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Abstract: Background: Sorted merging of genomic data is a common data operation necessary
in many sequencing-based studies. It involves sorting and merging genomic data from
different subjects by their genomic locations. In particular, merging a large number of
Variant Call Format (VCF) files is frequently required in large scale whole genome
sequencing or whole exome sequencing projects. Traditional single machine based
methods become increasingly inefficient when processing large numbers of VCF files
due to the excessive computation time and I/O bottleneck. Distributed systems and
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more recent cloud-based systems offer an attractive solution. However, carefully
designed and optimized workflow patterns and execution plans (schemas) are required
to take full advantage of the increased computing power while overcoming bottlenecks
to achieve high performance.

Findings: In this study, we custom design optimized schemas for three Apache big data
platforms, Hadoop (MapReduce), HBase and Spark, to perform sorted merging of a
large number of VCF files. These schemas all adopt the divide-and-conquer strategy to
split the merging job into sequential phases/stages consisting of subtasks which are
conquered in an ordered, parallel and bottleneck-free way. In two illustrating examples,
we test the performance of our schemas on merging multiple VCF files into either a
single TPED or VCF file, which are benchmarked with the traditional single/parallel
multiway-merge methods, message passing interface (MPI) based high performance
computing (HPC) implementation and the popular VCFTools.

Conclusions: Our experiments suggest all three schemas either deliver a significant
improvement in efficiency or render much better strong and weak scalabilities over
traditional methods. Our findings provide generalized scalable schemas for performing
sorted merging on genetics and genomics data using these Apache distributed
systems.
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Response to Reviewers: Major modifications in this revision are summarized below:

•Corrected grammar mistakes and minor wording issues.
•Add members of CAAPA consortium to authorship.
•Add “Ethics Approval and Consent to Participate” section.
•Add “Funding” section.
•Add CAAPA Consortium members to the “Authors Contributions” section.
•Add CAAPA Consortium members in the “Acknowledgements” section
•Add a complete list of CAAPA Consortium members and their affiliations at the end
•Added our test datasets and codes to the GigaDB database.
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•Added a citation of test datasets in GigaDB to the reference list, and cited it in
appropriate places in the manuscript.
•Added all URLs as references in the bibliography, and cited them in the corresponding
places in the manuscript.

Below we present itemized responses to all the comments, organized by editors and
reviewers. The reviewers' comments are in bold. Our responses are in dark blue color.

Editor comments:

Before we hand over your manuscript to our production team:

- please go over the list of minor wording issues below, kindly provided by reviewer 1,
and correct them in a revised submission.

Done

- please add a statement on ethical considerations to the manuscript. You are using
encrypted VCFs, but as the original data set from reference [33] is under an authorized
access scheme, if I understand correctly, I assume you needed IRB approval to access
and work with the un-encrypted data for this project? Please also clarify in the
manuscript whether this encrypted use of the subjects' data is covered by the consent
they gave.

Done, please see “Ethics Approval and Consent to Participate” section in the
manuscript.

Regarding your code and test data, one of our data curators will contact you shortly.
Usually we host an archival copy of any code and test data in our repository GigaDB,
which will be cited in the manuscript. Our data curators will discuss this with you.

Done

Please include a citation to any upcoming GigaDB dataset to your reference list
(including the DOI link you will get from our data curators), and please cite this in the
data availability section and elswehere in the manuscript, where appropriate.

Please follow this example format for the reference:

[xx] Author1 N, Author2 N, AuthorX N. Supporting data for "Title of your manuscript".
GigaScience Database. 2018. http://dx.doi.orgxxxxxxxxxxxx

(If you don't have a GigaDB doi at the time of resubmission, please leave the "dummy"
version and we can exchange this for you.)

Please see reference 43 in the manuscript

Finally, a very minor point: Please include all URLs (except the "availability" section")
as references in the bibliography, and cite them from the text rather than inserting them
directly.

Done. On line 321:
The source codes are available at our GitHub website [35] (CloudMerge; RRID:
SCR_016051).

Reviewer #1:
This paper has undergone substantial improvements since the original submission and
the authors are to be commended on their efforts to address all the main issues raised
in the initial review. I am satisfied that all of my concerns from the initial review have
been adequately addressed, and I am happy to recommend that this paper is accepted
for publication.

We are grateful to the reviewer for the comment.
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I have a few minor comments below that the authors might wish to consider when
editing the final version: "merging a large number of Variant Call Format (VCF) files are
frequently encountered" -> "merging a large number of Variant Call Format (VCF) files
is frequently encountered".

Done. See line 19.

"when processing hundreds or even thousands of VCF files" -> "when processing large
volumes of VCF files".

Done. See line 22.

 "The distributed systems and the more recent cloud-based systems" -> "Distributed
systems and more recent cloud-based systems".

Done. See line 23.

"working flow" -> "workflow".

Done. See line 24.

"Apache Foundation has" -> "The Apache Foundation"

Done. See line 56.

"took advantage" -> "take advantage"

Thanks for brings this out. It is done, see line 66. In addition, we also make additional
similar changes from past tense to current tense:
On line 64, “made” -> “make”.
On line 68, “adopted” -> “adopts”.
On line 69, “utilized” -> “utilizes”.

Are two citations really needed for the "sorted full-outer-joining problem"? If it is well
known, as the authors claim, then one citation should be sufficient.

Yes, we agree with the reviewer, and delete one reference: “28. Silberschatz A, Korth
HF and Sudarshan S. DatabaseSystem Concepts. 2010.”

"cumbersome" is probably the wrong word to describe the behaviour of PLINK and
VCFTools on moderate numbers of input files. Cumbersome suggests that they are
awkward or difficult to use, but really the problem is that their performance is
unacceptable.

Yes, we agree with the reviewer.
On line 90:
“Currently, they are handled by software such as VCFTools [28] and PLINK, which
become very cumbersome even in the face of a moderate number of VCF files.”
Changed to:
Currently, they are handled by software such as VCFTools [28] and PLINK, which
become considerably inefficient even in the face of a moderate number of VCF files.

"literally makes it sequential on writing" -> "makes it sequential on writing" (remove
"literally", it is redundant) "

Done. See line 94.

and memory limitation" -> "and memory limits"

Done. See line 96.

"ideally fit" -> "is an ideal fit"
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Done. See line 131.

"megabyte in size" -> "megabytes in size" (plural). Maybe use MB instead, to be
consistent with the rest of the article using GB.

Done. See line 163.

"Key-value pais" -> "key-value pairs" (capitalisation)

Done. See line 209.

 It is not clear what this means "we only need to merge records from selected
chromosomes of interest rather than from all of them". Can you please clarify?

We thank the reviewer 1 for bringing this up.  Here we mean if we are only interested in
the merged results of some specific chromosomes, say chr1-chr3, then we can just
merge the records in the corresponding bins, instead of merging the records of all
chromosomes. And on line 210, we have rephrased this sentence from
“With this grouping, we only need to merge records from selected chromosomes of
interest rather than from all of them.”
to
“With this grouping, if SNPs of interest located in a few selected chromosomes only,
we can choose to just merge records from these selected chromosomes rather than
from all chromosomes.”

delete: "which necessitates the adding of this phase"

Done. See line 261.

"finishing writings" -> "finishing writing" (not plural)

Done. See line 269.

It is likely that the HPC tests (namely the MPI version) would have performed better on
a system with a high-performance file system such as GPFS or Lustre instead of NFS.

We totally agree with reviewer 1’s opinion.  Both Lustre and GPFS has better I/O
scalability than NFS. And we expect our HPC benchmark would perform better using
these file systems. However, I/O is not only the reason why the HPC benchmark does
not scale well. Rather, the increasing in the number of merging rounds when
increasing the number of input files is the main reason for decreasing efficiency. So we
expect the scalability will improve to some extent but not too much when running it with
the GPFS or Lustre file system. Another reason we choose NFS because we test our
benchmark using StarCluster, which currently doesn’t support either GPFS or Lustre.

Use GB for gigabytes instead of G.

Done.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Yes
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Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 32 

Background: Sorted merging of genomic data is a common data operation necessary in many 33 

sequencing-based studies. It involves sorting and merging genomic data from different subjects by 34 

their genomic locations. In particular, merging a large number of Variant Call Format (VCF) files 35 

is frequently required in large scale whole genome sequencing or whole exome sequencing 36 

projects. Traditional single machine based methods become increasingly inefficient when 37 

processing large numbers of VCF files due to the excessive computation time and I/O bottleneck. 38 

Distributed systems and more recent cloud-based systems offer an attractive solution. However, 39 

carefully designed and optimized workflow patterns and execution plans (schemas) are required to 40 

take full advantage of the increased computing power while overcoming bottlenecks to achieve 41 

high performance. 42 

 43 

Findings: In this study, we custom design optimized schemas for three Apache big data platforms, 44 

Hadoop (MapReduce), HBase and Spark, to perform sorted merging of a large number of VCF 45 

files. These schemas all adopt the divide-and-conquer strategy to split the merging job into 46 

sequential phases/stages consisting of subtasks which are conquered in an ordered, parallel and 47 
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bottleneck-free way. In two illustrating examples, we test the performance of our schemas on 48 

merging multiple VCF files into either a single TPED or VCF file, which are benchmarked with 49 

the traditional single/parallel multiway-merge methods, message passing interface (MPI) based 50 

high performance computing (HPC) implementation and the popular VCFTools.  51 

 52 

Conclusions: Our experiments suggest all three schemas either deliver a significant improvement 53 

in efficiency or render much better strong and weak scalabilities over traditional methods. Our 54 

findings provide generalized scalable schemas for performing sorted merging on genetics and 55 

genomics data using these Apache distributed systems. 56 

Keywords: Sorted merging, whole genome sequencing, MapReduce, Hadoop, HBase, Spark.  57 

 58 

Findings  59 

Introduction 60 

With the rapid development of high-throughput biotechnologies, genetic studies have entered the 61 

Big Data era. Studies like Genome Wide Association Studies (GWASs), Whole Genome 62 

Sequencing (WGS) and whole exome sequencing (WES) studies have produced massive amounts 63 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

of data. The ability to efficiently manage and process such massive data becomes increasingly 64 

important for successful large scale genetics studies [1-3]. Single machine based methods are 65 

inefficient when processing such big data due to the prohibitive computation time, I/O bottleneck, 66 

as well as CPU and memory limitations. Traditional HPC techniques based on MPI/OpenMP also 67 

suffer from limitations such as not allowing addition of computing nodes at runtime, shortage of a 68 

fault-tolerant and high available file system, inflexibility of customizing the computing 69 

environment without administrator permission of a cluster [3, 4]. It becomes increasingly 70 

attractive for investigators to take advantage of more powerful distributed computing resources or 71 

the cloud to perform data processing and analyses [3, 5]. The Apache Foundation has been a 72 

leading force in this endeavor, and has developed multiple platforms and systems including 73 

Hadoop [6, 7], HBase [8] and Spark [9]. All these three Apache platforms have gained substantial 74 

popularity in recent years, and have been endorsed and supported by major vendors such as 75 

Amazon Web Services (AWS). 76 

 77 

In bioinformatics, researchers have already started to embrace Apache distributed systems to 78 
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manage and process large amounts of high throughput ‘-omics’ data. For example, the Cancer 79 

Genome Atlas project makes use of the Hadoop framework to split genome data into chunks 80 

distributed over the cluster for parallel processing[3, 10]. The CloudBurst [11], Seal [12], Hadoop-81 

BAM [13] and Crossbow software [14] take advantage of the Hadoop framework to accelerate 82 

sequencing read mapping, aligning and manipulations as well as SNP calling. The Collaborative 83 

Genomic Data Model (CGDM) [15] adopts HBase to boost the querying speed for the main 84 

classes of queries on genomic databases. MetaSpark [16] utilizes Spark’s distributed data set to 85 

recruit large scale of metagenomics reads to reference genomes, achieves better scalability and 86 

sensitivity than single-machine based programs [17]. Industry cloud computing vendors such as 87 

Amazon [18] and Google [19] are also beginning to provide specialized environments to ease 88 

genomics data processing in the cloud. 89 

 90 

Although numerous Apache cluster-based applications have already been developed for 91 

processing and analyzing large scale genomics data including ADAM [1], VariantSpark [20], 92 

SparkSeq [21], Halvade [22], SeqHBase [23] among others, we believe there are still many 93 
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opportunities in biomedical data analyses to take advantage of distributed systems as the scale and 94 

scope of data become larger and more complex. A particular example is sorted merging, which is a 95 

ubiquitous operation in processing genetics and genomics data. As an example, in WGS, variants 96 

identified from individuals are often called and stored in separate Variant Call Format (VCF) files. 97 

Eventually these VCF files need to be merged (into a VCF or TPED file) as required by 98 

downstream analysis tools such as  PLINK [24] and BlueSNP [25, 26]. Either a VCF or TPED file 99 

requires the data to be sorted by their genomic locations, thus these tasks are equivalent to the 100 

well-known sorted full-outer-joining problem [27]. Currently, they are handled by software such 101 

as VCFTools [28] and PLINK, which become considerably inefficient even in the face of a 102 

moderate number of VCF files. The main reason is that these tools adopt the multiway-merge-like 103 

method [29] with a priority queue as the underlying data structure to ensure the correct output 104 

order. Although such a method only requires one round of read through of the input files, a key 105 

deficiency is that it can only have one consumer access items from the data queue, which makes it 106 

sequential upon writing. This problem cannot be eliminated even if the multiway-merging is 107 

implemented as parallel processes due to I/O saturation, workload imbalance among computing 108 

units, and memory limits.  Therefore, these single-machine based tools are inefficient and time-109 
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consuming when handling large datasets.  110 

 111 

In this study, we use the case of sorted-merging multiple VCF files to demonstrate the benefits of 112 

using Apache distributed platforms. However, simply running sorted merging on such distributed 113 

systems runs into problems of bottlenecks, hotspots and unordered results commonly seen in 114 

parallel computations. Rather, we believe working schemas custom designed for each specific 115 

distributed platform are required to unleash their full potential. To overcome the limitations of 116 

single-machine, traditional parallel/distributed, and simple Apache distributed system based 117 

methods, we propose and implement three schemas running on Hadoop, Spark and HBase 118 

respectively. We choose these three platforms because they represent cloud distributed systems 119 

providing data partitioning based parallelism with distributed storage, data partitioning based 120 

parallelism with in-memory based processing, and high dimensional tables like distributed 121 

storage, respectively. Hadoop [6] is the open source implementation of MapReduce [7] based on 122 

parallel key-value processing technique, and has the advantage of transparency and simplicity. 123 

HBase [8] is a data warehousing platform which adopts Google’s BigTable data storing structure 124 
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[30] to achieve high efficiency in storing and reading/writing large scale of sparse data. Spark [9] 125 

introduces the concept of Resilient Distributed Dataset (RDD) and Directed Acyclic Graph (DAG) 126 

execution to parallel key-value processing, thus enabling fast, robust and repetitive in-memory 127 

data manipulations.  Specifically, our schemas involve dividing the job into multiple phases 128 

corresponding to tasks of loading, mapping, filtering, sampling, partitioning, shuffling, merging 129 

and outputting. Within each phase, data and tasks are evenly distributed across the cluster, 130 

enabling processing large scale of data in a parallel and scalable manner, which in turn improves 131 

both speed and scalability.  132 

 133 

Methods 134 

Overview 135 

The benefits of using these three Apache distributed platforms to perform sorted merging are four-136 

fold when compared to using the multiway-merge method [29], a relational database based 137 

approach, or a HPC framework. First, with genomic locations as keys and genotypes as values, it 138 

is readily transformed into the key-value model in which all three platforms offer a rich set of 139 
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parallel operations.  Second, data in VCF files are semi-structured. This type of data is an ideal fit 140 

for the three platforms which allow defining the schema during data loading, avoiding the 141 

preprocessing of raw data into a rigid schema as in a relational database.  Third, all these 142 

platforms provide built-in efficient task coordination, high fault tolerance, data availability and 143 

locality which are absent in the traditional HPC framework. Fourth, the merged results are directly 144 

saved onto a distributed file system such as HDFS or Amazon S3 which can be directly used for 145 

subsequent cluster-based GWAS or WGS analytical tools such as BlueSNP.  146 

 147 

Despite these advantages, simply performing sorted merging on these Apache distributed systems 148 

will not deliver the expected results for the following reasons. First, it can lead to globally 149 

unsorted results. Hash-based shuffling of input data is the default mechanism for distributing data 150 

to parallel working units in the system. However, shuffling will lead to globally unsorted results.  151 

Second, bottlenecks and hotspots can happen during the processing in the cluster. Bypassing the 152 

hashing based shuffling can lead to unbalanced workloads across the cluster, result in straggling 153 

computing units which become bottlenecks for response time. In addition, for parallel loading of 154 

presorted data into HBase, data being loaded from all the loading tasks access the same node 155 
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simultaneously while other nodes may be idling, creating an I/O hotspot. Third, sampling costs 156 

could become prohibitive. Although Hadoop provides a built-in utility named total-order-merging 157 

[27] to achieve both workload balance and global order, it involves transferring to and sampling 158 

all the data on a single node. The communication costs over the network and disk I/O can be 159 

prohibitive when data size becomes very large. In the following sections, we will illustrate how 160 

our custom designed schemas are able to overcome these limitations in detail. 161 

 162 

 Data Formats and Operations 163 

In a typical WGS experiment, data analysis often starts from individual genotype files in the VCF 164 

format [31]. A VCF file contains data arranged into a table consisting of eight mandatory fields 165 

including chromosome (CHROM), the genomic coordinate of the start of the variant (POS), the 166 

reference allele (REF), a comma separated list of alternate alleles (ALT), among others. In our 167 

experiments, we use a dataset consisting of the VCF files of 186 individuals [32] generated from 168 

Illumina's BaseSpace software (Left tables in Figure 1). Each VCF file has around 4-5 million 169 

rows, each row contains information on one of the individual’s genomic variants. Each VCF file is 170 

about 300 MB in size. In an attempt to protect privacy of study subjects, we apply the following 171 
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strategy to conceal their real genetic variant information contained in the VCF files: we first 172 

transform each original genomic location by multiplying it with an undisclosed constant real 173 

number, taking the floor integer of the result, and then add another undisclosed constant integer 174 

number.  175 

 176 

It is common that multiple VCF files need to be merged into a single TPED file for analysis tools 177 

such as PLINK. A TPED file resembles a big table, aggregating genotypes of all individuals under 178 

investigation by genomic locations (right table in Figure 1). The merging follows several rules. 179 

First, each record is associated with a data quality value in the FILTER column, which records the 180 

status of this genomic position passing all filters. Usually only qualified records with a “PASS” 181 

filter value are retained. Second, genotypes in VCF files are stored in the form of allele values, 182 

where 0 stands for the reference allele, 1 stands for the first mutant allele, 2 stands for the second 183 

mutant allele, and so on. Allele values must be translated into corresponding types of nucleotides 184 

in the TPED file. Third, all individuals need to have a genotype for genomic locations appearing 185 

in at least one VCF file. The default genotype for a missing value is a pair of homozygous 186 

reference alleles. The merging of multiple VCF files into a single VCF file follows the rules as: 187 
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First, the ALT and INFO columns of a genomic location in the merged file are set as the 188 

concatenated values of the corresponding columns on that location from all input files with 189 

duplicated values removed. Second, the QUAL column of a genomic location in the merged file is 190 

set as a weight-averaged quality value of all individuals on that location. Third, a genomic 191 

location is kept only when it appears in at least one input file and has a FILTER column value of 192 

“PASS”. Fourth, if an individual does not have allele values on a genomic location in the input 193 

file, their missing allele values are designated as “.” in the merged file.  194 

 195 

For our Apache cluster-based schemas, the merging of multiple VCF files into a single TPED file 196 

and the merging of multiple VCF files into a single VCF file differ only in the value contents of 197 

the key-value pairs, so they should have the same scalability property.  Although we implement 198 

the applications of both merging types using our Apache cluster-based schemas, which are 199 

available on our project website, we focused our experiments on the merging of multiple VCF 200 

files into a single TPED file and only evaluate the execution speed of the merging of multiple 201 

VCF files into a single VCF file with VCFTools as the benchmark. 202 

 203 
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MapReduce (Hadoop) Schema 204 

This schema is built on Hadoop’s underlying model MapReduce and running on Hadoop clusters. 205 

MapReduce [7] is a parallel computing model based on a split-apply-combine strategy for data 206 

analysis, in which data are mapped to key-values for splitting (mapping), shuffling and combining 207 

(reducing) for final results. We use Apache Hadoop-2.7 as the system for our implementation. Our 208 

optimized schema consists of two MapReduce phases, as shown in Figure 2 (the pseudocodes are 209 

shown in Figure S1). 210 

 211 

1) First MapReduce phase.  212 

Raw data are loaded from HDFS into parallel mappers to perform the following tasks: First, 213 

unqualified data are filtered out and qualified ones are mapped to key-value pairs. The mapper 214 

output key is the genomic location and output value is the genotype and individual ID. Second, 215 

key-value pairs are grouped together by chromosomes and temporarily saved as compressed 216 

Hadoop sequence files [33] for faster I/O in the second MapReduce phase. With this grouping, if 217 

SNPs of interest located in a few selected chromosomes only, we can choose to just merge records 218 

from these selected chromosomes rather than from all chromosomes. Meanwhile, these records are 219 
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sampled to explore their distribution profile of keys along chromosomes to determine boundaries. 220 

The boundaries are determined so there is an approximately equal number of records within each 221 

segment. Because all records falling in the same segment will be assigned to the same reducer in a 222 

later phase, boundaries calculated in this way ensure the workload of each reducer is balanced.  223 

There are two rounds of samplings. The first one happens in each mapper with a pre-specified 224 

sampling rate, which in our case is set to be 0.0001. Sampled records are then separated and 225 

distributed to different reducers in this phase by chromosomes, where they are sampled again with 226 

a rate equal to the reciprocal of the number of input files. This second sampling effectively limits 227 

the number of final sampled records even in the face of a very large number of input files. Because 228 

the number of reducers instantiated in the second phase equals the number of boundaries, which in 229 

turn is decided by the number of sampled records, we can therefore avoid launching unnecessary 230 

reducers thus minimizing task overheads. 231 

 232 

2) Second MapReduce phase.  233 

In this phase, multiple parallel MapReduce jobs are created, one for each chromosome, to handle 234 

all the records in sequence files generated from the first phase. Within each job, a partitioner 235 
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redirects records to the appropriate reducer by referring to the splitting boundaries from the 236 

previous phase, so records falling in between the same pair of boundaries are aggregated together. 237 

Finally, each reducer sorts and merges aggregated records by genomic locations before saving 238 

them to a TPED file. In this way, globally sorted merging can be fulfilled.  239 

 240 

HBase Schema 241 

HBase [8] is a column-oriented database where data are grouped into column families and split 242 

horizontally into regions spreading across the cluster. With this data storing structure, it supports 243 

efficient sequential reading and writing of large-scale data as well as fast random data accessing. 244 

Also, HBase is storage efficient because it can remember null values without saving them on disk. 245 

These features make HBase an ideal platform for managing large, sparse data with relatively low 246 

latency which naturally fits the sorted merging case. We use the HBase-1.3 as the system for our 247 

implementation. As shown in Figure 3, our optimized HBase schema is divided into three phases 248 

as discussed next (refer to Figure S2 for pseudocodes). 249 

   250 

1) Sampling phase  251 
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The main challenge of HBase is to avoid computational hotspots in the cluster which can happen 252 

when it starts loading a table from a single region hosted by a single node. Therefore, we need to 253 

presplit the table into regions of approximately equal size before loading. The sampling phase is 254 

introduced to determine reasonable presplitting regional boundaries. The total number of regions 255 

is set to half of the number of input files so the size of each region is approximately 1GB. 256 

Meanwhile, mappers of this phase also save qualified records as compressed Hadoop sequence 257 

files on HDFS which are used as inputs in the next phase. In addition, filtering and key-value 258 

mapping also take place in this phase. 259 

  260 

2) Bulk loading phase  261 

Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs can 262 

still emerge because sorted records are loaded sequentially, and at any instant they still access the 263 

same region and server. During the bulk loading, the key and value of each record produced from 264 

the previous phase is converted into HBase’s binary row-key and column-value respectively, and 265 

saved into a HFile, HBase’s native storage format. The row-key here is in the form of 266 

chromosome-genomic location, and column-value refers to reference allele, individual ID and 267 
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genotype. The bulk loading populates each HFile with records falling in the same pair of presplit 268 

regional boundaries. Because HFiles are written simultaneously by parallel mappers/reducers, all 269 

working nodes are actively involved and the regional hotspot is thus circumvented. Upon finishing 270 

writing, the HBase can readily load HFiles in parallel into the table by simply moving them into 271 

local HBase storage folders. This procedure is therefore at least an order of magnitude faster than 272 

the normal loading in which data are loaded sequentially via HBase servers’ I/O routines.  The 273 

order of records in the table is guaranteed because they are internally sorted by writing reducers 274 

and HBase’s Log-Structured Merge-tree [34]. It  worth mentioning that VCF records are always 275 

sparse, thus HBase is very storage-efficient.  276 

 277 

3) Exporting phase  278 

A scan of a specified genomic window is performed on the table. It involves launching parallel 279 

mappers each receiving records from a single HBase region, filling in missing genotypes, 280 

concatenating records with the same row-key, and outputting final results into TPED files.   281 

 282 

Spark Schema 283 
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Spark [9]  is a distributed engine built upon the ideas of MapReduce and RDD.  It can save 284 

intermediate results in the form of RDD in memory, and perform computations on them. Also, its 285 

computations are lazily evaluated, which means the execution plan can be optimized to include as 286 

many computational steps as possible. As a result, it is ideal for iterative computations such as 287 

sorted merging. We implement our optimized Spark schema on Spark-2.1. It has three stages 288 

which we describe below and present in Figure 4 (refer to Figure S3 for pseudocodes).  289 

 290 

1)  RDD preprocessing stage  291 

This stage involves loading raw data as RDDs, filtering, and mapping RDDs to paired-RDDs with 292 

keys (chromosome and genomic position) and values (reference allele, sample ID and genotype). 293 

This stage ends with a sorting-by-key action which extends to the next stage.  294 

 295 

2)  Sorting and merging stage 296 

 The sort-by-key shuffling repartitions and sorts PairRDD records so records with the same key 297 

are aggregated together, which are then merged into the TPED format and converted back to RDD 298 

records for outputting. However, Spark’s native family of group-by-key functions for merging 299 
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should not be used here because their default partitioner is hash-based and different from the 300 

range-based partitioner used by previous sort-by-key function. Consequently, the merged results 301 

would be reshuffled into an unsorted status. We therefore optimize the merging to bypass these 302 

functions so merging can be performed locally without data reshuffling to ensure both order and 303 

high speed.  304 

 305 

3) Exporting stage  306 

In this stage, merged RDD records are saved as TPED files on HDFS.  307 

 308 

Execution parallelism has an important impact on the performance. To maximize performance, the 309 

number of parallel tasks is set to be the number of input files. In this way, data locality is 310 

maximized and each task is assigned a proper amount of work. In addition, unlike using 311 

MapReduce or HBase, when performing sorting by keys, no explicit sampling is needed because 312 

Spark keeps track of the number of records before determining repartition boundaries.  313 

 314 

Parallel Multiway-Merge and MPI-based High Performance Computing Implementations 315 
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For most bioinformatics researchers, their daily working environment is still traditional in-house 316 

HPC clusters or stand-alone powerful servers (with cores ≥ 16 and memory ≥ 200GB) rather than 317 

heterogeneous cloud-based clusters. Therefore, we also implement a parallel multiway-merge 318 

program running on a single machine and a MPI-based (mpi4py v3.0) “single program, multiple 319 

data (SPMD)” program running on a HPC cluster as benchmarks. The source codes are available 320 

at our GitHub website [35] (CloudMerge; RRID: SCR_016051). We choose to implement 321 

multiway-merge, because many existing bioinformatics tools, including VCFTools and PLINK, 322 

adopt it as the underlying algorithm for sorted merging. Multiway-merge is highly efficient on 323 

single machine as it requires only one scan of sorted input files, so it can theoretically run at the 324 

speed of disk I/O.   325 

 326 

Generally, there are two types of parallelism---data parallelism and task parallelism. The former 327 

splits data horizontally into blocks of roughly equal sizes (the size of genomic intervals in our 328 

case) before assigning them to all available processes; the latter assigns a roughly equal number of 329 

input files to each process. For parallel multiway-merge, we choose data parallelism because the 330 

implementation of task parallelism would be the same as the HPC-based implementation running 331 
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on a single node. Perhaps the most difficult part of data parallelism is uncertainty about the data 332 

distribution across all input files, which usually leads to the problem of workload imbalance 333 

among processes. If we pre-sample all the input files to estimate the record distribution, then a full 334 

scan of the input files is required which will almost certainly takes more time than the single-335 

process multiway-merge method. As a compromise, we assume the distributions of SNP locations 336 

in all VCF files are uniform and the input files can be split into regions of approximately equal 337 

sizes. The total number of regions are set to be the number of concurrent processes, so that each 338 

region is specifically handled by a process. To avoid seeking of a process’s file reader to its 339 

starting offset from the beginning of the file, we take advantage of the Tabix indexer [36], which 340 

builds indices on data blocks of the input file and place the reader’s pointer directly onto the 341 

desired offset. One important aspect of the Tabix indexer is that it requires the input file to be 342 

compressed in bgzip format which is not supported by Hadoop, HBase or Spark.  The 343 

compression and decompression of a file in bgzip format can be much faster than in bz2 format 344 

used in our cluster-based schemas, single multiway-merge and HPC-based implementations, so 345 

parallel multiway-merge can run much faster than other methods/schemas when input data size is 346 

small.      347 
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 348 

For the HPC-based implementation, we adopt the task parallelism (Figure 5) to avoid sampling 349 

and workload imbalance. Otherwise the workflow of HPC-based implementation is the same as 350 

that of the MapReduce-based schema with the same operations and the same order: sampling in 351 

parallel, dividing the dataset into splits of equal sizes, and assigning the splits to processes to 352 

perform the merging. But this implementation is without data locality offered by HDFS and task 353 

coordination offered by YARN and thus has a performance no better than the MapReduce-based 354 

schema. Specifically, input files are shared across all nodes in the cluster via a Network File 355 

System (NFS). In the first round, each core/process fetches roughly the same number of files from 356 

the NFS and performs multiway-merging locally. In the following rounds, we adopted a tree-357 

structured execution strategy. In the second round, processes with even ID numbers (process id 358 

starts from 0) retrieve the merged file from its adjacent process to the right, which are then merged 359 

with its local merged file. Processes with odd ID number are terminated.  In the third round, 360 

processes with ID divisible by four retrieve the merged file from its adjacent process to the right in 361 

the second round to merge with its local merged file. This process continues until all the files are 362 

merged into a single file for a total of log(n) rounds, where n is the number of the input files.  363 
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 364 

Strong and Weak Scalabilities  365 

In this study, we quantify scalability by measuring computing efficiency in tests of strong and 366 

weak scalabilities. We define efficiency as the average time cost of processing a file per core: 367 

Efficiency = (Tb*Cb/Nb) / (Ti*Ci/Ni) 368 

where Tb is the baseline running time, Cb is the baseline number of cores, Nb is the baseline number 369 

of input files, Ti is the current running time, Ci is the current number of cores, Ni is the current 370 

number of input files. We also incorporated the parallel multiway-merge and MPI-based HPC 371 

implementations as benchmarks in the tests.   372 

 373 

For the strong scalability test, we fix the number of input files at 93 and increase the computing 374 

resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all 375 

methods/schemas except for the parallel multiway-merge in which only a single core is used 376 

because it can only run on a single machine. For the weak scalability test, we increase both 377 

computing resources and input data size at the same pace. The ratio is ten file/core for parallel 378 

multiway-merge and ten file/node for all others. 379 
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  380 

Results 381 

We conducted experiments of Apache cluster-based schemas using Amazon’s Elastic MapReduce 382 

(EMR) service and experiments of the HPC-based implementation using MIT’s StarClusterTM 383 

toolkit which launches an AWS openMP virtual private cluster (VPC). Within both infrastructures, 384 

we choose EC2 working nodes of m3.xlarge type, which has four High Frequency Intel Xeon E5-385 

2670 v2 (Ivy Bridge) Processors and 15GB memory. We conducted experiments of parallel 386 

multiway-merge on a single EC2 r4.8xlarge instance with 32 High Frequency Intel Xeon E5-2686 387 

v4 (Broadwell) processors and 244 GB memory. We used a dataset consisting of 186 VCF files 388 

[32] generated from Illumina's BaseSpace software.  389 

 390 

 Overall Performance Analysis of Clustered-based Schemas 391 

Our primary goal is to explore the scalabilities of the three schemas on input data size and 392 

available computing resources, namely CPUs. To achieve this, in this experiment we adjust the 393 

number of input files from 10 to 186, with an approximate total uncompressed size from 2.5 GB to 394 

40 GB, and used a varying number of working nodes from 3 to 18, namely 12 to 72 cores.   395 
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 396 

As Figure 6 shows, for all three schemas, given a fixed number of cores, the execution time 397 

increases at a slower pace than that of the input data size. On the one hand, the increase of 398 

execution time is more obvious with fewer cores because each core is fully utilized. As the 399 

number of input files increases, so does the number of parallel tasks assigned to each core. For 400 

example, given 12 cores, as the number of input files increases from 10 to 186 (18.6 fold), the 401 

execution time increases from 739 to 4,366 seconds (~5.9 fold) for the MapReduce schema, from 402 

375 to 5,479 seconds (~14.6 fold) for the HBase schema, and from 361 to 1,699 seconds (~4.7 403 

fold) for the Spark schema. On the other hand, with relatively more cores such as 72, this linear 404 

increasing trend is less pronounced because there are more cores than tasks so that all cores are 405 

assigned at most one task. We also notice when input data size is small or moderate, the Spark 406 

schema does not always show a consistent improvement in terms of execution time with more 407 

cores. This is reflected, for example, in the intersection of curves occurred between 24 and 72 408 

cores in Figure 6c. This phenomenon is attributed to the limitation of Spark’s internal task 409 

assignment policy which gives rise to the possibility that some nodes are assigned more than one 410 

tasks while others remain idle.   411 
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 412 

Comparing Strong and Weak Scalabilities between Apache Cluster-based Schemas and 413 

Traditional Parallel Methods 414 

Figure 7 shows the results of the strong scalability. In accordance with the Amdahl’s law [37], all 415 

schemas/methods show degraded efficiency with increasing computing nodes/cores. Parallel 416 

multiway-merge has the steepest degradation because the more parallel processes, the higher 417 

likelihood of workload imbalances among them. In addition, disk I/O reaches saturation as more 418 

processes write simultaneously. Furthermore, to achieve data parallelism and improve execution 419 

speed, we used Tabix indexer to index data blocks of input files. While reading, each process 420 

needs to maintain a full copy of file descriptors, indices and uncompressed current data blocks of 421 

all input files in memory. When both the number of processes and input files are large, great 422 

pressure is placed on the memory management. For instance, a test with 93 files and 16 processes 423 

requires over 100GB memory, which results in a very long memory swap and garbage collection 424 

(GC) time. In contrast, the MapReduce-based schema has the best efficiency. Surprisingly, its 425 

efficiency even improves when the number of cores doubles from the baseline. This is because it 426 

has many parallel tasks in its second MapReduce phase, and when the core allowance is low, the 427 
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overheads of repetitive task launching and terminating on a single core become non-negligible. 428 

Consequently, as the number of cores starts to increase, the actual proportion of overheads in the 429 

total running time decreases, leading to an improved efficiency. Nonetheless, as the number of 430 

cores further increases, the unparalleled parts of the schema gradually dominated the total running 431 

time, leading to a reduced efficiency eventually.   432 

 433 

For the weak scalability test (Figure 8), following Gustafson’s law [38], all methods/schemas 434 

show a much better efficiency than in the strong scalability test.  Meanwhile, for the same reasons 435 

as the strong scalability, the MapReduce-based schema enjoys the best efficiency while the HPC-436 

based implementation has the worst. This is because, for the HPC-based implementation, as the 437 

number of input files increases, the total number of merging rounds also increases, leading to a 438 

significantly reduced efficiency.  Finally, all three Apache cluster-based schemas demonstrate 439 

significantly better weak scalability than the two traditional parallel methods. 440 

 441 

The Anatomic Performances Analysis of Apache Cluster-based Schemas 442 

Another important goal of our study is to identify potential performance bottlenecks, so we 443 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



29 
 

evaluate the execution time of each phase/stage of all three schemas. Figure 9 shows the trends of 444 

the anatomic computing time spent on merging increasing number of VCF files (from 10 to 186) 445 

using 48 cores. For the MapReduce schema (Figure 9a), its two phases account for a comparable 446 

proportion of total time and both show a linear or sublinear scalability. The reason that the time 447 

cost of the first phase between 40 and 93 input files remains flat is because both runs use two 448 

rounds of mappers. As the number of files doubles to 186, four rounds of mappers are required 449 

which results in about a two-fold increase in the time cost as expected.  For the three phases of the 450 

HBase schema (Figure 9b), they are scalable with input data size. Meanwhile, the second phase 451 

becomes more dominant with more input files owing to the larger amount of shuffled data during 452 

the writing of HFiles. However, we do not consider it as a bottleneck since all tasks of this phase 453 

are parallelized with no workload or computational hotspot. We do not observe a super-linear 454 

(relative to input data size) increment pattern from the figure neither.  Finally, Figure 9c shows the 455 

time costs of the three stages of the Spark schema. They show a uniform increasing trend with the 456 

number of input files. Among them, the second stage takes up a considerable proportion of the 457 

total execution time as it has a relatively expensive sort-by-key shuffling operation. Although no 458 

data is shuffled in the first stage, its time lapse is close to the second stage. This is because at the 459 
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end of the first stage, data are sampled to determine the boundaries used by sort-by-key’s range 460 

partitioner. This operation demands a considerable execution time because it scans all the data and 461 

balances them if necessary.     462 

 463 

Given that no super-linear increasing trend is observed in running time for all phases/stages of the 464 

three schemas, and they generally scale well with the input data size, we conclude although the 465 

performances of these schemas might degrade to some extent when dealing with even larger input 466 

data due to overheads such as data transmission over network, we would not expect any 467 

significant bottleneck. 468 

 469 

Comparing Execution Speed between Apache Cluster-based Schemas and Traditional 470 

Methods 471 

Another intriguing question is: how does the speed of the Apache cluster-based schemas compare 472 

to single machine based and traditional parallel/distributed methods/applications on merging 473 

multiple VCF files into a single VCF or TPED file? To answer this question, we choose the 474 

widely-used VCFTools (v4.2) and a single-process multiway-merge implementation as single-475 
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process benchmarks and parallel multiway-merge and HPC-based implementations as 476 

parallel/distributed benchmarks, which are the same ones used in the experiments of strong and 477 

weak scalabilities shown above.    478 

 479 

In the first experiment, we merged 40 VCF files into one VCF file using VCFTools as the 480 

benchmark.  As shown in Table 2, VCFTools takes 30,189 seconds while the fastest Apache 481 

cluster-based schema among the three, the MapReduce-based, takes only 484 seconds using 72 482 

cores, representing about a 62-fold faster.  In the second experiment (Figure 10), we tested the 483 

time costs of merging of multiple VCF files into a single TPED file using single/parallel 484 

multiway-merge and HPC-based implementations as benchmarks. The single multiway merger is 485 

run on a node with the hardware configuration (4 cores and 15GB memory) identical to the nodes 486 

on which the Apache cluster-based schemas are run. The parallel multiway merger is run on a 487 

node with a maximum of 18 simultaneously running processes. The HPC-based implementation is 488 

run on an 18-node cluster with the same hardware configuration as the cluster where the Apache 489 

cluster-based schemas are run. Initially, with ten input files, the parallel multiway-merge (~30 490 

seconds) is much faster than all the other methods: about 7.3-fold faster than the fastest Apache 491 
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cluster-based schema (MapReduce, 221 seconds). On the other hand, the slowest method is the 492 

single-process multiway merger which takes 620 seconds to finish (about 2.8-fold slower than the 493 

MapReduce-based schema). It is worth mentioning in this test the parallel multiway-merge is 494 

essentially the same as the single-process multiway-merge, and the speed difference (~378 495 

seconds) between them is the result of a different compression format (bz2 vs bgzip) of the input 496 

files as explained above.  As we gradually increase the number of input files to 186, the difference 497 

in speed between the fastest overall method (parallel multiway merger, 602 seconds) and the 498 

fastest Apache cluster-based schema (MapReduce, 809 seconds) reduces to about 1.3-fold, while 499 

the difference between the slowest overall method (single multiway merger, 13,219 seconds) and 500 

the MapReduce-based schema increases to 16.3-fold. In addition, all three Apache schemas 501 

significantly outperform the HPC-based implementation. As explained in the strong and weak 502 

scalabilities section above, we expect the larger the input data size, the faster the Apache cluster-503 

based schemas would run compared to the other traditional methods. 504 

 505 

We also compare the time cost among the three schemas (Figure 10). They have a comparable 506 

speed. More specifically, the MapReduce schema performs best if enough cores are available and 507 
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the input data size is large; the HBase schema performs best with moderate input data size; the 508 

Spark schema performs best if only a limited number of cores are available and the input data size 509 

is large. The rationale behind this observation is that, when the number of cores is sufficient, the 510 

MapReduce-based schema can make the most use of the available computing resources because it 511 

runs a constant 25 parallel jobs (one for each of chromosomes 1-22, X Y and M (Mitochondria)) 512 

in its second phase. In contrast, the Spark-based schema has fewer tasks whose number equals to 513 

the number of input files to achieve maximum data-task locality. When the input data size is 514 

moderate, the HBase-schema triumphs because its internal sorting and relative compact storage 515 

format of intermediate data. When the input data size is large and computing resource is relatively 516 

limited, the Spark-based schema outperforms the other two owing to its least number of data 517 

shuffling (only one), execution plan optimization, and ability to cache intermediate results in 518 

memory. We caution, however, the computing time may fluctuate depending on the distribution of 519 

genomic locations in the input files as well as data loading balance of the HDFS.  520 

 521 

Discussion 522 

In this report, we describe three cluster-based schemas running on the Apache Hadoop 523 
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(MapReduce), HBase and Spark platforms respectively for performing sorted merging of variants 524 

identified from WGS.  We show all three schemas are scalable on both input data size and 525 

computing resources, suggesting large scale of ‘-omics’ data can be merged efficiently given the 526 

computing resources readily available in the cloud. Furthermore, the three schemas show better 527 

strong and weak scalabilities than traditional single machine-based parallel multiway-merge and 528 

cluster-based HPC methods owing to the absence of I/O bottleneck, better workload balance 529 

among nodes, less pressure on memory, as well as data locality and efficient task coordination 530 

mechanisms provided by HDFS and YARN. We also show even with a moderate-sized cluster and 531 

input data, all three schemas significantly outperform the broadly-used, single-machine based 532 

VCFTools, single-process multiway-merge and HPC-based implementations. Although initially 533 

the parallel multiway-merge implementation is much faster than the Apache schemas owing to its 534 

advantage of local I/O and light compression of input files, its poor scalability diminishes its 535 

initial advantage as the number of concurrent processes and input files increases. Consequently, 536 

we expect the Apache cluster-based schemas eventually outperform the parallel multiway-merge 537 

when merging a much larger scale of data using a larger number of cores.   538 
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 539 

Unlike normal merging, efficient sorted merging of many large tables has always been a difficult 540 

problem in the field of data management. Multiway-merge is the most efficient single-machine 541 

based method for sorted merging, but its performance is limited by the disk I/O [39]. Sorted 542 

merging also places challenges to distributed system based solutions because neither the efficient 543 

hash-based merging nor caching the intermediate table in shared memory is feasible [40]. 544 

Although a utility named total-order-joining is provided by the Hadoop for addressing this 545 

problem, it suffers from both network communication and local disk I/O bottlenecks, thus is not 546 

scalable [27, 41]. In contrast, our schemas divide this problem into different phases/stages of tasks 547 

each conquered in parallel to bypass these bottlenecks and achieve maximum parallelism. 548 

Furthermore, in addition to merging sequencing variant data, these schemas can be generalized for 549 

other key-based, sorted merging problems are frequently encountered in genetics and genomics 550 

data processing. As an example, they can be slightly modified to merge multiple BED format files 551 

such as ChIP-seq peak lists [42] and other genomic regions of interest. Other potentially useful 552 

features include: 1) Unlike traditional sorted merging algorithms which usually require presorted 553 
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inputs for a better performance, our schemas are free of such a requirement; 2) Our 554 

implementations automatically take care of multi-allelic positions which are frequent in large scale 555 

VCF flies by retaining the information of all alleles until the merging actually occurs.  556 

 557 

Finally, in light of these different features and specialties of these three platforms, each of the 558 

three schemas we developed has its own advantages and disadvantages under different application 559 

scenarios as summarized in Table 1. For example, the MapReduce schema is good for a static one-560 

time, non-incremental merging on large-size data provided sufficient cores are available since it 561 

has the most parallel jobs, the least overheads, and the most transparent workflow. The HBase 562 

schema, supported by data warehousing technologies, fits for an incremental merging since it does 563 

not need to re-merge existing results with new ones from the scratch only if the incremental 564 

merging is performed on the same chromosomes. Also, it provides a highly-efficient storage and 565 

On-Line Analytical Processing (OLAP) on merged results. The Spark schema is ideal for merging 566 

large scale data with relatively limited computing resources because it has the least data shuffling 567 

and keeps intermediate results in memory. A bonus brought by Spark is the subsequent statistical 568 

analyses can be carried out directly on the merged results using its rich set of parallel statistical 569 
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utilities.  570 

 571 

Availability and Requirements 572 

Project name: CloudMerge  573 

Project home page: https://github.com/xsun28/CloudMerge 574 

Operating system(s): Linux 575 

Programming language: Java, Python 576 

Other requirements: Java 1.7 or higher, Python 2.7 or 3.6, Hadoop-2.7, HBase-1.3, Spark-2.1, 577 

StarCluster 0.95, MPI for Python 3.0.0 578 

License: Apache License 2.0 579 

 580 

Availability of Data and Materials 581 

The source codes of the project are available in GitHub. The 186 individual VCF files used in our 582 

experiments are modified from the original VCF files obtained from WGS conducted by the 583 

Consortium on Asthma among African-ancestry Population in the Americas (CAAPA) [32]. To 584 
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conceal the potential individual identifiable genotype information from the public, we encrypt the 585 

authentic genomic location of the original 93 VCF files to generate a new batch of encrypted VCF 586 

files for test purposes. Please refer to Data Formats and Operations section for details. These 587 

supporting data and a snapshot of project codes are available at the GigaScience database, 588 

GigaDB [43]. Via GigaDB, we also provide sample results of merging 93VCF files into either one 589 

VCF or one TPED file using our Apache cluster-based schemas. 590 

 591 

Abbreviations 592 

VCF: Variant Call Format; MPI: Message Passing Interface; HPC: High Performance Computing; 593 

GWAS: Genome Wide Association Studies; WGS: Whole Genome Sequencing; WES: whole 594 

exome sequencing; AWS: Amazon Web Service; CGDM: Collaborative Genomic Data Model; 595 

SAM/BAM: Sequence/Binary Alignment/Map; RDD: Resilient Distributed Dataset; DAG: Directed 596 

Acyclic Graph; SPMD: Single Program, Multiple Data; NFS: Network File System; EMR: Elastic-597 

MapReduce; VPC: Virtual Private Cluster; GC: Garbage Collection; CAAPA: Consortium on 598 

Asthma among African-ancestry Population in the Americas; 599 

 600 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



39 
 

Ethics Approval and Consent to Participate 601 

Ethics approval for the CAAPA program was provided by the Johns Hopkins University 602 

Institutional Review Board following commencement of the study in 2011 (IRB00045892 The 603 

Consortium on Asthma among African-ancestry Populations), and included study team members 604 

from each CAAPA site, including Emory University (site PI, Zhaohui Qin). Access to the raw data 605 

as CAAPA team members is granted according to the guideline of the IRB-approved study. Informed 606 

consent has been obtained from all study participants of CAAPA.  607 

Competing Interests 608 

The authors declare they have no competing interests. 609 

 610 

Funding 611 

This study was supported by grants from National Heart, Lung, and Blood Institute [ R01HL104608, 612 

R01HL117004, R01HL128439, R01HL135156, X01HL134589]; National Institute of 613 

Environmental Health Sciences [R01ES015794, R21ES24844]; National Institute on Minority 614 

Health and Health Disparities [P60MD006902, R01MD010443, RL5GM118984]; National 615 

Institute of Neurological Disorders and Stroke [R01NS051630, P01NS097206, U54NS091859]; 616 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



40 
 

National Science Foundation [ACI 1443054, IIS 1350885, ]; Tobacco-Related Disease Research 617 

Program [24RT-0025]. The Genes-Environments and Admixture in Latino Americans (GALA II) 618 

Study, the Study of African Americans, Asthma, Genes and Environments (SAGE) Study and E.G.B. 619 

are supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF 620 

Amos Medical Faculty Development Program and the Harry Wm. and Diana V. Hind Distinguished 621 

Professor in Pharmaceutical Sciences II. 622 

 623 

Authors’ Contributions 624 

J.G. introduced the problem. X.S., F.W. initiated this project. X.S. designed and implemented the 625 

CloudMerge project. X.S. drafted the manuscript. X.S., J.P., F.W. and Z.Q. revised the manuscript.  626 

K.C.B. conceived the initial consortium design, acquired biospecimens for NGS, facilitated generation 627 

of NGS data. K.C.B., R.A.M., I.R., T.H.B. conceived initial experiments, interpreted NGS data. 628 

E.G.B., C.E. acquired biospecimens for NGS, facilitated generation of NGS data. 629 

 630 

Acknowledgements  631 

We thank the three referees for their constructive critiques and detailed comments. We are grateful to Ms. 632 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



41 
 

Mary Taylor Mann and Ms. Alyssa Leann Duck for their editorial help during writing and revising of the 633 

manuscript. E.G.B. wish to acknowledge the following GALA II and SAGE co-investigators for subject 634 

recruitment, sample processing and quality control: Sandra Salazar, Scott Huntsman, MSc, Donglei Hu, 635 

PhD, Lisa Caine, Shannon Thyne, MD, Harold J. Farber, MD, MSPH, Pedro C. Avila, MD, Denise 636 

Serebrisky, MD, William Rodriguez-Cintron, MD, Jose R. Rodriguez-Santana, MD, Rajesh Kumar, MD, 637 

Luisa N. Borrell, DDS, PhD, Emerita Brigino-Buenaventura, MD, Adam Davis, MA, MPH, Michael A. 638 

LeNoir, MD, Kelley Meade, MD, Saunak Sen, PhD and Fred Lurmann, MS.  639 

 640 

References 641 

1. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. Adam: Genomics formats 642 

and processing patterns for cloud scale computing. University of California, Berkeley Technical 643 

Report, No UCB/EECS-2013. 2013;207. 644 

2. Siretskiy A, Sundqvist T, Voznesenskiy M and Spjuth O. A quantitative assessment of the hadoop 645 

framework for analyzing massively parallel dna sequencing data. Gigascience. 2015;4 1:26. 646 

3. Merelli I, Pérez-Sánchez H, Gesing S and D’Agostino D. Managing, analysing, and integrating big 647 

data in medical bioinformatics: open problems and future perspectives. BioMed research 648 

international. 2014;2014. 649 

4. Reyes-Ortiz JL, Oneto L and Anguita D. Big data analytics in the cloud: Spark on hadoop vs 650 

mpi/openmp on beowulf. Procedia Computer Science. 2015;53:121-30. 651 

5. Burren OS, Guo H and Wallace C. VSEAMS: a pipeline for variant set enrichment analysis using 652 

summary GWAS data identifies IKZF3, BATF and ESRRA as key transcription factors in type 1 653 

diabetes. Bioinformatics. 2014;30 23:3342-8. doi:10.1093/bioinformatics/btu571. 654 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



42 
 

6. Apache Hadoop. http://hadoop.apache.org/. Accessed 10 Oct 2017. 655 

7. Dean J and Ghemawat S. Mapreduce: Simplified data processing on large clusters. Commun Acm. 656 

2008;51 1:107-13. doi:Doi 10.1145/1327452.1327492. 657 

8. Vora MN. Hadoop-HBase for large-scale data. In: Computer science and network technology 658 

(ICCSNT), 2011 international conference on 2011, pp.601-5. IEEE. 659 

9. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient distributed datasets: A 660 

fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX 661 

conference on Networked Systems Design and Implementation 2012, pp.2-. USENIX Association. 662 

10. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis 663 

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome 664 

research. 2010;20 9:1297-303. 665 

11. Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009;25 666 

11:1363-9. doi:10.1093/bioinformatics/btp236. 667 

12. Pireddu L, Leo S and Zanetti G. SEAL: a distributed short read mapping and duplicate removal tool. 668 

Bioinformatics. 2011;27 15:2159-60. 669 

13. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E and Heljanko K. Hadoop-BAM: 670 

directly manipulating next generation sequencing data in the cloud. Bioinformatics. 2012;28 671 

6:876-7. 672 

14. Langmead B, Schatz MC, Lin J, Pop M and Salzberg SL. Searching for SNPs with cloud computing. 673 

Genome Biol. 2009;10 11:R134. doi:10.1186/gb-2009-10-11-r134. 674 

15. Wang S, Mares MA and Guo YK. CGDM: collaborative genomic data model for molecular profiling 675 

data using NoSQL. Bioinformatics. 2016;32 23:3654-60. doi:10.1093/bioinformatics/btw531. 676 

16. Zhou W, Li R, Yuan S, Liu C, Yao S, Luo J, et al. MetaSpark: a spark-based distributed processing tool 677 

to recruit metagenomic reads to reference genomes. Bioinformatics. 2017;33 7:1090-2. 678 

17. Niu B, Zhu Z, Fu L, Wu S and Li W. FR-HIT, a very fast program to recruit metagenomic reads to 679 

homologous reference genomes. Bioinformatics. 2011;27 12:1704-5. 680 

18. AWS Genomics Guide. 681 

https://d0.awsstatic.com/Industries/HCLS/Resources/AWS_Genomics_WP.pdf. Accessed 682 

10 Oct 2017. 683 

19. Gruber K. Google for genomes. Nature Research, 2014. 684 

20. O’Brien AR, Saunders NF, Guo Y, Buske FA, Scott RJ and Bauer DC. VariantSpark: population scale 685 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://hadoop.apache.org/
https://d0.awsstatic.com/Industries/HCLS/Resources/AWS_Genomics_WP.pdf


43 
 

clustering of genotype information. BMC genomics. 2015;16 1:1052. 686 

21. Wiewiórka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P and Okoniewski MJ. SparkSeq: 687 

fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide 688 

precision. Bioinformatics. 2014;30 18:2652-3. 689 

22. Decap D, Reumers J, Herzeel C, Costanza P and Fostier J. Halvade: scalable sequence analysis with 690 

MapReduce. Bioinformatics. 2015;31 15:2482-8. 691 

23. He M, Person TN, Hebbring SJ, Heinzen E, Ye Z, Schrodi SJ, et al. SeqHBase: a big data toolset for 692 

family based sequencing data analysis. Journal of medical genetics. 2015:jmedgenet-2014-693 

102907. 694 

24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for 695 

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81 696 

3:559-75. doi:10.1086/519795. 697 

25. Mohammed EA, Far BH and Naugler C. Applications of the MapReduce programming framework 698 

to clinical big data analysis: current landscape and future trends. BioData Min. 2014;7:22. 699 

doi:10.1186/1756-0381-7-22. 700 

26. Huang H, Tata S and Prill RJ. BlueSNP: R package for highly scalable genome-wide association 701 

studies using Hadoop clusters. Bioinformatics. 2013;29 1:135-6. 702 

doi:10.1093/bioinformatics/bts647. 703 

27. White T. Hadoop: The definitive guide. " O'Reilly Media, Inc."; 2012. 704 

28. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and 705 

VCFtools. Bioinformatics. 2011;27 15:2156-8. doi:10.1093/bioinformatics/btr330. 706 

29. Multiway-Merge Algorithm. https://en.wikipedia.org/wiki/K-Way_Merge_Algorithms. 707 

Accessed 10 Oct 2017. 708 

30. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, et al. Bigtable: A distributed 709 

storage system for structured data. Acm T Comput Syst. 2008;26 2 doi:Artn 4 710 

10.1145/1365815.1365816. 711 

31. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of 712 

human genome variation from population-scale sequencing. Nature. 2010;467 7319:1061-73. 713 

doi:10.1038/nature09534. 714 

32. Mathias RA, Taub MA, Gignoux CR, Fu W, Musharoff S, O'Connor TD, et al. A continuum of 715 

admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat Commun. 716 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://en.wikipedia.org/wiki/K-Way_Merge_Algorithms


44 
 

2016;7:12522. doi:10.1038/ncomms12522. 717 

33. Kwon Y, Balazinska M, Howe B and Rolia J. A study of skew in mapreduce applications. Open Cirrus 718 

Summit. 2011;11. 719 

34. O’Neil P, Cheng E, Gawlick D and O’Neil E. The log-structured merge-tree (LSM-tree). Acta 720 

Informatica. 1996;33 4:351-85. 721 

35. CloudMerge. https://github.com/xsun28/CloudMerge  722 

36. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 723 

2011;27 5:718-9. 724 

37. Amdahl GM. Validity of the single processor approach to achieving large scale computing 725 

capabilities. In: Proceedings of the April 18-20, 1967, spring joint computer conference 1967, 726 

pp.483-5. ACM. 727 

38. Gustafson JL. Reevaluating Amdahl's law. Commun Acm. 1988;31 5:532-3. 728 

39. Sedgewick R and Flajolet P. An introduction to the analysis of algorithms. Addison-Wesley; 2013. 729 

40. Özsu MT and Valduriez P. Principles of distributed database systems. Springer Science & Business 730 

Media; 2011. 731 

41. Miner D and Shook A. MapReduce Design Patterns: Building Effective Algorithms and Analytics for 732 

Hadoop and Other Systems. " O'Reilly Media, Inc."; 2012. 733 

42. Chen L, Wang C, Qin ZS and Wu H. A novel statistical method for quantitative comparison of 734 

multiple ChIP-seq datasets. Bioinformatics. 2015;31 12:1889-96. 735 

43. Sun X, Gao J, Jin P, Celeste Eng, Esteban G. Burchard, Terri H. Beaty, Ingo Ruczinski, Rasika A. 736 

Mathias, Kathleen C. Barnes, Wang F and Qin Z. Supporting data for "Optimized Distributed 737 

Systems Achieve Significant Performance Improvement on Sorted Merging of Massive VCF 738 

Files" GigaScience Database 2018. http://dx.doi.org/10.5524/100423. 739 

 740 

 741 

 742 

 743 

 744 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/xsun28/CloudMerge
http://dx.doi.org/10.5524/100423


45 
 

Complete List of CAAPA Consortium Members and Their Affiliations 745 

Kathleen C. Barnes, PhD1;2, Terri H. Beaty, PhD2, Meher Preethi Boorgula MS1, Monica 746 

Campbell, BS1, Sameer Chavan, MS1, Jean G. Ford, MD2;3, Cassandra Foster, CCRP1, Li Gao, 747 

MD, PhD1, Nadia N. Hansel, MD, MPH1, Edward Horowitz, BA1, Lili Huang, MPH1, Rasika Ann 748 

Mathias, ScD1;2, Romina Ortiz, MA1, Joseph Potee, MS1, Nicholas Rafaels, MS1, Ingo Ruczin- 749 

ski, PhD4, Alan F. Scott, PhD1, Margaret A. Taub, PhD4, Candelaria Ver-gara, PhD1, Jingjing 750 

Gao, PhD5, Yijuan Hu, PhD6, Henry Richard Johnston, PhD6, Zhaohui S. Qin, PhD6, Albert M. 751 

Levin, PhD7, Badri Padhukasahas-ram, PhD8, L. Keoki Williams, MD, MPH8;9, Georgia M. 752 

Dunston, PhD10;11, Mezbah U. Faruque, MD, PhD11, Eimear E. Kenny, PhD12;13, Kimberly Gi- 753 

etzen, PhD14, Mark Hansen, PhD14, Rob Genuario, PhD14, Dave Bullis, MBA14, Cindy Lawley, 754 

PhD14, Aniket Deshpande, MS15, Wendy E. Grus, PhD15, Devin P. Locke, PhD15, Marilyn G. 755 

Foreman, MD16, Pedro C. Avila, MD17, Leslie Grammer, MD17, Kwang-Youn A. Kim, PhD18, 756 

Rajesh Kumar, MD19;20, Robert Schleimer, PhD21, Carlos Bustamante, PhD12, Francisco 757 

M. De La Vega, DS12, Chris R. Gignoux, MS12, Suyash S. Shringarpure, PhD12, Shaila Musharo, 758 

MS12, Genevieve Wojcik, PhD12, Esteban G. Burchard, MD, MPH22;23, Celeste Eng, BS23, Pierre-759 

Antoine Gourraud, PhD24, Ryan D. Hernandez, PhD22;25;26, Antoine Lizee, PhD24, Maria Pino-760 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



46 
 

Yanes, PhD23;27, Dara G. Torgerson, PhD23, Zachary A. Szpiech, PhD22, Raul Torres, BS28, Dan L. 761 

Nicolae, PhD29;30, Carole Ober, PhD31, Christopher O Olopade, MD, MPH32, Olufunmilayo 762 

Olopade, MD29, Oluwafemi Oluwole, MSc29, Ganiyu Arinola, PhD33, Timothy D. O'Connor, 763 

PhD34;35;36,Wei Song, PhD34;35;36, Goncalo Abecasis, DPhil37, Adolfo Correa, MD, MPH, PhD38, 764 

Solomon Musani, PhD38, James G. Wilson, MD39, Leslie A. Lange, PhD40, Joshua Akey, PhD41, 765 

Michael Bamshad, MD42, Jessica Chong, PhD42, Wenqing Fu, PhD41, Deborah Nickerson, PhD41, 766 

Alexander Reiner, MD, MSc43, Tina Hartert, MD, MPH44, Lorraine B. Ware, MD44;45, Eugene 767 

Bleecker, MD46, Deborah Meyers, PhD46, Victor E. Ortega, MD46, Pissamai Maul, BSc, RN47, 768 

Trevor Maul, RN47, Harold Watson, MD48;49, Maria Ilma Araujo, MD, PhD50, Ricardo Riccio 769 

Oliveira, PhD51, Luis Caraballo, MD, PhD52, Javier Marrugo, MD53, Beatriz Martinez, MSc52, 770 

Catherine Meza, LB52, Gerardo Ayestas54, Edwin Francisco Herrera-Paz, MD, MSc55;56;57, Pamela 771 

Landaverde-Torres55, Said Omar Leiva Erazo55, Rosella Martinez, BSc55, varo Mayorga, MD56, 772 

Luis F. Mayorga, MD55, Delmy-Aracely Mejia-Mejia, MD56;57, Hector Ramos55, Allan Saenz54, 773 

Gloria Varela54, Olga Marina Vasquez57, Trevor Ferguson, MBBS, DM, MSc58, Jennifer Knight-774 

Madden, MBBS, PhD58, Maureen Samms-Vaughan, MBBS, DM, Ph59, Rainford J. Wilks, MBBS, 775 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



47 
 

DM, MSc58, Akim Adegnika, MD, PhD60;61;62, Ulysse Ateba-Ngoa, MD60;61;62, Maria 776 

Yazdanbakhsh, PhD62 777 

1 Department of Medicine, Johns Hopkins University, Baltimore, MD. 778 

2 Department of Epidemiology, Bloomberg School of Public Health, JHU, Baltimore, MD. 779 

3 Department of Medicine, The Brooklyn Hospital Center, Brooklyn, NY. 780 

4 Department of Biostatistics, Bloomberg School of Public Health, JHU, Baltimore, MD. 781 

5 Data and Statistical Sciences, AbbVie, North Chicago, IL. 782 

6 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA. 783 

7 Department of Public Health Sciences, Henry Ford Health System, Detroit, MI. 784 

8 Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, MI. 785 

9 Department of Internal Medicine, Henry Ford Health System, Detroit, MI. 786 

10 Department of Microbiology, Howard University College of Medicine,Washington, DC. 787 

11 National Human Genome Center, Howard University College of Medicine, Washington, DC. 788 

12 Department of Genetics, Stanford University School of Medicine, Stanford, CA. 789 

13 Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York. 790 

14 Illumina, Inc., San Diego, CA. 791 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



48 
 

15 Knome Inc., Cambridge, MA. 792 

16 Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA. 793 

17 Department of Medicine, Northwestern University, Chicago, IL. 794 

18 Department of Preventive Medicine, Northwestern University, Chicago, IL. 795 

19 Department of Pediatrics, Northwestern University, Chicago, IL. 796 

20 The Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago. 797 

21 Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, 798 

22 Department of Bioengineering and Therapeutic Sciences, University of California, San 799 

Francisco, San Francisco, CA. 800 

23 Department of Medicine, University of California, San Francisco, San Francisco, CA. 801 

24 Department of Neurology, University of California, San Francisco, San Francisco, CA. 802 

25 Institute for Human Genetics, Institute for Human Genetics, University of California, San 803 

Francisco, San Francisco. 804 

26 California Institute for Quantitative Biosciences, University of California, San Francisco , San 805 

Francisco, CA. 806 

27 CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid. 807 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



49 
 

28 Biomedical Sciences Graduate Program, University of California, San Francisco, San 808 

Francisco, CA. 809 

29 Department of Medicine, University of Chicago, Chicago, IL. 810 

30 Department of Statistics, University of Chicago, Chicago, IL. 811 

31 Department of Human Genetics, University of Chicago, Chicago, IL. 812 

32 Department of Medicine and Center for Global Health, University of Chicago, Chicago, IL. 813 

33 Department of Chemical Pathology, University of Ibadan, Ibadan, Nigeria. 814 

34 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD. 815 

35 Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, 816 

Baltimore. 817 

36 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD. 818 

37 Department of Biostatistics, SPH II, University of Michigan, Ann Arbor, MI. 819 

38 Department of Medicine, University of Mississippi Medical Center, Jackson, MS. 820 

39 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, 821 

MS. 822 

40 Department of Genetics, University of North Carolina, Chapel Hill, NC. 823 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



50 
 

41 Department of Genomic Sciences, University of Washington, Seattle, WA. 824 

42 Department of Pediatrics, University of Washington, Seattle, WA. 825 

43 University of Washington, Seattle, WA. 826 

44 Department of Medicine, Vanderbilt University, Nashville, TN. 827 

45 Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville. 828 

46 Center for Human Genomics and Personalized Medicine, Wake Forest School of Medicine, 829 

Winston-Salem, NC. 830 

47 Genetics and Epidemiology of Asthma in Barbados, The University of the West Indies. 831 

48 Faculty of Medical Sciences Cave Hill Campus, The University of the West Indies. 832 

49 Queen Elizabeth Hospital, Queen Elizabeth Hospital, The University of the West Indies. 833 

50 Immunology Service, Universidade Federal da Bahia, Salvador, BA. 834 

51 Laboratrio de Patologia Experimental, Centro de Pesquisas Gonalo Moniz, Salvador, BA. 835 

52 Institute for Immunological Research, Universidad de Cartagena, Cartagena. 836 

53 Instituto de Investigaciones Immunologicas, Universidad de Cartagena, Cartagena. 837 

54 Faculty of Medicine, Universidad Nacional Autonoma de Honduras en el Valle de Sula, San 838 

Pedro Sula. 839 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



51 
 

55 Facultad de Medicina, Universidad Catolica de Honduras, San Pedro Sula. 840 

56 Centro de Neumologia y Alergias, San Pedro Sula. 841 

57 Faculty of Medicine, Centro Medico de la Familia, San Pedro Sula. 842 

58 Tropical Medicine Research Institute, The University of the West Indies. 843 

59 Department of Child Health, The University of the West Indies. 844 

60 Centre de Recherches Mdicales de Lambarn. 845 

61 Institut fr Tropenmedizin, Universitt Tbingen. 846 

62 Department of Parasitology, Leiden University Medical Center, Netherlands. 847 

 848 

Figure legends 849 

Figure 1. Merging multiple VCF files into a single TPED file.  Left tables represent input VCF 850 

files. Table to the right represents the merged TPED file. Records are filtered out if their Filter 851 

value does not equal to “PASS” (Pos 10147). Individual genotypes from multiple VCF files with 852 

the same genomic location are aggregated together in one row. The resulting TPED file thus has 853 

an inclusive set of sorted genomic locations of all variants found in the input VCF files.  854 
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52 
 

Figure 2. The workflow chart of the MapReduce schema. The workflow is divided into two 856 

phases: In the first phase, variants are filtered, grouped by chromosomes into bins, and mapped 857 

into key-value records. Two sampling steps are implemented to generate partition lists of all 858 

chromosomes. In the second phase, parallel jobs of specified chromosomes are launched. Within 859 

each job, records from corresponding bins are loaded, partitioned, sorted and merged by genomic 860 

locations before being saved into a TPED file. 861 

 862 

Figure 3. The workflow chart of the HBase schema. The workflow is divided into three phases. 863 

The first is a sampling, filtering and mapping phase.  A MapReduce job samples out variants 864 

whose genomic positions are used as region boundaries when creating the HBase table. Only 865 

qualified records are mapped as key-values and saved as Hadoop sequence files. The second is the 866 

HBase bulk loading phase in which a MapReduce job loads and writes records generated from the 867 

previous phase, aggregating them into corresponding regional HFiles in the form of HBase’s row 868 

key and column families. Finished HFiles are moved into HBase data storage folders on region 869 

servers. In the third phase, parallel scans were launched over regions of the whole table to retrieve 870 

desired records which are subsequently merged and exported to the TPED file.   871 
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 872 

Figure 4. The workflow chart of the Spark schema.  The workflow is divided into three stages. 873 

In the first stage, VCF records are loaded, filtered, and mapped to PairRDDs with keys of genomic 874 

position and values of genotype. The sort-by-key shuffling spans across the first two stages, 875 

sorting and grouping together records by keys. Then grouped records with the same key are 876 

locally merged into one record in TPED format. Finally, merged records are exported to the TPED 877 

file. 878 

 879 

Figure 5. The execution plan of the HPC-based implementation. The execution plan resembles 880 

a branched-tree. In the first round, each process is assigned an approximately equal number of 881 

files to merge locally. In the second round, even-numbered process retrieves the merged file of its 882 

right adjacent process to merge with its local merged file. In the third round, processes whose ID 883 

can be fully divided by four retrieve the merged file of its right adjacent process in the second 884 

round and do the merging. This process continues recursively until all files are merged into a 885 

single TPED file (round four).  886 

 887 
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Figure 6. The scalability of Apache cluster-based schemas on input data size. A. MapReduce 888 

schema. B. HBase schema. C. Spark schema. As the number of input files increases from 10 to 889 

186, the time costs of all three schemas with 12, 24 or 72 cores increase in a slower pace than that 890 

of the input data size, especially when the number of cores is relatively large. The HBase schema 891 

with 12 cores has the largest increase (from 375 to 5,479 seconds, ~14.6 fold).   892 

 893 

Figure 7. Comparing the strong scalability between traditional parallel/distributed methods 894 

and Apache cluster-based schemas. We fix the number of files at 93 and increase the number of 895 

nodes/cores. The baseline for the parallel multiway-merge is one single core, while for the others 896 

is one single node (4 cores). All methods/schemas show a degraded efficiency as computing 897 

resources increase 16 fold from the baseline. Specifically, the efficiency of MapReduce-, HBase-, 898 

Spark-based schemas drops to 0.83, 0.63 and 0.61 respectively, while the efficiency of parallel 899 

multiway-merge and HPC-based implementations drops to 0.06 and 0.53 respectively. 900 

 901 

Figure 8. Comparing the weak scalability between traditional parallel/distributed methods 902 

and Apache cluster-based schemas. We simultaneously increase the number of cores and input 903 
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data sizes while fixing the ratio of file/core (parallel multiway-merge) or file/node (all others) at 904 

ten. The baseline is the same as in the test of strong scalability. All but the MapReduce-based 905 

schema have degraded efficiency, among which the HPC-based implementation has the steepest 906 

degradation. Specifically, when computing resource increases 16 fold from the baseline, the 907 

efficiency of MapReduce-, HBase- and Spark-based schemas changes to 3.1, 0.87 and 0.75 908 

respectively, and for parallel multiway-merge and HPC-based implementations, the efficiency 909 

reduces to 0.42 and 0.35 respectively.   910 

 911 

Figure 9. The performance anatomy of cluster-based schemas on increasing input data size. 912 

The number of cores in these experiments is fixed at 48. Time costs of all phases of the three 913 

schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: 914 

The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold 915 

respectively as the number of input files increases from 10 to 186. b) HBase schema: The time 916 

spent in each phase increases 4.2-, 5.6- and 5.0-fold respectively as the number of input files 917 

increases from 10 to 186. The bulk loading and exporting phases together take up more than 80% 918 

of total time expense. c) Spark schema:  The time cost increases 5.8-, 6.0- and 6.0-fold 919 
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respectively for the three stages as the number of input files increases from 10 to 186 files. Like 920 

the HBase schema, the first two stages of the Spark schema together account for more than 80% of 921 

the total time cost.     922 

 923 

Figure 10. Execution speed comparison among Apache cluster-based schemas and 924 

traditional methods. Firstly, we compare of the speeds of the three Apache schemas with that of 925 

three traditional methods which are single-process multiway-merge, parallel multiway-merge and 926 

HPC-based implementations. As the number of input files increases from 10 to 186, the speeds of 927 

Apache cluster-based schemas improve much more significantly than traditional methods. The 928 

numbers in the figures indicate the ratio of the time cost of each traditional method to that of the 929 

fastest Apache cluster-based schema. Secondly, we compare the processing speed among the three 930 

Apache cluster-based schemas which are comparable to each other regardless of the input data 931 

size. The MapReduce schema performs the best in merging 10 and 186 files; The HBase schema 932 

performs the best in merging 20, 40 and 60 files; The Spark schema performs the best in merging 933 

93 files.  934 
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Figure S1. Pseudocodes of the MapReduce schema. 936 

 937 

Figure S2. Pseudocodes of the HBase schema. 938 

 939 

Figure S3. Pseudocodes of the Spark schema. 940 

 941 

Tables 942 

Table 1. Performance comparisons between VCTools and Apache cluster-based schemas 943 

 VCFTools MapReduce HBase Spark 

Time cost (seconds) 30,189 484 577 596 

Fold (faster) - 62.4 52.3 50.7 

 944 

Table 2. Pros and Cons of MapReduce, HBase and Spark schemas   945 

Schemas Pros Cons 

MapReduce  Good for large input data 

size and sufficient 

computing resources. 

 Simple architecture and 

least overheads given 

sufficient computing 

 Merging is not 

incremental.  

 Much overheads when 

computing resources are 

limited  
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resources. 

 Best parallelism 

 Good for one-time 

merging. 

 Performance is stable. 

 

 

 

HBase  Good for intermediate 

input data size (>=20 and 

<=100 VCF files). 

 Supports incremental 

merging. 

 Supports On-Line 

Analytical Processing 

(OLAP). 

 Best storage efficiency. 

 Users must determine 

region number in 

advance. 

 Has most local I/O. 

 Complex performance 

tuning. 

Spark  Good for large input data 

size (>100 VCF files) and 

relative limited 

computing resources. 

 Keeps intermediate 

results in memory and 

least local I/O. 

 Good for subsequent 

statistical analysis on 

merged results. 

 

 

 

 Possibly weakened data 

locality during loading. 

 Slight unstable 

performance when 

computing resources 

exceeds needs of input 

data size. 

 Actual execution plan is 

not transparent. 

 Complex performance 

tuning. 
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