Abstract:

Arachis monticola (2n = 4x = 40) is the only allotetraploid wild peanut within section Arachis, with an AABB-type genome of about ~2.7 Gb. The AA-type subgenome is derived from diploid wild peanut Arachis duranensis, and the BB-type subgenome is derived from diploid wild peanut Arachis ipaensis. A. monticola is regarded either as the direct progenitor of the cultivated peanut or as an introgressive derivative between the cultivated peanut and wild species. The large polyploidy genome structure and enormous nearly identical regions of the genome make the assembly of chromosomal pseudomolecules very challenging. Here we report the first reference quality assembly of A. monticola genome, using a series of advanced technologies. The final whole genome of A. monticola is ~2.62 Gb representing 97.04% of the estimated genome size, and has a contig N50 and scaffold N50 of 106.66 Kb and 124.92 Mb, respectively. The vast majority (91.83%) of the assembled sequence was anchored onto the 20 pseudo-chromosomes and 96.07% of assemblies were accurately separated into AA- and BB- subgenomes. We demonstrated efficiency of the current state of the strategy for de novo assembly of the highly complex allotetraploid species, wild peanut (A. monticola), based on whole-genome shotgun sequencing, single molecule real-time (SMRT) sequencing, high-throughput chromosome conformation capture (Hi-C) technology and BioNano optical genome map. These combined technologies produced reference-quality genome of the allotetraploid wild peanut, which is valuable for understanding the peanut domestication and evolution within Arachis genus and among legume crops.
Reviewer reports:

Reviewer #1: The remaining major problem with this manuscript is the data availability.

For the BioProject, it appears that only the raw SRA reads are available: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA430760

I find no record "SCR_004002" at gigadb.org

If this paper describes a genome assembly, then the genome assembly needs to be available - not just the raw reads. The assembly - as described in the paper, with named pseudomolecules plus remaining scaffolds - needs to be available at the time of review? In my opinion, the paper will only be acceptable once the assembly that is described in the paper is available - ideally, in an INSDC-compliant repository (DDBJ/ENA/GenBank). On this basis, I recommend "Major Revision."

Response: We appreciate your valuable suggestion. Thanks a lot for your kindly help and earnest work to improve our manuscript. Due to the importance and complexity of the project, this work had been done for many years. Because there is an interesting story that is under way, we first consider putting the assembly results in the "GigaDB" database instead of taking the assembly data disclosure. The genome assembly is already available in "GigaDB".

GigaDB
GigaScience Database, BGI-Hong Kong
Website: www.gigadb.org
ftp://user5@penguin.genomics.cn

Other, more minor issues:

Abstract
45 "assembly of A. momticola genome" --> assembly of the A. momticola genome
Response: Thanks a lot. We have revised it following the advises in line 45.

46 "~2.62 Gb representing 97.04%" -- Because of uncertainty in the estimate of the actual genome size (~2.7 Gb), four significant digits (97.04%) in the estimate of the proportion of the genome sequenced is almost certainly not warranted. For example, if the true genome size is 2.75 Gb, then 2.62/2.75 = 0.95 captured.
Response: The genome of wild peanut A. monticola genome is about 2.7 Gb according to the references below.

Introduction
66 wildspecies --> wild species
Response: Thanks a lot. We have revised it following the advises in line 66.

67-68 "A. monticola was identical to the accession of A. hypogaea with high genetic identity" -- this doesn't make sense. There would be particular, distinct accessions of A. monticola - and these should be distinct from accessions of A. hypogaea.
Response: Thanks a lot. We have revised it following the advises in line 67.

69-71 "Arachis monticola is considered a distinct species from A. hypogaea based mainly on its fruit structure, which has an isthmus separating each seed." -- This sentence comes verbatim from Moretzsohn et al. (2013; https://doi.org/10.1093/aob/mcs237). Several other sentences in the introduction also appear to come from this paper (with minor modification). This section doesn't cite that paper (though the paper is cited in the Discussion).
Response: We have added the reference in this section.

100-101 "Finally, we generated 2.62 Gb assembles" --> "Finally, we generated a 2.62 Gb assembly
Response: Thanks a lot. We have revised it following the advises in line 100-101.

101 "spanning 97.04 % of the estimated genome size for A. monticola" -- see comments above regarding significant digits with respect to the estimated genome size.
Response: The genome of wild peanut A. monticola genome is about 2.7 Gb according to the references below.

Results
105 "We selected the seeds of PI263393 lines for genome sequencing" --> Line PI 263393 was selected for genome sequencing (PI 263393 is a single line or accession). PI lines are usually indicated with a space between PI and the number.
Response: Thanks a lot. We have revised it following the advises in line 105.

113 "Take advantage of integrated technologies" --> Taking advantage of integrated technologies
Response: Thanks a lot. We have revised it following the advises in line 113.

Methods
177 "To decrease the chimeric in initial" --> To decrease chimeras in the initial
Response: Thanks a lot. We have revised it following the advises in line 177.

266 "Benefited from the published genomes of A. duranensis and A. ipaensis" --> Benefiting from the published genomes of A. duranensis and A. ipaensis
Response: Thanks a lot. We have revised it following the advises in line 266.

356 "We demonstrated current state of the strategy" -- the more common colloquial term is "current state of the art"
Response: The word “art” is fascinating. We have revised it in line 356.

413 "Circus plot" --> Circos plot
Additional Information:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you submitting this manuscript to a special series or article collection?</td>
<td>No</td>
</tr>
<tr>
<td>Experimental design and statistics</td>
<td>Yes</td>
</tr>
<tr>
<td>Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.</td>
<td></td>
</tr>
<tr>
<td>Have you included all the information requested in your manuscript?</td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td>Yes</td>
</tr>
<tr>
<td>A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.</td>
<td></td>
</tr>
<tr>
<td>Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?</td>
<td></td>
</tr>
<tr>
<td>Availability of data and materials</td>
<td>Yes</td>
</tr>
<tr>
<td>All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript.</td>
<td></td>
</tr>
<tr>
<td>Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?</td>
<td></td>
</tr>
</tbody>
</table>
DATA NOTE

Genome of an allotetraploid wild peanut _Arachis monticola_: a de novo assembly

Dongmei Yin 1*†, Changmian Ji 2†, Xingli Ma 1†, Hang Li 2, Wanke Zhang 3, Song Li 2, Fuyan Liu 2, Kunkun Zhao 1, Fapeng Li 1, Ke Li 1, Longlong Ning 1, Jialin He 1, Yuejun Wang 1, Fei Zhao 4, Yilin Xie 4, Hongkun Zheng 2, Xingguo Zhang 1*, Yijing Zhang 4*, Jinsong Zhang 3*

1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
2 Biomarker Technologies Corporation, Beijing 101300, China
3 State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
4 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China

*Corresponding author. Dongmei Yin, Xingguo Zhang, College of Agronomy, Henan Agricultural University, Rd. Wenhua No. 95, Zhengzhou, Henan 450002, P. R. China. Tel: 0086-371-63558122; E-mail: yindm@126.com; hmdzxg@126.com; Jinsong Zhang, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China. Tel: 0086-10-64807601; E-mail: jzhang@gentics.ac.cn; Yijing Zhang, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R.China. Tel: 86-21-54924204; Email: zhangyijing@sibs.ac.cn
† Equal contribution
Abstract

Arachis monticola (2n = 4x = 40) is the only allotetraploid wild peanut within section *Arachis*, with an AABB-type genome of about ~2.7 Gb. The AA-type subgenome is derived from diploid wild peanut *Arachis duranensis*, and the BB-type subgenome is derived from diploid wild peanut *Arachis ipaensis*. *A. monticola* is regarded either as the direct progenitor of the cultivated peanut or as an introgressive derivative between the cultivated peanut and wild species. The large polyploidy genome structure and enormous nearly identical regions of the genome make the assembly of chromosomal pseudomolecules very challenging. Here we report the first reference quality assembly of the *A. monticola* genome, using a series of advanced technologies. The final whole genome of *A. monticola* is ~2.62 Gb representing 97.04% of the estimated genome size (2.7Gb), and has a contig N50 and scaffold N50 of 106.66 Kb and 124.92 Mb, respectively. The vast majority (91.83%) of the assembled sequence was anchored onto the 20 pseudo-chromosomes and 96.07% of assemblies were accurately separated into AA- and BB- subgenomes. We demonstrated efficiency of the current state of the strategy for de novo assembly of the highly complex allotetraploid species, wild peanut (*A. monticola*), based on whole-genome shotgun sequencing, single molecule real-time (SMRT) sequencing, high-throughput chromosome conformation capture (Hi-C) technology and BioNano optical genome map. These combined technologies produced reference-quality genome of the allotetraploid wild peanut, which is valuable for understanding the peanut domestication and evolution within *Arachis* genus and among legume crops.
Introduction

Peanut (*Arachis hypogaea* L.) is widely cultivated in subtropical and tropical regions as a plant-based resource for protein and edible oil, which has a key role in food security globally. The genus *Arachis* is unique for its subterranean fruit, which is originated in South America and has ~80 described species divided into nine sections based on their morphology, cross compatibility relationships and geographical distribution [1]. Section *Arachis* is of particular interest because it contains 30 diploid wild species, one tetraploid wild species (*A. monticola*) and cultivated peanut (*A. hypogaea*). *A. monticola* was distinct from accessions of *A. hypogaea* with high genetic identity [2, 3]. Moreover, hybrids between *A. monticola* and *A. hypogaea* are fertile [4]. *A. monticola* is considered a distinct species from *A. hypogaea* based mainly on its fruit structure, which has an isthmus separating each seed, resembling the diploid wild species [5, 36]. Comparison of the genomes among the *A. monticola, A. hypogaea* and wild species should shed light on the evolutionary and/or domesticated events undergoing in the cultivated species.

As a relatively young allotetraploid species, the genome of wild peanut *A. monticola* exhibits complexity with an AABB-type genome of about ~2.7 Gb [6] and shares many regions of high similarity between its two subgenomes [7]. Challenges are present for its genome assembly due to the large polyploidy genome structure and highly homologous genomic sequences. Because of these difficulties, sequencing of the diploid ancestors *A.ipaensis* and *A.duranensis* was first completed [7]. The total
Assembled genome sizes were 1.025 Gb and 1.338 Gb respectively for the two species, with an N50 contig length of 22 Kb, using paired-end Illumina sequencing. All A.ipaensis pseudomolecules were larger than their A.duranensis counterparts and A.ipaensis may be a direct descendant which contributed the B subgenome to cultivated peanut [7]. Although previous publication of reference genome sequences of peanut diploid ancestors (A. ipaensis and A. duranensis) provide the valuable understanding and knowledge of peanut/legume and facilitated the peanut research, all the cultivated peanut varieties are allotetraploids. The high quality reference genome of allotetraploid peanut is important for evolution, origin and domestication research of wild and cultivated peanuts, and favorable to peanut breeding, which is helpful for peanut research community.

In this study, we used a series of advanced technologies, including whole-genome shotgun sequencing, single molecule real-time (SMRT) sequencing, high-throughput chromosome conformation capture (Hi-C) technology and BioNano optical genome mapping, to generate a high quality genome sequence for the tetraploid wild peanut species A. monticola. By combining these very long reads with highly accurate short reads, we have been able to produce an assembly of this tetraploid wild species (A. monticola) genome. In total, we used 767.25 billion bases and 210.83 fold genome coverage of BioNano data for the genome assembly. Finally, we generated a 2.62 Gb assembly, spanning 97.04 % of the estimated genome size for A. monticola.
Results

Arachis monticola is an allotetraploid wild peanut species and has features different from the tetraploid cultivated peanut (Fig. 1). **Line PI 263393 was selected for** genome sequencing. The peanut plants were grown in growth chamber with 25 °C, and DNA was extracted from fresh leaves of 30 days old wild peanut seedlings. To create the *Arachis monticola* genome assembly, we generated four extremely large primary data sets including 462.87 Gb Illumina reads (Sup table 1a), 11.5 million SMRT long reads as ~91.71 Gb (Sup table 1b), 2.88 million (~596.26 Gb) high quality BioNano optical molecules (Sup table 1c) and 76.54-fold coverage of the genome of Hi-C data (Sup table 1d). All the reads were generated from the same *A.monticola* line. **Taking advantage of integrated technologies,** we achieved 2.62 Gb high quality reference genome of wild peanut with 20 pseudo-chromosomes (Table 1 and Sup table 2c), and successfully distinguished two subgenomes (*A. mon-A* and *A.mon-B*), corresponding to its diploid progenitors *A.ipaensis* and *A.duranensis*, respectively (Sup table 2d).

Initial genome assembly

An independent WGS assembly was executed using Allpath-LG v1.4 (Allpath-LG, RRID:SCR_010742) [8] to increase the lengths of scaffolds and to fill gaps in the *A. monticola* assembly. Eleven paired-end and mate-paired libraries ranging from 200 bp to 17 Kb were constructed and sequenced (Sup table 1a). From 171 fold coverage reads (~462.87 Gb), we assembled into 1.66 Gb results with scaffold N50 and contig...
We also assembled the *A. monticola* genome using 97.71 Gb long Pacific Biosciences (PacBio) reads, covering approximately 36.10 fold coverage of genome size (Sup table 1b). Because of a high error rate of PacBio reads, we first corrected these by error correction module of Canu v1.5 [9] based on 36.10 x Pacbio subreads. For subreads aborted by Canu, we corrected them with LoRDEC v0.5 [10] based on ~50 fold coverage of Illumina short reads. Finally, we retained 34.07 fold coverage of high quality subreads (92.78 Gb) and independently assembled them with Falcon v0.7 [11], WTDBG v1.2.8 [12] and Canu v1.5 [9]. The assembled size from Falcon, WTGDB and Canu are 1.88 Gb, 1.96 Gb and 2.26 Gb, respectively. The contig N50 of assembly results is 81.5 Kb, 82.8 Kb and 109.2 Kb, respectively for the three methods (Sup table 2b). The completeness assessment of these assembles through Benchmarking Universal Single-Copy Orthologs (BUSCO) databases (BUSCO, RRID:SCR_015008) [13] and Core Eukaryotic Genes Mapping Approach (CEGMA, RRID:SCR_015055) [14] showed that more than 96% CEGs and 90% of complete BUSCOs are detectable, suggesting the high completeness of the assembly results. We then polished the consensus sequence of three assemblies based on 50 x Illumina pair-end reads using Pilon v1.22 software [15]. To take advantage of assemblies from different tools and generate more contiguity and connectivity results, we merged them together with quickmerge v0.2 package [16]. The strict conditions were considered in this step to avoid chimeric errors. We obtained a genome of 2.24 Gb with contig N50 and longest contig of 120.61 Kb and 1.89 Mb, respectively (Sup table 2b).
Physical map construction

To develop a robust physical map for the allotetraploid wild peanut that could be helpful to place sequence contigs on chromosomes and to determine the physical length of gaps between them [17], we constructed BioNano optical genome map libraries for the sequencing genotype from the fresh leaves. From the enzyme density and distribution assessment of genome sequences using Label Density Calculator v1.3.0 (BioNano Genomics, CA, US), we adopted the Nt.BspQI nickase for optical map library construction. The basic process of BioNano raw data was conducted using IrisysView v2.5.1 package (BioNano Genomics, CA, US). Molecules whose lengths are more than 150 kb (with label SNR >= 3.0 and average molecule intensity < 0.6) were retained for further genome assembling. We obtained 2.8 million (~596.26 Gb) high quality optical molecules, accounting for ~210 x coverage of genome size (Sup table 1c). The N50 of the molecules is 210.83 Kb (Sup table 1c). On the basis of the label positions on single DNA molecules, de novo assembly was performed by a pairwise comparison of all single molecules and overlap-layout-consensus path building, which adopted by IrisysView v2.5.1 assembler [18]. The parameter set for large genomes was used for assembly with the IrisysView software. We considered only molecules containing more than seven nicking enzyme sites for assembly (min label per molecule: 8). A p value threshold of 1e-8 was used during the pairwise assembly, and 1e-9 for extension and refinement steps and 1e-12 for merging contigs were adopted. The resulting physical map covers approximately 2.65 Gb (around 98.15%
of the 2.7 Gb genome size). We generated 1,404 optical map-based scaffolds with N50 of 3.4 Mb for *A. monticola* (Sup table 1c). The high quality optical map would be used for genome curation and hybrid assembly with SMRT-based assembly, combing the MP links and Hi-C data.

Scaffold construction and curation

Total of nine mate-pair libraries ranging from 3 kb to 17 kb fragments were prepared for scaffolds, which accounted for ~132 fold coverage of previous estimated genome size (2.7 Gb) [6] (Sup table 1a). To decrease chimeras in the initial assembly results, we mapped the different fragment mate-paired data to the contigs using BWA v0.7.10 (BWA, RRID:SCR_010910) [19], considering only unique mapping reads for further scaffolds construction. Further scaffolding was performed by SSPACE v3.0 (SSPACE, RRID:SCR_005056) [20]. Contigs are assembled into scaffolds with mate-pair (MP) information, estimating gaps between the contigs according to the distance of MP links. Two contigs supported by at least 3 reasonable MP links in each fragment libraries (insert size +- 5SD) were joined as a scaffold. We assembled 29,454 contigs into 9,157 scaffolds with large reasonable intra-gaps sequences (Sup table 2c). In this step, we obtained 2.35 Gb assembly results for *A. monticola*, whose scaffold N50 and L50 are 491.06 Kb and 1,396, respectively (Sup table 2c).

As a relatively young allotetraploid species, the genome of *A. monticola* is particularly complicated especially considering the phenomenon of partially homologous sequences between its two subgenomes [7, 21]. The assembly results of
allotetraploid genome from SMRT reads may introduce lots of chimeric errors from high homologous and/or large repeated regions of *A. monticola*. The optical map of single molecules from BioNano Genomics’ Irys® System could assemble large homologous and repeated regions, taking advantage of its super long molecule reads. As a result, detection of conflicts between contigs/scaffolds and genome map, and correction of the potential errors are strongly necessary and feasible. To ascertain the quality of assembly results, we generated an *in silico* map of merged results by Knickers v1.5.5.0 program [18] with Nt.BspQI nickase. From the comparison between the contigs/scaffolds and optical maps by RefAligner v5122 [18], we identified 610 conflicts. Next Generation Mapping (NGM-HS) was used to resolve conflicts between the sequence and optical map assemblies by breaking conflict point of assembly. Conflicts were identified based on chimeric score of a conflict junction, mate-pairs information and SMRT molecules alignment result, which is near the conflict junctions on the optical genome map. The chimeric score of conflict junction is defined as the percentage of BioNano molecules that fully align to the 50 kb flanks of optical map. If the chimeric scores of the conflict junction were ≥ 30, and more than two fully aligned optical molecules located across the conflict junction of genome map, we suggested a candidate chimerical error in scaffold/contig sequence. The alignment results of conflict regions were visualized in IrysView [18] for manual investigation. Knickers, RefAligner, and IrysView were obtained from BioNano Genomics [18]. Further investigation of mate-paired links and SMRT molecules alignment would assist to make a decision of cutting on selected sequences. If the
mate-pair relationship (3Kb~17Kb) of 10Kb flanks of conflict junction is in
disagreement, or less than 5 coverage of fully aligned Pacbio molecules are across this
region, we suggested breaking the point. We considered the consistent soft-clip sites
of SMRT molecules on reference sequence as accurate break point. All proposed cuts
were manually evaluated using BioNano molecule-to-genome map alignments, SMRT
molecule-to-sequence contig alignments, and mate-paired libraries mapping results
based on integrated graphic platform. Of these conflicts, 600 were chimeric in the
long reads assembly, and 10 were left unresolved. After chimeric correction, we
assembled the 6,262 hybrid scaffolds based on genome map hybrid assembly. The
genome size of *A. monticola* is 2.62 Gb, with scaffold N50 of 1.51 Mb (Sup table 2c).

Gap filling and SMRT-error correction

To improve the contiguity of assembly results, we fulfilled the gap filling process
combined SMRT sequencing data, Illumina data. PBJelly [22] was used to fill gaps
using approximately 34.07 fold coverage of error- corrected SMRT sequencing data
from initial genome assembly step. Then we further filled retaining gaps using 39 fold
coverage pair-end data (Sup table 1a), along with *de Bruijn* graph analysis to detect
instances where a unique path of reads spanned a gap, implemented with Gapcloser
v1.12 of SOAPDenovo packages (GapCloser, RRID:SCR_015026) [23]. During the
gap-filling procedure, 42.87 Mb gaps were filled by SMRT long reads and Illumina
data.
To ensure base-pairing accuracy of assembly results from SMRT molecules, we further polished the consensus sequence after the construction of the pseudomolecules based on ~105 Gb Illumina pair-end reads using Pilon [15]. A total of 5,607 kb bases, including SNPs and small Indels, were corrected, of which 0.21% were small indels.

Pseudomolecules construction and sub-genome identification

High-throughput chromosome conformation capture (Hi-C) technology enables the generation of genome-wide 3D proximity maps and is an efficient and low-cost strategy for sequences cluster, ordered and orientation for pseudomolecule construction [24]. This technology has been successfully applied in recent complex genome projects including goat [25], Tartary buckwheat [26], wild emmer [27], and barely [28]. We constructed three Hi-C fragment libraries ranging from 300-700 bp and sequenced them through X-TEN platform for pseudomolecules construction.

Mapping of Hi-C reads and assignment to restriction fragments were performed as described elsewhere [24]. Briefly, adapter sequences of raw reads were trimmed with cutadapt v1.0 (cutadapt, RRID:SCR_011841) [29] and low quality PE reads were removed for clean data. The clean Hi-C reads, accounting for ~ 60 fold coverage of A. *monticola* genome, were mapped to the assembly results with bwa align v0.7.10 (BWA, RRID:SCR_010910) [19] (Sup table 1d). Only uniquely aligned pairs read whose map quality is more than 20 were considered for further analysis. Duplicate removal, sorting and quality assessment were performed with HiC-Pro v2.8.1 [30]. The 21.98 % of Hi-C data was valid interaction pairs. Raw counts of Hi-C links were
aggregated in 50 kb bins and normalized separately for intra- and inter- chromosomal contacts using LACHESIS [24]. We clustered the sequences into initial 20 groups according to threshold of the contact frequency. For each group, we clustered the sequences in 5 subgroups and independently decided the order and orientation of sequences based on contact probability of each sub-groups. The whole order and orientation subgroup was considered as super-bin and recalculated for the interaction matrices for each group. Then LACHESIS [24] was used to assign the order and orientation of each group. Based on 76.54 fold coverage of Hi-C data, the vast majority (91.83%) of the assembled sequence was anchored onto the 20 pseudo-chromosomes by frequency distribution of valid interaction pairs (Table 1).

Benefiting from the published genomes of A. duranensis and A. ipaensis, the donors of allotetraploid peanut, we are able to directly identify the corresponding subgenomes based on the whole genome comparison between the assembly results of A. monticola and the two wild diploid peanuts. We aligned the assembly results to its ancestral genomes with Mummer v2.23 [31] and successfully distinguished more than 96.07% of sequences into A.mon-A and A.mon-B subgenomes (Table 1). Finally, the subgenome size of A.mon -A and A.mon -B is 1,035.76 Mb and 1,485.16 Mb, respectively, which is comparable to that of their ancestors A. duranensis and A. ipaensis (Table 2; Sup table 2d).

Genome quality assessment

Completeness of gene-space representation was evaluated based on the plants dataset of the Benchmarking Universal Single-Copy Orthologs (BUSCO) database with the
BUSCO pipeline v3.0.2 (BUSCO, RRID:SCR_015008) [13]. The results showed that 91.67% of complete gene models could be detected in *A. monticola* genome (Sup table 3a). Comparison analysis suggested that the gene region completeness of assemblies is slightly better than their corresponding progenitors (Sup table 3a).

The core eukaryotic gene-mapping approach (CEGMA) [14] provides a simple method to rapidly assess genome completeness. It comprises a set of highly conserved, single-copy genes, present in all eukaryotes, including 458 core eukaryotic genes (CEGs) and 248 of which are highly conserved CEGs. CEGMA v.2.3 (CEGMA, RRID:SCR_015055) analysis [14] suggested that 96.72% of CEGs could be found in the *A. monticola* assembly results, which is comparable to that of their corresponding ancestor with 98.69% (Sup table 3b).

Besides the normal BUSCO [13] and CEGs [14] estimation, transcriptome data of *A. monticola* can also be used for genome completeness assessment. We assembled the 11.96 Gb pooled transcriptome data from root, stem, leaf, flower and seed of *A. monticola* into unigenes using Trinity v2.1.1 (Trinity, RRID:SCR_013048) [32] (Sup table 3c). We also collected unigenes of *A. hypogaea* which generated from developmental transcriptome map (https://www.peanutbase.org/download). We finally obtained 44,205 unigenes whose lengths are more than 500 bp (Sup table 3d). Of which, 43,961 (99.45%) could be supported by the assembly results.

The completeness of the genome assembly was revealed by sequenced bases from aligned along the entire length of the assembly. We remapped the Illumina short reads, RNAseq data and PacBio subreads to the assembly results of *A. monticola*,
respectively. For Illumina short reads and RNAseq data, we aligned paired-end reads to the genome of *A. monticola* by bwa-mem of BWA v0.7.10 (BWA, RRID:SCR_010910) [19] and found that more than 98.47% and 92.21% of them could be correctly remapped to assembly results, respectively (Sup table 3e). We then remapped the error correction SMRT molecules from genome assembly data to assembly results of *A. monticola* by blasr v5.3 [33] and found that 92.16% of subreads had best alignments in assembly results (Sup table 3e).

To evaluate the genome accuracy, we also randomly selected 20 SMRT molecules longer than 45 Kb and aligned to genome sequence. The coverage and identity of all molecules have greater than 99% and 91%, respectively (Sup table 3f). Additionally, the genome-wide Hi-C heatmap of *A. monticola* which shown by HiCplotter at 500 Kb resolution exhibited as expectation that the frequency of intra-chromosome interactions rapidly decrease with linear distance (Fig. 3A). From the same Hi-C data, similar genome-wide interactions map was observed for its ancestors *A. ipaensis* and *A. duranensis* (Fig. 3B). These comparison analysis suggested the high accuracy of *A. monticola* assemblies.

The assembly results achieved a high level of contiguity and connectivity for SMRT molecules, Illumina data, BioNano-genome map and Hi-C data based on hybrid assembly of allotetraploid wild peanut genome. More than 91.83 % of the assemblies were in ordered orientation in 20 pseudomolecules of two subgenomes, ranging from 39.68 Mb to 163.85 Mb (Table 1; Fig. 3A). The remaining 8.17% of the genome assembly was contained in 3,217 smaller scaffolds of at least 10 Kb.
Discussion

Arachis monticola (AABB-type genome, 2n = 4x = 40) is the only allotetraploid wild peanut within section *Arachis*, and is regarded either as the direct progenitor of the cultivated peanut or as an introgressive derivative between the peanut and wild species [34, 35]. It is compatible with cultivated peanut in breeding whereas its wild type structure of fruits supports the maintenance of *A. monticola* as a separate taxonomic species [36, 37]. The generation of whole genome assemblies for *A. monticola* will provide basis for the analysis of these interesting events among the genus *Arachis* during selection and/or domestication.

We sequenced 171.44-fold genome coverage of a wild genotype *A. monticola* from 11 Illumina paired-end (PE) and meta-paired (MP) libraries, ranging from 200 bp to 17 Kb fragments (Sup table 1a). A total of ~462.87 Gb short reads enabled us to assemble 1.996 Gb *A. monticola* genome (Sup table 2a). We also generated a 36 fold sequencing coverage of *A. monticola* genome using 30 single molecule real-time (SMRT) cells on the PacBio RS II and Sequal platforms (Sup table 1b). Production of 11.5 million very long reads allowed us to generate a genome assembly that captures 2.24 gigabases (Gb) in 29,454 contigs (Sup table 2c). We first assembled these contigs based on unique MP links of mapping results. The sequence number is significantly reduced from 29,454 contigs to 9,157 scaffolds, and the scaffold N50 is improved from 120.61 Kb to 491.06 Kb (Sup table 2c). To place these assemblies on super-scaffolds and determine the physical length of gaps between them, we
developed a robust physical map from 2.88 million (~596.26 Gb) high quality BioNano optical molecules (Sup table 1c). The assembles and N50 size of genome map is 2.65 Gb and 3.40 Mb, respectively, consisting of 1,404 sequences (Sup table 1c). After genome curation of integrated evidence and hybrid assembly of assemblies and genome optical map, we generated 2.62 Gb assembles, occupying 97.03% of the estimated genome size (Sup table 2c). Adopting chromatin interaction mapping (Hi-C) links, we build the sequences of the 20 pseudomolecules that anchored 91.83% of the genome content (Fig. 2 and Table 1). Referencing to the syntenic relationship between the sequences of A. monticola and those of its progenitors (A. duranensis, A. ipaensis), 96.07% of assemblies was successfully distinguished into two subgenomes (Table 1 and Sup figure 1-2).

We demonstrated current state of the art for the de novo assembled highly complex genome for the allotetraploid wild peanut (A. monticola), based on long reads for contig formation, short reads for consensus validation, and scaffolding by MP links, optical map and chromatin interaction mapping. These combined technologies produced reference-quality genome of tetraploid wild peanut, with chromosome-length scaffolds (Table 1 and Sup table 2b). Our assemblies represented a five-fold improvement in continuity attributing to properly assembled gaps, compared to the previously published A. duranensis and A. ipaensis assembly, and better resolved the repetitive structures longer than 10 Kb, especially the nearly identical regions of the two subgenomes (Table 2 and Sup table 2d).
Taken together, we have developed an integrated approach, including “WGS and Pacbio and BioNano optics and Hi-C”, to the sequencing and assembly of an allopolyplloid *Arachis monticola* genome (Fig. 2). The final assembly comprised of 28,581 contigs (N50=129.50 Kb) and 4,135 scaffolds (N50=118.65 Mb) (Sup table 2c), and can be organized into 20 chromosomes, including 1.06 Gb in the A subgenome and 1.45 Gb in the B subgenome (Table 1; Fig. 3A). Our assembly contains 97.03% of the *A. monticola* genome sequence.

The *Arachis monticola* genome presented here provides, for the first time, a reference genome for future studies of this important tetraploid wild peanut, which may be the “bridge” connecting the diploid wild species and tetraploid cultivated species to study subgenomes evolution, origin and domestication among *Arachis* genus and other plants which will provide a wealth of information to enable studies of phylogeny, genome duplication, and convergent evolution [38]. The atlas data of the *A. monticola* genome will provide a valuable resource and facilitate future functional genomics and molecular-assisted breeding in this oil crop. Meanwhile, more reference information should be beneficial for studying the genetic changes during the recent polyploidization event and producing more elite peanut cultivars.
Availability of supporting data

This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession QBTX00000000. The version described in this paper is version QBTX01000000. Raw reads, genome assembly sequences of *Arachis monticola* genome project have been deposited at the NCBI GeneBank under BioProject Accession PRJNA430760 and BioSample Accession SAMN08378480. All supplementary figures and tables are provided in Additional Files. Supporting data are also available in the GigaDB database (GigaDB, RRID:RRID:SCR_xxx xxx).

Additional files

- Sup table 1a. Summary of illumina data for *A. monticola*.
- Sup table 1b. Statistic of PacBio sub-reads length distribution for *A. monticola*.
- Sup table 1c. Summary of BioNano data collection and assembly statistics.
- Sup table 1d. Summary of HiC data for error correction and chromosome construction.
- Sup table 2a. Summary of assembly results from Illumina short reads.
- Sup table 2b. Summary of assembly results of different tools for *A. monticola*.
- Sup table 2c. Summary of assembly results of different versions for *A. monticola*.
- Sup table 2d. Comparison of genome assembly between *A. monticola* and corresponding ancestors *A.duranensis* and *A.ipaensis*.
- Sup table 3a. Genome completeness assessment by BUSCO.
- Sup table 3b. Completeness analysis based on CEG database.
- Sup table 3c. Summary of pooled transcriptome data assisted for genome annotation.
- Sup table 4c. Genome completeness assessment based on sequencing reads.
- Sup table 3d. Genome completeness evaluated by ESTs/unigenes.
- Sup table 3e. Genome completeness assessment based on sequencing reads.
- Sup table 3f. PacBio sub-reads validation for *A. monticola* genome assembly.
Sup figure 1. Circos plot showing shared synteny between A. monticola and A. duranensis.

Sup figure 2. Circos plot showing shared synteny between A. monticola and A. ipaensis.

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
This work was financially supported by grants from the National Natural Science Foundation of China (No. 31471525); Key program of NSFC-Henan United Fund（No. U1704232）; key scientific and technological project in Henan Province (No.161100111000; S2012-05-G03); Innovation Scientists and Technicians Troop Construction Projects of Henan Province（No.2018JR0001）
Reference

Table 1. Statistics of pseudochromosomes of *A. monticola*.

<table>
<thead>
<tr>
<th>Chr</th>
<th>Length (bp)</th>
<th>No. of gap</th>
<th>Gap length (bp)</th>
<th>Gaps ratio (%)</th>
<th>Anchored percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.mon-A01</td>
<td>118,283,061</td>
<td>1,961</td>
<td>12,923,146</td>
<td>10.93</td>
<td>4.51</td>
</tr>
<tr>
<td>A.mon-A02</td>
<td>84,409,872</td>
<td>1,598</td>
<td>13,652,890</td>
<td>16.17</td>
<td>3.22</td>
</tr>
<tr>
<td>A.mon-A03</td>
<td>123,011,103</td>
<td>2,089</td>
<td>18,448,429</td>
<td>15.00</td>
<td>4.69</td>
</tr>
<tr>
<td>A.mon-A04</td>
<td>106,244,467</td>
<td>2,020</td>
<td>15,031,534</td>
<td>14.15</td>
<td>4.05</td>
</tr>
<tr>
<td>A.mon-A05</td>
<td>123,320,146</td>
<td>1,950</td>
<td>15,552,662</td>
<td>12.61</td>
<td>4.70</td>
</tr>
<tr>
<td>A.mon-A06</td>
<td>98,474,784</td>
<td>1,770</td>
<td>11,764,791</td>
<td>11.95</td>
<td>3.75</td>
</tr>
<tr>
<td>A.mon-A07</td>
<td>72,108,480</td>
<td>1,299</td>
<td>7,250,302</td>
<td>10.05</td>
<td>2.75</td>
</tr>
<tr>
<td>A.mon-A08</td>
<td>39,681,652</td>
<td>442</td>
<td>1,898,702</td>
<td>4.78</td>
<td>1.51</td>
</tr>
<tr>
<td>A.mon-A09</td>
<td>107,717,523</td>
<td>1,889</td>
<td>11,324,084</td>
<td>10.51</td>
<td>4.11</td>
</tr>
<tr>
<td>A.mon-A10</td>
<td>100,634,791</td>
<td>1,847</td>
<td>13,895,555</td>
<td>13.81</td>
<td>3.84</td>
</tr>
<tr>
<td>Un-chr</td>
<td>61,870,352</td>
<td>422</td>
<td>7,811,614</td>
<td>12.63</td>
<td>2.36</td>
</tr>
<tr>
<td>A.mon-B01</td>
<td>140,073,190</td>
<td>2,773</td>
<td>17,354,378</td>
<td>12.39</td>
<td>5.34</td>
</tr>
<tr>
<td>A.mon-B02</td>
<td>124,915,013</td>
<td>2,271</td>
<td>14,941,271</td>
<td>11.96</td>
<td>4.76</td>
</tr>
<tr>
<td>A.mon-B03</td>
<td>160,549,902</td>
<td>2,512</td>
<td>18,727,668</td>
<td>11.66</td>
<td>6.12</td>
</tr>
<tr>
<td>A.mon-B04</td>
<td>147,957,427</td>
<td>2,521</td>
<td>16,939,677</td>
<td>11.45</td>
<td>5.64</td>
</tr>
<tr>
<td>A.mon-B05</td>
<td>121,568,645</td>
<td>2,396</td>
<td>14,347,666</td>
<td>11.80</td>
<td>4.63</td>
</tr>
<tr>
<td>A.mon-B06</td>
<td>154,488,041</td>
<td>2,644</td>
<td>22,222,939</td>
<td>14.38</td>
<td>5.89</td>
</tr>
<tr>
<td>A.mon-B07</td>
<td>136,067,974</td>
<td>2,462</td>
<td>15,804,193</td>
<td>11.61</td>
<td>5.19</td>
</tr>
<tr>
<td>A.mon-B08</td>
<td>138,850,997</td>
<td>2,492</td>
<td>17,429,178</td>
<td>12.55</td>
<td>5.29</td>
</tr>
<tr>
<td>A.mon-B09</td>
<td>163,848,611</td>
<td>2,991</td>
<td>16,573,361</td>
<td>10.12</td>
<td>6.24</td>
</tr>
<tr>
<td>A.mon-B10</td>
<td>147,468,805</td>
<td>2,693</td>
<td>18,369,757</td>
<td>12.46</td>
<td>5.62</td>
</tr>
<tr>
<td>Un-chr</td>
<td>49,370,401</td>
<td>428</td>
<td>7,142,698</td>
<td>14.47</td>
<td>1.88</td>
</tr>
<tr>
<td>Unknown</td>
<td>--</td>
<td>972</td>
<td>16,282,706</td>
<td>15.81</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>2,623,921,123</td>
<td>46,879</td>
<td>325,689,201</td>
<td>12.41</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 2. Comparison of assembly results between *A. monticola* and its progenitors.

<table>
<thead>
<tr>
<th>Genome size (bp)</th>
<th>A. mon-A</th>
<th>A. mon-B</th>
<th>A. duranensis</th>
<th>A. ipaensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contig number</td>
<td>1,035,756,231</td>
<td>1,485,159,006</td>
<td>1,068,326,401</td>
<td>1,257,035,815</td>
</tr>
<tr>
<td>Max length (bp)</td>
<td>1,481,449</td>
<td>1,683,058</td>
<td>221,145</td>
<td>250,973</td>
</tr>
<tr>
<td>Min length (bp)</td>
<td>14,852</td>
<td>10,392</td>
<td>10,007</td>
<td>10,021</td>
</tr>
<tr>
<td>Contig N50 (bp)</td>
<td>107,702</td>
<td>110,501</td>
<td>12,923,146</td>
<td>22,900</td>
</tr>
<tr>
<td>Contig N90 (bp)</td>
<td>29,116</td>
<td>29,291</td>
<td>11,764,791</td>
<td>22,562</td>
</tr>
<tr>
<td>Gap number</td>
<td>18,005</td>
<td>26,847</td>
<td>134,110</td>
<td>122,617</td>
</tr>
<tr>
<td>Gap ratio (%)</td>
<td>12.50</td>
<td>12.11</td>
<td>11.95</td>
<td>7.32</td>
</tr>
<tr>
<td>GC content (%)</td>
<td>35.79</td>
<td>36.18</td>
<td>35.81</td>
<td>36.85</td>
</tr>
</tbody>
</table>

Note: only sequences whose length is more than 10 Kb are considered.
Figure Legends

Figure 1. Morphological characters of the *Arachis monticola*. Mature plants in field (A), flowers (B), and pods (C) are shown.

Figure 2. Work flow of assembly of allotetraploid wild peanut (*A. monticola*). We first corrected SMRT subreads by error correction module of Canu based on 36.10x Pacbio subreads. For subreads aborted by Canu, we corrected them with LoRDEC based on ~50 fold coverage of Illumina short reads. Then we assembled these high quality data using Canu, Falcon and WTDGB, respectively, and used Pilon to polish them. To integrate advantages of different algorithm, we merged the assemblies by Quickmerge. We also curated “chimeric error” of genome assembly combing Pacbio molecules, BioNano data and HiC links, and scaffolded the contigs using SSPACE and IrysView. Further analysis of scaffolds order and orientation through HiC-pro and LACHESIS led to chromosome-length scaffolds. SMRT subreads and short reads were used for gap filling and genome polishing through Pbjelly, GapCloser and Pilon packages. The subgenomes of AA- and BB- genotypes were simply distinguished by the overall macro-synteny between genome assemblies and its corresponding ancestors.

Figure 3. Interaction frequency distribution of Hi-C links among chromosomes. (A) Genome-wide Hi-C map of *A. monticola*. (B) Genome-wide Hi-C map of *A.ipaensis* and *A.duranensis*. We scanned the genome by 500 Kb non-overlapping window as a bin and calculated valid interaction links of Hi-C data between any pair of bins. The log2 of link number was calculated. The distribution of links among chromosomes was exhibited by heatmap based on HiCplotter. The color key of heatmap ranging from light yellow to dark red indicated the frequency of Hi-C interaction links from low to high (0~10).