field of data management. Multiway-merge is the most efficient single-machine 541

based method for sorted merging, but its performance is limited by the disk I/O [39]. Sorted 542

merging also places challenges to distributed system based solutions because neither the efficient 543

hash-based merging nor caching the intermediate table in shared memory is feasible [40]. 544

Although a utility named total-order-joining is provided by the Hadoop for addressing this 545

problem, it suffers from both network communication and local disk I/O bottlenecks, thus is not 546

scalable [27, 41]. In contrast, our schemas divide this problem into different phases/stages of tasks 547

each conquered in parallel to bypass these bottlenecks and achieve maximum parallelism. 548

Furthermore, in addition to merging sequencing variant data, these schemas can be generalized for 549

other key-based, sorted merging problems are frequently encountered in genetics and genomics 550

data processing. As an example, they can be slightly modified to merge multiple BED format files 551

such as ChIP-seq peak lists [42] and other genomic regions of interest. Other potentially useful 552

features include: 1) Unlike traditional sorted merging algorithms which usually require presorted 553

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36

inputs for a better performance, our schemas are free of such a requirement; 2) Our 554

implementations automatically take care of multi-allelic positions which are frequent in large scale 555

VCF flies by retaining the information of all alleles until the merging actually occurs. 556

 557

Finally, in light of these different features and specialties of these three platforms, each of the 558

three schemas we developed has its own advantages and disadvantages under different application 559

scenarios as summarized in Table 1. For example, the MapReduce schema is good for a static one-560

time, non-incremental merging on large-size data provided sufficient cores are available since it 561

has the most parallel jobs, the least overheads, and the most transparent workflow. The HBase 562

schema, supported by data warehousing technologies, fits for an incremental merging since it does 563

not need to re-merge existing results with new ones from the scratch only if the incremental 564

merging is performed on the same chromosomes. Also, it provides a highly-efficient storage and 565

On-Line Analytical Processing (OLAP) on merged results. The Spark schema is ideal for merging 566

large scale data with relatively limited computing resources because it has the least data shuffling 567

and keeps intermediate results in memory. A bonus brought by Spark is the subsequent statistical 568

analyses can be carried out directly on the merged results using its rich set of parallel statistical 569

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

37

utilities. 570

 571

Availability and Requirements 572

Project name: CloudMerge 573

Project home page: https://github.com/xsun28/CloudMerge 574

Operating system(s): Linux 575

Programming language: Java, Python 576

Other requirements: Java 1.7 or higher, Python 2.7 or 3.6, Hadoop-2.7, HBase-1.3, Spark-2.1, 577

StarCluster 0.95, MPI for Python 3.0.0 578

License: Apache License 2.0 579

 580

Availability of Data and Materials 581

The source codes of the project are available in GitHub. The 186 individual VCF files used in our 582

experiments are modified from the original VCF files obtained from WGS conducted by the 583

Consortium on Asthma among African-ancestry Population in the Americas (CAAPA) [32]. To 584

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/xsun28/PlinkCloud

38

conceal the potential individual identifiable genotype information from the public, we encrypt the 585

authentic genomic location of the original 93 VCF files to generate a new batch of encrypted VCF 586

files for test purposes. Please refer to Data Formats and Operations section for details. These 587

supporting data and a snapshot of project codes are available at the GigaScience database, 588

GigaDB [43]. Via GigaDB, we also provide sample results of merging 93VCF files into either one 589

VCF or one TPED file using our Apache cluster-based schemas. 590

 591

Abbreviations 592

VCF: Variant Call Format; MPI: Message Passing Interface; HPC: High Performance Computing; 593

GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole 594

exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model; 595

SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed Dataset; DAG: Directed 596

Acyclic Graph; SPMD: Single Program, Multiple Data; NFS: Network File System; EMR: Elastic-597

MapReduce; VPC: Virtual Private Cluster; GC: Garbage Collection; CAAPA: Consortium on 598

Asthma among African-ancestry Population in the Americas; 599

 600

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

39

Ethics Approval and Consent to Participate 601

Ethics approval for the CAAPA program was provided by the Johns Hopkins University 602

Institutional Review Board following commencement of the study in 2011 (IRB00045892 The 603

Consortium on Asthma among African-ancestry Populations), and included study team members 604

from each CAAPA site, including Emory University (site PI, Zhaohui Qin). Access to the raw data 605

as CAAPA team members is granted according to the guideline of the IRB-approved study. Informed 606

consent has been obtained from all study participants of CAAPA. 607

Competing Interests 608

The authors declare they have no competing interests. 609

 610

Funding 611

This study was supported by grants from National Heart, Lung, and Blood Institute [R01HL104608, 612

R01HL117004, R01HL128439, R01HL135156, X01HL134589]; National Institute of 613

Environmental Health Sciences [R01ES015794, R21ES24844]; National Institute on Minority 614

Health and Health Disparities [P60MD006902, R01MD010443, RL5GM118984]; National 615

Institute of Neurological Disorders and Stroke [R01NS051630, P01NS097206, U54NS091859]; 616

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40

National Science Foundation [ACI 1443054, IIS 1350885,]; Tobacco-Related Disease Research 617

Program [24RT-0025]. The Genes-Environments and Admixture in Latino Americans (GALA II) 618

Study, the Study of African Americans, Asthma, Genes and Environments (SAGE) Study and E.G.B. 619

are supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF 620

Amos Medical Faculty Development Program and the Harry Wm. and Diana V. Hind Distinguished 621

Professor in Pharmaceutical Sciences II. 622

 623

Authors’ Contributions 624

J.G. introduced the problem. X.S., F.W. initiated this project. X.S. designed and implemented the 625

CloudMerge project. X.S. drafted the manuscript. X.S., J.P., F.W. and Z.Q. revised the manuscript. 626

K.C.B. conceived the initial consortium design, acquired biospecimens for NGS, facilitated generation 627

of NGS data. K.C.B., R.A.M., I.R., T.H.B. conceived initial experiments, interpreted NGS data. 628

E.G.B., C.E. acquired biospecimens for NGS, facilitated generation of NGS data. 629

 630

Acknowledgements 631

We thank the three referees for their constructive critiques and detailed comments. We are grateful to Ms. 632

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

41

Mary Taylor Mann and Ms. Alyssa Leann Duck for their editorial help during writing and revising of the 633

manuscript. E.G.B. wish to acknowledge the following GALA II and SAGE co-investigators for subject 634

recruitment, sample processing and quality control: Sandra Salazar, Scott Huntsman, MSc, Donglei Hu, 635

PhD, Lisa Caine, Shannon Thyne, MD, Harold J. Farber, MD, MSPH, Pedro C. Avila, MD, Denise 636

Serebrisky, MD, William Rodriguez-Cintron, MD, Jose R. Rodriguez-Santana, MD, Rajesh Kumar, MD, 637

Luisa N. Borrell, DDS, PhD, Emerita Brigino-Buenaventura, MD, Adam Davis, MA, MPH, Michael A. 638

LeNoir, MD, Kelley Meade, MD, Saunak Sen, PhD and Fred Lurmann, MS. 639

 640

References 641

1. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. Adam: Genomics formats 642

and processing patterns for cloud scale computing. University of California, Berkeley Technical 643

Report, No UCB/EECS-2013. 2013;207. 644

2. Siretskiy A, Sundqvist T, Voznesenskiy M and Spjuth O. A quantitative assessment of the hadoop 645

framework for analyzing massively parallel dna sequencing data. Gigascience. 2015;4 1:26. 646

3. Merelli I, Pérez-Sánchez H, Gesing S and D’Agostino D. Managing, analysing, and integrating big 647

data in medical bioinformatics: open problems and future perspectives. BioMed research 648

international. 2014;2014. 649

4. Reyes-Ortiz JL, Oneto L and Anguita D. Big data analytics in the cloud: Spark on hadoop vs 650

mpi/openmp on beowulf. Procedia Computer Science. 2015;53:121-30. 651

5. Burren OS, Guo H and Wallace C. VSEAMS: a pipeline for variant set enrichment analysis using 652

summary GWAS data identifies IKZF3, BATF and ESRRA as key transcription factors in type 1 653

diabetes. Bioinformatics. 2014;30 23:3342-8. doi:10.1093/bioinformatics/btu571. 654

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

42

6. Apache Hadoop. http://hadoop.apache.org/. Accessed 10 Oct 2017. 655

7. Dean J and Ghemawat S. Mapreduce: Simplified data processing on large clusters. Commun Acm. 656

2008;51 1:107-13. doi:Doi 10.1145/1327452.1327492. 657

8. Vora MN. Hadoop-HBase for large-scale data. In: Computer science and network technology 658

(ICCSNT), 2011 international conference on 2011, pp.601-5. IEEE. 659

9. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient distributed datasets: A 660

fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX 661

conference on Networked Systems Design and Implementation 2012, pp.2-. USENIX Association. 662

10. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis 663

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome 664

research. 2010;20 9:1297-303. 665

11. Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009;25 666

11:1363-9. doi:10.1093/bioinformatics/btp236. 667

12. Pireddu L, Leo S and Zanetti G. SEAL: a distributed short read mapping and duplicate removal tool. 668

Bioinformatics. 2011;27 15:2159-60. 669

13. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E and Heljanko K. Hadoop-BAM: 670

directly manipulating next generation sequencing data in the cloud. Bioinformatics. 2012;28 671

6:876-7. 672

14. Langmead B, Schatz MC, Lin J, Pop M and Salzberg SL. Searching for SNPs with cloud computing. 673

Genome Biol. 2009;10 11:R134. doi:10.1186/gb-2009-10-11-r134. 674

15. Wang S, Mares MA and Guo YK. CGDM: collaborative genomic data model for molecular profiling 675

data using NoSQL. Bioinformatics. 2016;32 23:3654-60. doi:10.1093/bioinformatics/btw531. 676

16. Zhou W, Li R, Yuan S, Liu C, Yao S, Luo J, et al. MetaSpark: a spark-based distributed processing tool 677

to recruit metagenomic reads to reference genomes. Bioinformatics. 2017;33 7:1090-2. 678

17. Niu B, Zhu Z, Fu L, Wu S and Li W. FR-HIT, a very fast program to recruit metagenomic reads to 679

homologous reference genomes. Bioinformatics. 2011;27 12:1704-5. 680

18. AWS Genomics Guide. 681

https://d0.awsstatic.com/Industries/HCLS/Resources/AWS_Genomics_WP.pdf. Accessed 682

10 Oct 2017. 683

19. Gruber K. Google for genomes. Nature Research, 2014. 684

20. O’Brien AR, Saunders NF, Guo Y, Buske FA, Scott RJ and Bauer DC. VariantSpark: population scale 685

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://hadoop.apache.org/
https://d0.awsstatic.com/Industries/HCLS/Resources/AWS_Genomics_WP.pdf

43

clustering of genotype information. BMC genomics. 2015;16 1:1052. 686

21. Wiewiórka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P and Okoniewski MJ. SparkSeq: 687

fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide 688

precision. Bioinformatics. 2014;30 18:2652-3. 689

22. Decap D, Reumers J, Herzeel C, Costanza P and Fostier J. Halvade: scalable sequence analysis with 690

MapReduce. Bioinformatics. 2015;31 15:2482-8. 691

23. He M, Person TN, Hebbring SJ, Heinzen E, Ye Z, Schrodi SJ, et al. SeqHBase: a big data toolset for 692

family based sequencing data analysis. Journal of medical genetics. 2015:jmedgenet-2014-693

102907. 694

24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for 695

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81 696

3:559-75. doi:10.1086/519795. 697

25. Mohammed EA, Far BH and Naugler C. Applications of the MapReduce programming framework 698

to clinical big data analysis: current landscape and future trends. BioData Min. 2014;7:22. 699

doi:10.1186/1756-0381-7-22. 700

26. Huang H, Tata S and Prill RJ. BlueSNP: R package for highly scalable genome-wide association 701

studies using Hadoop clusters. Bioinformatics. 2013;29 1:135-6. 702

doi:10.1093/bioinformatics/bts647. 703

27. White T. Hadoop: The definitive guide. " O'Reilly Media, Inc."; 2012. 704

28. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and 705

VCFtools. Bioinformatics. 2011;27 15:2156-8. doi:10.1093/bioinformatics/btr330. 706

29. Multiway-Merge Algorithm. https://en.wikipedia.org/wiki/K-Way_Merge_Algorithms. 707

Accessed 10 Oct 2017. 708

30. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, et al. Bigtable: A distributed 709

storage system for structured data. Acm T Comput Syst. 2008;26 2 doi:Artn 4 710

10.1145/1365815.1365816. 711

31. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of 712

human genome variation from population-scale sequencing. Nature. 2010;467 7319:1061-73. 713

doi:10.1038/nature09534. 714

32. Mathias RA, Taub MA, Gignoux CR, Fu W, Musharoff S, O'Connor TD, et al. A continuum of 715

admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat Commun. 716

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://en.wikipedia.org/wiki/K-Way_Merge_Algorithms

44

2016;7:12522. doi:10.1038/ncomms12522. 717

33. Kwon Y, Balazinska M, Howe B and Rolia J. A study of skew in mapreduce applications. Open Cirrus 718

Summit. 2011;11. 719

34. O’Neil P, Cheng E, Gawlick D and O’Neil E. The log-structured merge-tree (LSM-tree). Acta 720

Informatica. 1996;33 4:351-85. 721

35. CloudMerge. https://github.com/xsun28/CloudMerge 722

36. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 723

2011;27 5:718-9. 724

37. Amdahl GM. Validity of the single processor approach to achieving large scale computing 725

capabilities. In: Proceedings of the April 18-20, 1967, spring joint computer conference 1967, 726

pp.483-5. ACM. 727

38. Gustafson JL. Reevaluating Amdahl's law. Commun Acm. 1988;31 5:532-3. 728

39. Sedgewick R and Flajolet P. An introduction to the analysis of algorithms. Addison-Wesley; 2013. 729

40. Özsu MT and Valduriez P. Principles of distributed database systems. Springer Science & Business 730

Media; 2011. 731

41. Miner D and Shook A. MapReduce Design Patterns: Building Effective Algorithms and Analytics for 732

Hadoop and Other Systems. " O'Reilly Media, Inc."; 2012. 733

42. Chen L, Wang C, Qin ZS and Wu H. A novel statistical method for quantitative comparison of 734

multiple ChIP-seq datasets. Bioinformatics. 2015;31 12:1889-96. 735

43. Sun X, Gao J, Jin P, Celeste Eng, Esteban G. Burchard, Terri H. Beaty, Ingo Ruczinski, Rasika A. 736

Mathias, Kathleen C. Barnes, Wang F and Qin Z. Supporting data for "Optimized Distributed 737

Systems Achieve Significant Performance Improvement on Sorted Merging of Massive VCF 738

Files" GigaScience Database 2018. http://dx.doi.org/10.5524/100423. 739

 740

 741

 742

 743

 744

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/xsun28/CloudMerge
http://dx.doi.org/10.5524/100423

45

Complete List of CAAPA Consortium Members and Their Affiliations 745

Kathleen C. Barnes, PhD1;2, Terri H. Beaty, PhD2, Meher Preethi Boorgula MS1, Monica 746

Campbell, BS1, Sameer Chavan, MS1, Jean G. Ford, MD2;3, Cassandra Foster, CCRP1, Li Gao, 747

MD, PhD1, Nadia N. Hansel, MD, MPH1, Edward Horowitz, BA1, Lili Huang, MPH1, Rasika Ann 748

Mathias, ScD1;2, Romina Ortiz, MA1, Joseph Potee, MS1, Nicholas Rafaels, MS1, Ingo Ruczin- 749

ski, PhD4, Alan F. Scott, PhD1, Margaret A. Taub, PhD4, Candelaria Ver-gara, PhD1, Jingjing 750

Gao, PhD5, Yijuan Hu, PhD6, Henry Richard Johnston, PhD6, Zhaohui S. Qin, PhD6, Albert M. 751

Levin, PhD7, Badri Padhukasahas-ram, PhD8, L. Keoki Williams, MD, MPH8;9, Georgia M. 752

Dunston, PhD10;11, Mezbah U. Faruque, MD, PhD11, Eimear E. Kenny, PhD12;13, Kimberly Gi- 753

etzen, PhD14, Mark Hansen, PhD14, Rob Genuario, PhD14, Dave Bullis, MBA14, Cindy Lawley, 754

PhD14, Aniket Deshpande, MS15, Wendy E. Grus, PhD15, Devin P. Locke, PhD15, Marilyn G. 755

Foreman, MD16, Pedro C. Avila, MD17, Leslie Grammer, MD17, Kwang-Youn A. Kim, PhD18, 756

Rajesh Kumar, MD19;20, Robert Schleimer, PhD21, Carlos Bustamante, PhD12, Francisco 757

M. De La Vega, DS12, Chris R. Gignoux, MS12, Suyash S. Shringarpure, PhD12, Shaila Musharo, 758

MS12, Genevieve Wojcik, PhD12, Esteban G. Burchard, MD, MPH22;23, Celeste Eng, BS23, Pierre-759

Antoine Gourraud, PhD24, Ryan D. Hernandez, PhD22;25;26, Antoine Lizee, PhD24, Maria Pino-760

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

46

Yanes, PhD23;27, Dara G. Torgerson, PhD23, Zachary A. Szpiech, PhD22, Raul Torres, BS28, Dan L. 761

Nicolae, PhD29;30, Carole Ober, PhD31, Christopher O Olopade, MD, MPH32, Olufunmilayo 762

Olopade, MD29, Oluwafemi Oluwole, MSc29, Ganiyu Arinola, PhD33, Timothy D. O'Connor, 763

PhD34;35;36,Wei Song, PhD34;35;36, Goncalo Abecasis, DPhil37, Adolfo Correa, MD, MPH, PhD38, 764

Solomon Musani, PhD38, James G. Wilson, MD39, Leslie A. Lange, PhD40, Joshua Akey, PhD41, 765

Michael Bamshad, MD42, Jessica Chong, PhD42, Wenqing Fu, PhD41, Deborah Nickerson, PhD41, 766

Alexander Reiner, MD, MSc43, Tina Hartert, MD, MPH44, Lorraine B. Ware, MD44;45, Eugene 767

Bleecker, MD46, Deborah Meyers, PhD46, Victor E. Ortega, MD46, Pissamai Maul, BSc, RN47, 768

Trevor Maul, RN47, Harold Watson, MD48;49, Maria Ilma Araujo, MD, PhD50, Ricardo Riccio 769

Oliveira, PhD51, Luis Caraballo, MD, PhD52, Javier Marrugo, MD53, Beatriz Martinez, MSc52, 770

Catherine Meza, LB52, Gerardo Ayestas54, Edwin Francisco Herrera-Paz, MD, MSc55;56;57, Pamela 771

Landaverde-Torres55, Said Omar Leiva Erazo55, Rosella Martinez, BSc55, varo Mayorga, MD56, 772

Luis F. Mayorga, MD55, Delmy-Aracely Mejia-Mejia, MD56;57, Hector Ramos55, Allan Saenz54, 773

Gloria Varela54, Olga Marina Vasquez57, Trevor Ferguson, MBBS, DM, MSc58, Jennifer Knight-774

Madden, MBBS, PhD58, Maureen Samms-Vaughan, MBBS, DM, Ph59, Rainford J. Wilks, MBBS, 775

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

47

DM, MSc58, Akim Adegnika, MD, PhD60;61;62, Ulysse Ateba-Ngoa, MD60;61;62, Maria 776

Yazdanbakhsh, PhD62 777

1 Department of Medicine, Johns Hopkins University, Baltimore, MD. 778

2 Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, MD. 779

3 Department of Medicine, The Brooklyn Hospital Center, Brooklyn, NY. 780

4 Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, MD. 781

5 Data and Statistical Sciences, AbbVie, North Chicago, IL. 782

6 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA. 783

7 Department of Public Health Sciences, Henry Ford Health System, Detroit, MI. 784

8 Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, MI. 785

9 Department of Internal Medicine, Henry Ford Health System, Detroit, MI. 786

10 Department of Microbiology, Howard University College of Medicine,Washington, DC. 787

11 National Human Genome Center, Howard University College of Medicine, Washington, DC. 788

12 Department of Genetics, Stanford University School of Medicine, Stanford, CA. 789

13 Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York. 790

14 Illumina, Inc., San Diego, CA. 791

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

48

15 Knome Inc., Cambridge, MA. 792

16 Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA. 793

17 Department of Medicine, Northwestern University, Chicago, IL. 794

18 Department of Preventive Medicine, Northwestern University, Chicago, IL. 795

19 Department of Pediatrics, Northwestern University, Chicago, IL. 796

20 The Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago. 797

21 Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, 798

22 Department of Bioengineering and Therapeutic Sciences, University of California, San 799

Francisco, San Francisco, CA. 800

23 Department of Medicine, University of California, San Francisco, San Francisco, CA. 801

24 Department of Neurology, University of California, San Francisco, San Francisco, CA. 802

25 Institute for Human Genetics, Institute for Human Genetics, University of California, San 803

Francisco, San Francisco. 804

26 California Institute for Quantitative Biosciences, University of California, San Francisco , San 805

Francisco, CA. 806

27 CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid. 807

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

49

28 Biomedical Sciences Graduate Program, University of California, San Francisco, San 808

Francisco, CA. 809

29 Department of Medicine, University of Chicago, Chicago, IL. 810

30 Department of Statistics, University of Chicago, Chicago, IL. 811

31 Department of Human Genetics, University of Chicago, Chicago, IL. 812

32 Department of Medicine and Center for Global Health, University of Chicago, Chicago, IL. 813

33 Department of Chemical Pathology, University of Ibadan, Ibadan, Nigeria. 814

34 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD. 815

35 Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, 816

Baltimore. 817

36 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD. 818

37 Department of Biostatistics, SPH II, University of Michigan, Ann Arbor, MI. 819

38 Department of Medicine, University of Mississippi Medical Center, Jackson, MS. 820

39 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, 821

MS. 822

40 Department of Genetics, University of North Carolina, Chapel Hill, NC. 823

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

50

41 Department of Genomic Sciences, University of Washington, Seattle, WA. 824

42 Department of Pediatrics, University of Washington, Seattle, WA. 825

43 University of Washington, Seattle, WA. 826

44 Department of Medicine, Vanderbilt University, Nashville, TN. 827

45 Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville. 828

46 Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, 829

Winston-Salem, NC. 830

47 Genetics and Epidemiology of Asthma in Barbados, The University of the West Indies. 831

48 Faculty of Medical Sciences Cave Hill Campus, The University of the West Indies. 832

49 Queen Elizabeth Hospital, Queen Elizabeth Hospital, The University of the West Indies. 833

50 Immunology Service, Universidade Federal da Bahia, Salvador, BA. 834

51 Laboratrio de Patologia Experimental, Centro de Pesquisas Gonalo Moniz, Salvador, BA. 835

52 Institute for Immunological Research, Universidad de Cartagena, Cartagena. 836

53 Instituto de Investigaciones Immunologicas, Universidad de Cartagena, Cartagena. 837

54 Faculty of Medicine, Universidad Nacional Autonoma de Honduras en el Valle de Sula, San 838

Pedro Sula. 839

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

51

55 Facultad de Medicina, Universidad Catolica de Honduras, San Pedro Sula. 840

56 Centro de Neumologia y Alergias, San Pedro Sula. 841

57 Faculty of Medicine, Centro Medico de la Familia, San Pedro Sula. 842

58 Tropical Medicine Research Institute, The University of the West Indies. 843

59 Department of Child Health, The University of the West Indies. 844

60 Centre de Recherches Mdicales de Lambarn. 845

61 Institut fr Tropenmedizin, Universitt Tbingen. 846

62 Department of Parasitology, Leiden University Medical Center, Netherlands. 847

 848

Figure legends 849

Figure 1. Merging multiple VCF files into a single TPED file. Left tables represent input VCF 850

files. Table to the right represents the merged TPED file. Records are filtered out if their Filter 851

value does not equal to “PASS” (Pos 10147). Individual genotypes from multiple VCF files with 852

the same genomic location are aggregated together in one row. The resulting TPED file thus has 853

an inclusive set of sorted genomic locations of all variants found in the input VCF files. 854

 855

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

52

Figure 2. The workflow chart of the MapReduce schema. The workflow is divided into two 856

phases: In the first phase, variants are filtered, grouped by chromosomes into bins, and mapped 857

into key-value records. Two sampling steps are implemented to generate partition lists of all 858

chromosomes. In the second phase, parallel jobs of specified chromosomes are launched. Within 859

each job, records from corresponding bins are loaded, partitioned, sorted and merged by genomic 860

locations before being saved into a TPED file. 861

 862

Figure 3. The workflow chart of the HBase schema. The workflow is divided into three phases. 863

The first is a sampling, filtering and mapping phase. A MapReduce job samples out variants 864

whose genomic positions are used as region boundaries when creating the HBase table. Only 865

qualified records are mapped as key-values and saved as Hadoop sequence files. The second is the 866

HBase bulk loading phase in which a MapReduce job loads and writes records generated from the 867

previous phase, aggregating them into corresponding regional HFiles in the form of HBase’s row 868

key and column families. Finished HFiles are moved into HBase data storage folders on region 869

servers. In the third phase, parallel scans were launched over regions of the whole table to retrieve 870

desired records which are subsequently merged and exported to the TPED file. 871

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

53

 872

Figure 4. The workflow chart of the Spark schema. The workflow is divided into three stages. 873

In the first stage, VCF records are loaded, filtered, and mapped to PairRDDs with keys of genomic 874

position and values of genotype. The sort-by-key shuffling spans across the first two stages, 875

sorting and grouping together records by keys. Then grouped records with the same key are 876

locally merged into one record in TPED format. Finally, merged records are exported to the TPED 877

file. 878

 879

Figure 5. The execution plan of the HPC-based implementation. The execution plan resembles 880

a branched-tree. In the first round, each process is assigned an approximately equal number of 881

files to merge locally. In the second round, even-numbered process retrieves the merged file of its 882

right adjacent process to merge with its local merged file. In the third round, processes whose ID 883

can be fully divided by four retrieve the merged file of its right adjacent process in the second 884

round and do the merging. This process continues recursively until all files are merged into a 885

single TPED file (round four). 886

 887

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

54

Figure 6. The scalability of Apache cluster-based schemas on input data size. A. MapReduce 888

schema. B. HBase schema. C. Spark schema. As the number of input files increases from 10 to 889

186, the time costs of all three schemas with 12, 24 or 72 cores increase in a slower pace than that 890

of the input data size, especially when the number of cores is relatively large. The HBase schema 891

with 12 cores has the largest increase (from 375 to 5,479 seconds, ~14.6 fold). 892

 893

Figure 7. Comparing the strong scalability between traditional parallel/distributed methods 894

and Apache cluster-based schemas. We fix the number of files at 93 and increase the number of 895

nodes/cores. The baseline for the parallel multiway-merge is one single core, while for the others 896

is one single node (4 cores). All methods/schemas show a degraded efficiency as computing 897

resources increase 16 fold from the baseline. Specifically, the efficiency of MapReduce-, HBase-, 898

Spark-based schemas drops to 0.83, 0.63 and 0.61 respectively, while the efficiency of parallel 899

multiway-merge and HPC-based implementations drops to 0.06 and 0.53 respectively. 900

 901

Figure 8. Comparing the weak scalability between traditional parallel/distributed methods 902

and Apache cluster-based schemas. We simultaneously increase the number of cores and input 903

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

55

data sizes while fixing the ratio of file/core (parallel multiway-merge) or file/node (all others) at 904

ten. The baseline is the same as in the test of strong scalability. All but the MapReduce-based 905

schema have degraded efficiency, among which the HPC-based implementation has the steepest 906

degradation. Specifically, when computing resource increases 16 fold from the baseline, the 907

efficiency of MapReduce-, HBase- and Spark-based schemas changes to 3.1, 0.87 and 0.75 908

respectively, and for parallel multiway-merge and HPC-based implementations, the efficiency 909

reduces to 0.42 and 0.35 respectively. 910

 911

Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. 912

The number of cores in these experiments is fixed at 48. Time costs of all phases of the three 913

schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: 914

The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold 915

respectively as the number of input files increases from 10 to 186. b) HBase schema: The time 916

spent in each phase increases 4.2-, 5.6- and 5.0-fold respectively as the number of input files 917

increases from 10 to 186. The bulk loading and exporting phases together take up more than 80% 918

of total time expense. c) Spark schema: The time cost increases 5.8-, 6.0- and 6.0-fold 919

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

56

respectively for the three stages as the number of input files increases from 10 to 186 files. Like 920

the HBase schema, the first two stages of the Spark schema together account for more than 80% of 921

the total time cost. 922

 923

Figure 10. Execution speed comparison among Apache cluster-based schemas and 924

traditional methods. Firstly, we compare of the speeds of the three Apache schemas with that of 925

three traditional methods which are single-process multiway-merge, parallel multiway-merge and 926

HPC-based implementations. As the number of input files increases from 10 to 186, the speeds of 927

Apache cluster-based schemas improve much more significantly than traditional methods. The 928

numbers in the figures indicate the ratio of the time cost of each traditional method to that of the 929

fastest Apache cluster-based schema. Secondly, we compare the processing speed among the three 930

Apache cluster-based schemas which are comparable to each other regardless of the input data 931

size. The MapReduce schema performs the best in merging 10 and 186 files; The HBase schema 932

performs the best in merging 20, 40 and 60 files; The Spark schema performs the best in merging 933

93 files. 934

 935

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

57

Figure S1. Pseudocodes of the MapReduce schema. 936

 937

Figure S2. Pseudocodes of the HBase schema. 938

 939

Figure S3. Pseudocodes of the Spark schema. 940

 941

Tables 942

Table 1. Performance comparisons between VCTools and Apache cluster-based schemas 943

 VCFTools MapReduce HBase Spark

Time cost (seconds) 30,189 484 577 596

Fold (faster) - 62.4 52.3 50.7

 944

Table 2. Pros and Cons of MapReduce, HBase and Spark schemas 945

Schemas Pros Cons

MapReduce Good for large input data

size and sufficient

computing resources.

 Simple architecture and

least overheads given

sufficient computing

 Merging is not

incremental.

 Much overheads when

computing resources are

limited

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

58

resources.

 Best parallelism

 Good for one-time

merging.

 Performance is stable.

HBase Good for intermediate

input data size (>=20 and

<=100 VCF files).

 Supports incremental

merging.

 Supports On-Line

Analytical Processing

(OLAP).

 Best storage efficiency.

 Users must determine

region number in

advance.

 Has most local I/O.

 Complex performance

tuning.

Spark Good for large input data

size (>100 VCF files) and

relative limited

computing resources.

 Keeps intermediate

results in memory and

least local I/O.

 Good for subsequent

statistical analysis on

merged results.

 Possibly weakened data

locality during loading.

 Slight unstable

performance when

computing resources

exceeds needs of input

data size.

 Actual execution plan is

not transparent.

 Complex performance

tuning.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

59

 946 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Chr Pos Ref Alt Filter … Genotype

1 10147 A T q20 … 1/0:43

1 10240 T G PASS … 1/0:5

… … … … … … …

Y 11590 G C PASS … 0/0:10

Chr Pos Ref Alt Filter … Genotype

1 10186 G A PASS … 1/0:9

1 10240 T G PASS … 1/1:11

… … … … … … …

Y 11872 G T PASS … 0/1:10

VCF	File	
1

VCF	File	
2

Chr Rs Distance Pos Ind_1 Ind_2

1 . 0 10186 G	G G	A

1 . 0 10240 T	G G	G

… … … … … …

Y . 0 11590 G	G G	G

Y . 0 11872 G	G G	T

Merged	TPED	file

Genotypes

Figure1 Click here to download Figure Figure1.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38016&guid=6735451f-7b0d-4c1c-8ea6-a6a3e0469642&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38016&guid=6735451f-7b0d-4c1c-8ea6-a6a3e0469642&scheme=1

Phase	I

Mappers

Binned	
Folders

Filtering	&	Binning

Reducer

Second
Sampling

Sampling

Chr1

Chr2
…

Partition	Lists

Launch	Parallel	
Jobs

Phase	II
(#	Jobs=#	Chrm)

Mappers Partitioner

Merging

Reducers

TPED	FilesVCF	Files

…

Output

…

Loading

Figure2 Click here to download Figure Figure2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38017&guid=3130c5d6-695d-44b4-8557-e18247a18bf4&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38017&guid=3130c5d6-695d-44b4-8557-e18247a18bf4&scheme=1

VCF	Files

…

Sampling, Mapping& Filtering

chr1_loci_1
…
chrM_loci_N

Region	Boundaries

Create	table

HBase	Bulk	Loading

Converting
to HBase
row keys
and values

Mappers HFiles

HBase	Table

region	1

region	2	

…
region n

Scanning
Mappers

Exporting

HDFS

Mappers

…

…

HDFS

TPED	Files
Moving	to
Region	
Servers

Sampling

Outputting
Sequence Files

Loading

Loading

Figure3 Click here to download Figure Figure3.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38018&guid=aa7b1fe1-d2fb-43d8-8d37-fdcbc4c9e8ec&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38018&guid=aa7b1fe1-d2fb-43d8-8d37-fdcbc4c9e8ec&scheme=1

Input	Files

…

HDFS

RDD

…

Loading	to	RDDs Filtering Mapping	to	
PairRDD	with	
keys	and	values

Sort	by	key Locally	
merge	by	key	

…

HDFS

Saving	to	
HDFS

Stage	1 Stage	3

TPED	FilesRDD

…

PairRDD

…

PairRDD

… …

PairRDD

Stage	2Figure4 Click here to download Figure Figure4.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38019&guid=c03f7600-3225-4dc0-ae7b-0faaa38daa58&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38019&guid=c03f7600-3225-4dc0-ae7b-0faaa38daa58&scheme=1

7
8

Round 1

NFS

6
8

5
8

4
8

3
8

2
8

1
8

0
8

Round 2 0
8

2
8

4
8

6
8

4
8

0
8

Round 3

Round 4 0
8

Figure5 Click here to download Figure Figure5.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38020&guid=2c9c44c7-2566-4b3a-9de1-eb2f85d1e6c7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38020&guid=2c9c44c7-2566-4b3a-9de1-eb2f85d1e6c7&scheme=1

a) b)

0

1000

2000

3000

4000

5000

10 20 40 60 93 186

Ti
m
e	
Co

st
s	(
se
c)

Input	File	Number

MapReduce	Schema

12	cores 24	cores 72	cores

0

1000

2000

3000

4000

5000

6000

10 20 40 60 93 186

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

HBase	Schema

12	cores 24	cores 72	cores

c)

0
500

1000
1500
2000
2500
3000
3500
4000

10 20 40 60 93 186

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

Spark	Schema

12	cores 24	cores 72	cores

Figure6 Click here to download Figure Figure6.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38021&guid=db743b3f-ce91-423a-95db-b69cd08e9896&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38021&guid=db743b3f-ce91-423a-95db-b69cd08e9896&scheme=1

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

Ef
fic
ie
nc
y
(~
fo
ld
)

Computing Resources Increment (~fold)

MapReduce HBase Spark Parallel	multiway	merge HPC

Figure7 Click here to download Figure Figure7.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38022&guid=d5d3f11c-9c8c-4d05-b45a-d266c815e50d&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38022&guid=d5d3f11c-9c8c-4d05-b45a-d266c815e50d&scheme=1

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16

Ef
fic
ie
nc
y
(~
fo
ld
)

Computing Resources Increment (~fold)

MapReduce HBase Spark Parallel	multiway	merge HPC

Figure8 Click here to download Figure Figure8.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38023&guid=331f4fbc-3687-4092-963f-45701fe791b7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38023&guid=331f4fbc-3687-4092-963f-45701fe791b7&scheme=1

a) b)

c)

0

100

200

300

400

500

600

700

10 20 40 60 93 186

Ti
m
e	
Co

st
s(
Se
c)

Input	File	Number

MapReduce	Schema

Loading,	Filtering,	Mapping	&Sampling

0

100

200

300

400

500

600

700

800

10 20 40 60 93 186

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

HBase	Schema

Sampling Bulk	Loading Exporting

0
50

100
150
200
250
300
350
400
450
500

10 20 40 60 93 186

Ti
m
e	
Co

st
s	(
Se
c)

Input	File	Number

Spark	Schema

Loading,	Filtering	&	Mapping Sorting	&	Merging Exporting

Figure9 Click here to download Figure Figure9.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38024&guid=dd9a93ea-5735-4234-87b1-927a77154c1d&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38024&guid=dd9a93ea-5735-4234-87b1-927a77154c1d&scheme=1

2.8

4.5

7.1
10.3

13.1

16.3

.13

.21

.32

.51

.64

.742.8
2.5

2.6 2.8

4.6

4.6

10

100

1000

10000

10 20 40 60 93 186

Ti
m
e
Co

st
s(
Se
c)

Input	File Number

Multiway	Merge MapReduce	w/	72	cores HBase	w/	72	cores
Spark	w/	72	cores HPC	w/	72	cores Parallel	Multiway	Merge	w/	18	cores

Figure10 Click here to download Figure Figure10.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38025&guid=252c202d-3c3b-4f2d-8fb9-d8a02c318f00&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38025&guid=252c202d-3c3b-4f2d-8fb9-d8a02c318f00&scheme=1

Supplementary Figure S1

Click here to access/download
Supplementary Material

FigureS1.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38026&guid=448026ae-1f09-45fd-b682-ff84b3b2ef11&scheme=1

Supplementary Figure S2

Click here to access/download
Supplementary Material

FigureS2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38027&guid=ed600f0f-fd17-4ab5-b8a4-db3c45f5318e&scheme=1

Supplementary Figure S3

Click here to access/download
Supplementary Material

FigureS3.pdf

http://www.editorialmanager.com/giga/download.aspx?id=38028&guid=8e6ad8b7-bbbc-4cea-952c-4623a88e0615&scheme=1

Manuscript with highlighted changes

Click here to access/download
Supplementary Material

minor_revision_1.10_marked.docx

http://www.editorialmanager.com/giga/download.aspx?id=38033&guid=48bead6b-5311-49f3-8cea-b4fa94a59c17&scheme=1

