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Abstract
Background: In recent years, massively parallel cDNA sequencing (RNA-Seq) has emerged as a fast, cost-e�ective and
powerful technology to study entire transcriptomes in various manners. In particular, for non-model organisms and in the
absence of an appropriate reference genome, RNA-Seq is used to reconstruct the transcriptome de novo. Although the
de novo transcriptome assembly of non-model organism has been on the rise recently and new tools are developed
frequently, there is still a knowledge gap about which assembly software should be used to build a comprehensive de novo
assembly.
Results: Here, we present a large-scale comparative study in which ten de novo assembly tools are applied to nine RNA-Seq
data sets spanning di�erent kingdoms of life. Overall, we build more than 200 single assemblies and evaluated their
performance on a combination of 20 biological-based and reference-free metrics. Our study is accompanied by a
comprehensive and extensible Electronic Supplement that summarizes all data sets, assembly execution instructions, and
evaluation results. Trinity, SPAdes and Trans-ABySS, followed by Bridger and SOAPdenovo-Trans, generally outperformed the
other tools compared. In addition, we observed species-speci�c di�erences in the performance of each assembler. No tool
delivered the best results for all data sets.
Conclusions: We recommend a careful choice and normalization of evaluation metrics to select the best assembling results
as a critical step in the reconstruction of a comprehensive de novo transcriptome assembly.
Key words: transcriptomics, RNA-Seq, assembly, de novo, comparison

Background
In the last decade, the sequencing of entire transcriptomes
(RNA sequencing, RNA-Seq) has established itself as a pow-
erful technique to understand versatile molecular mechanisms
and to address various biological questions [1–6]. In particu-
lar for non-model organisms and in the absence of a suitable
reference genome, RNA-Seq is used to reconstruct and quantify
whole transcriptomes [1, 4, 5]. Thus, RNA-Seq allows the iden-
ti�cation of di�erentially expressed genes, even if there is cur-
rently no reference genome available: The short reads, nowa-

days most commonly produced by Illumina systems, can be
assembled into contigs [2, 4]. Ideally, each contig corresponds
to a certain transcript isoform. A key challenge is the man-
agement of the resulting data set, especially if di�erent tools
and parameter settings are used for the construction of multi-
ple de novo transcriptome assemblies. Even though a reference
genome is available, it is still recommended to complement a
gene expression study by a de novo transcriptome assembly to
identify transcripts that have been missed by the genome as-
sembly process or are just not appropriately annotated [2].
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At �rst glance, the transcriptome assembly process seems
similar to genome assembly, but actually there are fundamen-
tal di�erences and various challenges. On the one hand, some
transcripts might have a very low expression level, while oth-
ers are highly expressed [2, 4, 6]. Especially in eukaryotes,
potentially each locus produces several transcripts (isoforms)
due to alternative splicing events [4]. Short reads derived from
one exon can be part of multiple paths in the assembly graph.
Therefore, the graph structure can be ambiguous and the repre-
sented isoforms can be di�cult to resolve. Furthermore, some
transcript variants with a low expression level might be consid-
ered as sequencing errors by various tools and removed from
the assembly process [7]. As with genome assembly, repeti-
tive regions are also a major problem for the construction of
transcripts [8]. The assembly problem gets even more compli-
cated as the transcriptome varies between di�erent cell types,
environmental conditions, and time points. A successful tran-
scriptome assembler should address all of these issues and be
able to recover full-length transcripts of di�erent levels of ex-
pression.
The de novo transcriptome assembly of non-model organ-

ism has been on the rise recently and new tools are developed
frequently. Now there is a knowledge gap: Which assembly
software and parameter settings should be used to construct a
good assembly? In addition, there is no consensus about which
evaluation metrics should be used to evaluate the quality of
multiple de novo transcriptome assemblies.
In the last decade, several tools have been developed specif-

ically for de novo transcriptome assembly [9–17]. Some of
them are build on top of already existing genome assembly
tools [9, 11, 18], others were specially designed for transcrip-
tome assembly [10]. Some tools may �t the needs of eukary-
otic transcripts, where alternative splicing has to be considered
to construct di�erent isoforms, whereas other tools can han-
dle simpler prokaryotic transcripts. More complicating, di�er-
ent RNA-Seq library preparation protocols result in reads of
di�erent kinds: single-end vs. paired-end, strand-speci�c vs.
not strand-speci�c, di�erent insertion sizes as well as vary-
ing read lengths and can comprise protein- and/or non-coding
transcripts.
Although the evaluation of de novo transcriptome assembly

tools have been already performed in the past [6, 19–26], these
studies often rely on limited data sets (e.g. a single species,
a single sequencing protocol) or focus only on a subset of all
currently available assembly tools.
Though, all of these studies agree on one point: currently,

there is no optimal assembly tool for all RNA-Seq data sets.
Di�erent species, sequencing protocols and parameter settings
need di�erent approaches and adjustments of the underlying
algorithms to obtain the best possible results. Merging the con-
tigs of di�erent assembly tools and parameter settings to over-
come the di�erent disadvantages of certain assemblers and to
combine their advantages seems to be the best way to obtain a
comprehensive denovo transcriptome assembly [22]. Neverthe-
less, knowing the advantages and disadvantages of each tool is
an important step in the direction of an automated evaluation
and merging algorithm for multiple de novo transcriptome as-
semblies.
Here, we present a comprehensive evaluation of ten de novo

assembly tools (long-standing and novel ones) across nine
short-read RNA-Seq data sets of di�erent species relying on
di�erent Illumina sequencing parameters and protocols. In
comparison to recent studies, we do not only focus on RNA-Seq
data of one species or kingdom. Instead, we use data sets from
bacteria, fungi, plants, and higher eukaryotes (Fig. 1). We also
include data sets that underwent viral infections. Our study
shows substantial di�erences between the assembly results of

RNA-Seq data derived from various species. We tested promis-
ing biological-based and reference-free metrics of several eval-
uation tools. To evaluate the performance of each assembler,
we summarized scores that were normalized in the interval be-
tween 0 and 1 of all raw metric values (see Methods). In a next
step, such metrics could be used for an automized selection of
good assemblies or contigs to build a more comprehensive and
improved cluster-assembly. Our results give insights into the
performance and usability of the di�erent assemblers and how
they perform on the di�erent data sets. As far as our knowl-
edge goes, this is the most complete comparison of short-read
de novo transcriptome assembly tools currently available.

Data Description

Description of RNA-Seq data used for assembly

We included nine RNA-Seq data sets of �ve di�erent species
with available reference genomes and annotations (Tab. 1). The
data sets cover di�erent kingdoms of life, comprising rep-
resentatives for bacteria (Escherichia coli), fungi (Candida albi-
cans), plant (Arabidopsis thaliana), and higher eukaryotes (Mus
musculus, Homo sapiens). The reference genomes, annotations,
and coding sequences were obtained from Ensembl (release
87) [34]. For E. coli str. K-12 substr. MG1655 and A. thaliana
reference data was obtained from the Ensembl bacteria [35]
or plant [36] database (release 34), respectively. Genome and
annotation data for C. albicans SC5314 were obtained from the
Candida Genome Database (Ca22) [37].
From a previous study (PRJNA429171) we obtained three

samples of an Ebola virus (EBOV) infected HuH7 cell line with
total RNA extracted 3h, 7h, and 23h post infection [33] (Tab. 1).
For the evaluation, we concatenated the human genome data
with the EBOV genome of strain Zaire, Mayinga (GenBank:
NC_002549).
In addition, we quasi-simulated RNA-Seq data based on a

selection of protein- and long non-coding transcripts of hu-
man chromosome 1 (chr1). We downloaded the human annota-
tion GTF �le and protein-coding sequences (excluding ab ini-
tio predictions) from Ensembl and selected all protein-coding
genes of chr1 (2,044 genes), comprising 352 genes with one iso-
form, 196 with two isoforms and 1,496 with more than two iso-
forms. We extended this set of protein-coding genes by 1,075
non-coding genes from chr1. The combined set of protein- and
non-coding genes was used to create a set of transcripts in-
cluding all known isoforms with a length >200nt and without
ambiguous N bases from which paired-end reads were simu-
lated. Our �nal set of transcripts comprised 12,793 protein-
coding transcripts as well as 1,006 lincRNAs, 839 antisense
RNAs, and 7 snoRNAs of human chr1. Overall 14,645 transcript
sequences were used as an input for flux simulator [29] for
RNA-Seq raw read simulation, yielding 60 million paired-end
100nt reads (Tab. 1). We used flux simulator as suggested for
Illumina data, utilizing the default 76-bp error model. With
this simulated sequences, we attempt to mimic a state-of-the-
art RNA-Seq data set based on Illumina’s Ribo-Zero protocol
for library preparation and rRNA depletion, furthermultiplexed
three times and sequenced on one HiSeq2500 lane.
Details about all used RNA-Seq data sets can be found in

Electronic Supplement Tab. S1 [38].

Quality control of all RNA-Seq data sets

We investigated the quality of each data set with FastQC [27]
and used Prinseq [28] for an initial quality processing of all
raw reads. Low-quality regions were trimmed with an average
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Figure 1. Overview of the used RNA-Seq data sets (orange – eukaryote, light orange – simulated human chromosome 1, green – plant, pink – fungi, yellow –
bacterium) and evaluated assembly tools. Each data set was quality controlled with FastQC [27] and preprocessed with Prinseq [28] prior to assembly. Overall,
more than 200 single k-mer assemblies were calculated. For details about the used data sets and assembly tools see Electronic Supplement Tab. S1 and Tab. S2,
respectively. We selected a combination of 20 biological-based and reference-free metrics from the di�erent evaluation tools to assess the quality of each assembly
(Tab. 4 in Methods). The CPU/RAM consumption and the usability of each assembler were not included in the calculated metric scores. Details can be found in the
Methods. EBOV – Ebola virus; se/pe – single-end/paired-end; MK – the assemblers built-in multiple-k-mer approach was applied. SPAdes-rna uses two k-mers
(2K) per default.

quality below 20 using a �ve base sliding window approach.
Only reads that have resulted in a remaining read length of at
least 25nt were considered for further analysis. All reads in-
cluding ambiguous N bases were removed. PolyA/T tails were
trimmed. Details about the trimmed data, �nally used for as-
sembly, can be found in Electronic Supplement Tab. S1.

Data availability

The RNA-Seq data sets used in our study are publicly avail-
able and accessions can be found in the Methods and online
Tab. S1. The processed RNA-Seq data �les (FASTQ) as well as
all calculated assemblies (FASTA) were uploaded into the Open
Science Framework and are freely available under accession
doi.org/10.17605/OSF.IO/5ZDX4.

Analyses

We used nine RNA-Seq data sets, ten assembly tools, and var-
ious evaluation metrics as summarized in Fig. 1. Details can
be found in the Methods and in the comprehensive online Elec-
tronic Supplement [38], providing deep insights into the per-
formance of each assembler on each data set and individual
metric. With our selection of di�erent data sets, we aim to
represent not only various kingdoms of life, but also di�er-
ent experimental setups for RNA-Seq data: 1) single-end vs.
paired-end data, 2) strand speci�city vs. unstranded protocols,

3) polyA enriched vs. rRNA depleted library preparations, 4)
di�erent read lengths, and 5) di�erent sequencing depths.

The following sections show how each assembly tool per-
formed for the various data sets and selected evaluation met-
rics (Tab. 4 in Methods). For each combination of a metric and
a data set, we normalized the achieved raw scores of all assem-
bly tools to range between 0 and 1. This approach is identical to
a z-score transformation with additional normalization in the
interval [0,1] (see Methods for details). In this way we want
to achieve the fairest possible comparison of the various data
sets, assembly tools and metrics. For each data set and as-
sembly tool the normalized scores are summarized to achieve
a �nal score, the so-called metric score (MS), for comparison.
Tab. 2 shows the raw and normalized results for all 20 met-
rics and each assembly tool for the H. sapiens (HSA) data set.
Similar tables for all other data sets can be found in Electronic
Supplement Tab. S10. The summarized metric scores shown in
the last row of Tab. 2 correspond to the summarized MS values
shown for the HSA data set in Fig. 2. For example, Trinity [10]
achieved an MS of 12.38 for the H. sapiens data set across all
20 metrics evaluated and hereafter denoted as 12.38/20 (Fig. 2,
Tab. 2). We further summarized the MS for a single assembly
tool over all data sets to calculate an overall metric score (OMS).
In the following, the tools sorted by their OMS are discussed in
more detail. Further de�nitions for the calculation of the nor-
malized scores as well as the MS and OMS values are contained
in the Methods.
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Figure 2. Heat map showing for each data set (column) and each assembler (row) the calculated metric score MS (detailed de�nition in the Methods). The assembly
tools are clustered based on their achieved MS over all data sets. The MS for one assembly tool and a single data set is based on 20 pre-selected metrics (see Tab. 4
and Methods for details) and is shown in one cell in the heat map (e.g. the MS for E. coli and Trinity [10] is 13.61). For each data set, an assemblers MS is the sum of
(0,1)-normalized scores of each single metric. The hierarchical clustering of the metric scores divides the assembly tools in two groups of generally high-ranked
(upper half) and low-ranked (bottom half) tools. With the exception of Trans-ABySS [9], the MS reached for the largest human RNA-Seq data set is generally lower.
Numbers in brackets next to the assembler names present the summarized metric scores (overall metric score, OMS) for all nine data sets (see Methods). For the
three similar human data sets infected with the Ebola virus (Fig. 1), we added the mean MS value to the OMS. Details about the metric results for the human data
set (HSA; no infection) can be found in Tab. 2 and for all other data sets in Electronic Supplement Tab. S10.
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Table 1. Nine RNA-Seq data sets were used for assembly. Study and run accession numbers are given for the NCBI short-read archive (SRA).For the HSA data set the ENCODE data center accession is provided. Read numbers are given in million. We simulated one arti�cial data setbased on protein-coding and non-coding transcripts of human chromosome 1 (Chr 1) using flux simulator [29] (HSA-FLUX). Details canbe found in Electronic Supplement Tab. S1. se/pe – single-end/paired-end; ss – strand-spec�c. EBOV – Ebola virus; xh poi – total RNAextracted x hours post infection.
Nr. Species Id. Kingdom Study Run Protocol Reads Ref.

num. length
1 Escherichia coli ECO Bacteria PRJNA238884 SRR1173967 se, ss 7,9 94nt [30]
2 Candida albicans CAL Fungi PRJNA213618 SRR1654847 pe 11,5 51nt [31]
3 Arabidopsis thaliana ATH Plant PRJNA231064 SRR1049376 se 16,9 101nt [32]
4 Mus musculus MMU Mammal PRJNA140057 SRR203276 pe, ss 52,6 76nt [10]
5 Homo sapiens HSA Mammal ENCSR000AED – pe, ss 97,5 101nt –
Homo sapiens + EBOV HSA-EBOV [33]
6 3h poi -3h Mammal+Virus PRJNA429171 SRR6453200 pe 17,2 100nt
7 7h poi -7h Mammal+Virus PRJNA429171 SRR6453205 pe 24,7 100nt
8 23h poi -23h Mammal+Virus PRJNA429171 SRR6453206 pe 26,5 100nt
Simulated
9 Homo sapiens Chr 1 HSA-FLUX Mammal – – pe 60,0 100nt –

Assembly tools performing diverse regarding di�erent
data sets and quality metrics
All evaluated assembly tools are summarized in Fig. 1 and
Tab. 3. Finding the best parameter setting for each tool and
each data set is obviously beyond the scope of this evaluation.
Therefore, we used the default settings of each tool and ad-
justed only a few key parameters such as k-mer values and
strand-speci�city (see Methods for details). Full execution de-
tails and commands can be found in the Electronic Supplement,
Files S3. For the tools with built-in functions for the auto-
matic integration of di�erent k-mer values (Oases, Trans-ABySS,
IDBA-Tran, SPAdes; see Tab. 3), we applied a set of selected k-
mers (for details see Files S3). If strand-speci�c data was used
for the assembly, we applied the corresponding option of each
tool. In application, one should try several di�erent parameter
settings and compare the resulting assemblies to optimize the
whole assembly process. In particular, di�erent k-mers should
be tested and evaluated against each other [21]. Here, we care-
fully chose k-mer values to obtain a somewhat fair comparison
between the assemblers, although some parameters may not be
optimal.
Whenever a tool was di�cult to install (e.g. due to miss-

ing dependencies) or could not be run on a speci�c data set,
we attempted to debug the source code and in some cases also
contacted the authors to solve the problem. Therefore, we also
decided to share our experiences regarding the installation pro-
cedure and execution of each tool (Tab. 3).
Trinity.
The re-mapping rate of Trinity [10] was generally high (above
90.0%, 97.32% for C. albicans) except for the E. coli data set
(77.01%), see Fig. S4. Trinity performed in the mid�eld or bet-
ter regarding the TransRate [42] metrics and very well regard-
ing DETONATEs [41]) RSEM-EVAL scores on almost all data sets
(Tab. S6 and S9). Trinity achieved the best RSEM-EVAL scores
for three of the nine data sets. The assembler detected many
complete BUSCOs [43, 44] (Fig. 3) and achieved high 95%-
assembled isoform rates [39] for almost all data sets. For the
eukaryotic data sets, approximately the half amount of com-
plete BUSCOs is included multiple times in the assembly. This
might be a result of the sub-graphs Trinity relies on to detect
di�erent isoforms of one transcript [10]. Trinity achieved the
best OMS of 95.9 (see Methods for de�nition) of all assembly
tools tested (Fig. 2) and performed generally good in construct-
ing full-length transcripts and the entire Ebola RNA genome
out of the virus-infected data sets.

SPAdes-sc and -rna.
Although initially designed for single-cell and smaller
bacterial-sized genome assemblies, we also included
SPAdes [18] in our evaluation. It has previously been reported
that, when used in single-cell mode, the assembler achieves
good results with RNA-Seq data [17, 39]. This may be due to
the uneven coverage optimization implemented for single-cell
data, which also �ts very well with the behavior of low and
high-level expressed transcripts. Based on this observations,
SPAdes also has a special RNA-Seq mode [17]. Therefore,
we evaluated the performance of SPAdes in single-cell (--sc;
SPAdes-sc) and transcriptome (--rna; SPAdes-rna) mode
(Files S3) and present here the results of both parameter
options together.
The re-mapping rates for both SPAdes parameter options

are on a comparable level and arrange among the top mapping
rates for all data sets (88.04–97.51%, Fig. S4). Based on the
TransRate metrics, SPAdes build the most accurate assemblies
(Tab. S6), especially in the single-cell mode. For almost all
data sets, the SPAdes-sc and -rna assemblies achieved the high-
est optimal score, the lowest percentage of uncovered bases, and a
low up to a moderate amount of ambiguous bases together with
Trinity, SOAPdenovo-Trans [13], and IDBA-Tran [12]. The RSEM-
EVAL scores of the SPAdes assemblies are always good but vary
among the di�erent RNA-Seq data sets. For some samples,
SPAdes-sc achieves a better scoring than SPAdes-rna, and vice
versa (Tab. S9). SPAdes assemblies arrange in the top scores
of complete BUSCO detections, with the --scmode performing
in most cases better than the --rna mode (Fig. 3). Most likely
due to only two k-mers used in --rnamode, SPAdes-rna assem-
bled a lower amount of BUSCOs for some data sets (Fig. S8).
SPAdes-sc and -rna are the best performing tools for the de-
tection of complete BUSCOs in the C. albicans transcriptome
(Fig. 3). The SPAdes assemblies generally show a low dupli-
cation ratio (Tab. S10).

SPAdes-sc achieved one of the top places regarding our sum-
marized metric score (OMS=95.8, Fig. 2), only slightly outper-
formed by Trinity (OMS=95.9), and reached the highest met-
ric scores for the C. albicans (MS=15.0) and the HSA-EBOV-3h
(MS=15.08) assemblies. Comparable to SPAdes in single-cell
mode, SPAdes-rna performed generally good on all data sets
(OMS=93.3). Regarding the number of 95%-assembled iso-
forms, the -rna mode of SPAdes outperformed the single-cell
mode for most data sets (Fig. S5). Especially, for larger RNA-
Seq data sets, SPAdes-rna was able to reconstruct more full-
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Table
2.Here,weshowresultsforall20selectedmetrics(rows)basedontheoutputof

rnaQUAST[39],
HISAT2[40],

DETONATE[41],
TransRate[42],

BUSCO[43,44],andthe
Trinity[10]toolkitutilitiesforthetranscriptsassembled

byalltenassemblytools(columns).Resultsareshownforthenon-infected
H.sapiensRNA-Seqstrand-speci�cpaired-endlibrarywithreadlength101nt(accessionnumberENCSR000AED).Foreachmetricnormalizedscoresin

therangebetween0and1aredisplayed.Therawvaluesaregiveninsubscriptnexttothenormalizedvalues.Inthelastrow,thesummarized
m
etricscore(M

S)of(0,1)-normalizedscoresisgiven(seeMethodsfordetails).The
RSEM-EVALscoreisdividedby10 9.The

Num
berofam

biguousbasesisgiveninmillion.Ex90N50valuesarecomputedasusualN50butlimitedtothetopmosthighlyexpressedtranscriptsthatrepresent90%
ofthetotalnormalized

expressiondata.An
F1scoreof1statesthatallnucleotides/contigsintheestimatedtrueassemblywererecoveredwithatleast90%

identity.
KC
score–

k-mercompressionscorere�ectingthesimilarityofeachassemblyto
DETONATEsestimated“true”assembly.Com

pleteBUSCOs–sum
ofsingle-copyandduplicatedBUSCOs.DetailsandmuchmorestatisticscomplementingthisevaluationcanbefoundintheElectronicSupplement,Fig.S4–Tab.S9.

SummariesforallotherdatasetscanbefoundinTab.S10.
Trinity

Oases
Trans-ABySS

SOAP-Trans
Bridger

BinPacker
IDBA-Tran

Shannon
SPAdes-sc

SPAdes-rna

k-mersize
default

25,35,45,55,65
25,35,45,55,65

default
default

default
25,35,45,55,65

default
default

default
Evaluation

m
etrics

1–20

HISAT2

1
Overallmappingrate

0.8191.9
0.6988.04

1.0098.34
0.7589.93

0.6686.83
0.2472.6

0.0064.61
0.5884.27

0.8192.04
0.9395.95

rnaQUAST

2
Transcripts

≥1000nt
0.2264061

1.00207474
0.2059779

0.0327529
0.1143201

0.0022611
0.0023516

0.0531328
0.0531039

0.1549860
3

Misassemblies
0.993378

0.00216127
0.992743

1.00279
0.977329

0.985603
1.00302

0.992837
0.992022

0.985126
4

Mismatchespertranscript
0.741.38

0.771.25
0.930.57

1.000.27
0.731.44

0.004.63
0.910.67

0.771.26
0.880.8

0.781.25
5

Averagealignmentlength
0.27795.23

0.06343.48
0.01246.85

0.00218
0.21654.41

1.002335.73
0.13487.11

0.23711.83
0.09410.22

0.09412.24
6

95%-assembledisoforms
0.996788

0.10868
1.006824

0.312264
0.282105

0.392824
0.07709

0.00242
0.231755

0.463253
7

Duplicationratio
0.002.396

0.032.355
0.471.743

0.871.187
0.501.708

0.012.389
1.001.012

0.631.53
1.001.015

0.871.192
8

Ex90N50
0.00326

0.17666
0.06441

0.19711
0.511370

1.002381
0.19708

0.491324
0.421186

0.22782
9

#full-lengthtranscripts
0.978930

0.838024
1.009110

0.646806
0.898440

0.264456
0.002783

0.636758
0.465676

0.697155
TransRate

10
Referencecoverage

0.870.23
0.330.09

1.000.26
0.340.09

0.310.09
0.270.07

0.310.08
0.000

0.300.08
0.420.11

11
MeanORFpercentage

0.6450.82
0.0042.09

0.7251.92
0.4448.02

0.2245.1
0.0442.57

0.7652.46
1.0055.7

0.3046.13
0.3146.25

12
Optimalscore a

0.300.13
0.000.02

0.230.11
0.660.27

0.320.14
0.140.07

0.610.25
0.130.07

1.000.4
0.570.23

13
Percentagebasesuncovered

a
0.380.59

0.000.94
0.330.63

0.670.33
0.570.42

0.110.84
1.000.02

0.480.5
0.990.03

0.790.21
14

Numberofambiguousbases
0.72286

0.00843
0.53437

0.78241
0.83206

1.0072
0.91138

0.94117
0.86177

0.71294
DETONATE

15
NucleotideF1

0.590.43
0.080.18

0.770.51
0.890.57

0.710.48
0.000.15

0.860.55
0.420.35

0.970.61
1.000.62

16
ContigF1

0.080.02
0.090.02

0.990.2
1.000.21

0.050.01
0.000

0.080.02
0.110.02

0.070.01
0.060.01

17
KCscore

0.870.51
0.000.24

1.000.55
0.420.37

0.510.4
0.400.37

0.140.29
0.580.42

0.470.39
0.600.43

18
RSEM

EVAL
0.98–6.51

0.45–11.82
1.00–6.26

0.72–9.03
0.85–7.72

0.62–10.03
0.00–16.3

0.73–8.96
0.42–12.12

0.91–7.16
BUSCO

19
CompleteBUSCOs

0.964004
0.793588

1.004106
0.392625

0.923909
0.132009

0.001682
0.703385

0.392625
0.583089

20
MissingBUSCOs

0.991804
0.931922

1.001770
0.832164

0.981812
0.004078

0.632615
0.842133

0.782268
0.921949

Sum
m
arized

m
etric

(0,1)-score
12.38

6.31
14.24

11.92
11.13

6.59
8.61

10.3
11.47

12.03
aNotavailableforthe

E.coliand
A.thalianadatasetbecausethismetricisonlycalculatedby

TransRateinthecaseofpaired-enddata.
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Table 3. Overview of the di�erent de novo assembly tools evaluated in this study. We rated our experiences regarding the installation and
usability of each tool ( – excellent, – good, – unsatisfactory). These experiences might be subjective, nevertheless we want toshare them to give non-experienced users an idea of how di�cult it is to get each tool installed (Setup) and executed (Usage), see Methodsfor details. For Trinity, we observed high memory peaks at the beginning of the calculations for large (human, mouse) data sets, whichimmediately returned to moderate memory levels after a few minutes. More details about runtime and memory consumption can be foundin Electronic Supplement Fig. S11. MK – Whether or not the tool has a built-in multiple k-mer approach and is able to automaticallyintegrate the output of di�erent k-mer runs.
Assembler Version MK Setup Usage Runtime Memory (GB) Ref. Year

min max median min max median
Trans-ABySS 2.0.1 yes 16m 2d 6h 23m 11h 11m 0.6 49.2 19.7 [9] 2010
Trinity 2.8.4 no 28m 1d 20h 10m 6h 40m 7.2 243.9 27.7 [10] 2011
Oasesa 0.2.08 yes 25m 8d 15h 45m 6h 47m 3.1 110.2 31.3 [11] 2012
SPAdes-scb 3.13.0 yes 16m 7h 52m 2h 26m 5.0 37.4 25.3 [18] 2012
SPAdes-rnab 3.13.0 yesc 11m 7h 24m 2h 17m 5.0 44.2 19.5 [17] 2018
IDBA-Tran 1.1.1 yes 7m 8h 49m 2h 44m 0.6 29.1 9.6 [12] 2013
SOAPdenovo-Trans 1.03 no 1m 1h 48m 24m 2.1 45.6 26.4 [13] 2014
Bridgerd 14-12-01 no 11m 21h 11m 5h 9m 1.6 109.3 30.4 [14] 2015
BinPackerd 1.0 no 5m 15h 57m 3h 3m 1.5 96.2 27.9 [15] 2016
Shannon 0.0.2 no 9m 10h 45m 3h 18m 3.8 121.4 83.6 [16] 2016
a
Oases was used on top of the de novo genome assembler Velvet (v1.2.10) [45].
b
SPAdes, originally designed as a de novo genome assembler for single-cell data, was used in single-cell modus (–sc) and RNA-Seq modus (–rna).
cWhen running SPAdes in RNA-Seq modus, two k-mer values are used by default.
d
Bridger and BinPacker are based on a splicing graph construction instead of de Bruijn graphs.

length transcripts (Tab. S10). Based on these observations, we
suggest that the RNA mode of SPAdes should be preferred for
the reconstruction of larger eukaryotic RNA-Seq data sets.
Our comparisons with an older version of SPAdes running in

RNA mode (at that time only one k-mer was allowed) revealed,
that the performance of the algorithm was greatly improved
by using two k-mers as it is now implemented in the current
version [17].
Trans-ABySS.
Compared to the other tools, Trans-ABySS [9] achieved the
highest re-mapping rates (98.45% for C. albicans, 99.56% for
the simulated data; Fig. S4), however arranges only within
the mid�eld or worse regarding the optimal score calculated
by TransRate. On the other hand, the assemblies produced
by Trans-ABySS achieved for six out of the nine data sets the
best RSEM-EVAL scores. Only Trinity slightly outperformed
Trans-ABySS regarding this metric for three data sets (Tab. S9).
Therefore, the transcripts constructed by Trans-ABySS are well
supported by the reads, used to build the assembly. Trans-ABySS
performed good in all BUSCO analyses and showed a high
amount of complete (C) ortholog detections (Fig. 3, Fig. S8).
Many hits occur multiple times (complete and duplicated), for
example in the C. albicans assembly (Fig. S8). This might be a
result of the multiple k-mer approach (MK), when too many
potential isoforms are assembled and not merged accurately at
the end of the assembly process. In accordance with this, the
assemblies of Trans-ABySS generally showed a high duplication
rate (Fig. S5). We observed similar results for the MK runs of
Oases [11]. Regarding the amount of fragmented (F) and miss-
ing (M) BUSCOs, Trans-ABySS arranges among the best perform-
ing tools (Fig. 3). Trans-ABySS achieved one of the highest OMS
of 94.8 of all assembly tools (Fig. 2) and performed best for the
large (human, mouse) data sets and the simulated data of hu-
man chromosome 1. By far, Trans-ABySS achieved the best MS
(14.24) for the non-infected human data set. The lowest met-
ric score was achieved for the bacterium data set (Fig. 2). Apart
from the running time (Tab. 3), these results make Trans-ABySS
one of the best-performing assembly tools in our comparison
(besides Trinity and SPAdes).

Bridger.

In general, Bridger [14] assemblies resulted in high re-
mapping rates between 87.35% (E. coli) and 96.72% (C. albi-
cans, Fig. S4). For almost all TransRate metrics, the Bridger
assemblies arrange in the mid�eld of scores (Tab. S6). Accord-
ing to the RSEM-EVAL scores, Bridger is performing generally
well among the top tools (Tab. S9). Furthermore, Bridger per-
formed well in the detection of complete BUSCOs with a mod-
erate amount of duplicated hits. The amount of missing BUS-
COs is comparably low (Fig. 3, Fig. S8). Based on a low du-
plication ratio and a low number of contigs, Bridger seems to
produce very compact but also complete assemblies, especially
for smaller data sets. The rate of mismatches per transcript is
generally low (Tab. S10). Altogether, Bridger assemblies are
of good quality and arrange among the top scores (OMS=89.3).

SOAPdenovo-Trans.

The re-mapping rate of SOAPdenovo-Trans [13] was generally
high (>85%), except for the E. coli data set (Fig. S4). SOAPdeno-
vo-Trans performed quite well regarding most TransRate statis-
tics and the calculated optimal score (Tab. S6). In most of the
cases, only the Trinity and SPAdes assemblies could outperform
SOAPdenovo-Trans regarding the TransRate metrics. The RSEM-
EVAL scores vary depending on the assembled RNA-Seq data
set (Tab. S9). For the HSA-EBOV-23h and M. musculus sample,
SOAPdenovo-Trans achieved good RSEM-EVAL scores, whereas
for the bacterial, the fungal, the plant and the simulated RNA-
Seq data the tool places among the last three assemblers. The
amount of complete and duplicated BUSCOs is very low (Fig. 3),
which correlates with the generally low amount of detected iso-
forms (e.g. compare number of 95%-assembled isoforms calcu-
lated with rnaQUAST, Fig. S5). This could be a result of the single
k-mer approach. SOAPdenovo-Trans achieved a good OMS of 87.3
(Fig. 2) and the assembler performed well on each evaluated
data set (MS between 10.28–15.05). SOAPdenovo-Trans was the
only assembly tool capable of reconstructing the entire Ebola
genome in a single contig from all three virus-infected data
sets.
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Shannon.
The most variant re-mapping rates were observed for
Shannon [16], ranging between 30.77% for the human simu-
lated data set and 96.51% for A. thaliana (Fig. S4). The Shannon
assemblies did not result in good TransRate optimal scores, how-
ever the percentage of uncovered bases is placed in the mid�eld
of all scorings and Shannon does not introduce that many am-
biguous bases in the assembled transcriptome (Tab. S6). The
RSEM-EVAL scores of Shannon vary among the assembled data
sets (Tab. S9). Regarding the amount of assembled complete
BUSCOs, Shannon arranges in the mid�eld and showed a rela-
tively high amount of duplicated hits (Fig. 3). Shannon achieved
a moderate OMS of 74.8 (Fig. 2).
IDBA-Tran.
In general, IDBA-Tran [12] achieved low re-mapping rates be-
tween 34.31% (E. coli) and 89.04% (A. thaliana), Fig. S4. How-
ever, the TransRatemetrics of the IDBA-Tran assemblies are gen-
erally good (Tab. S6). Comparable to SOAPdenovo-Trans, some of
the IDBA-Tran results arrange within the top three assemblies
regarding the optimal score calculated by TransRate. DETONATEs
RSEM-EVAL scores reveal a di�erent picture, as IDBA-Tran is
in many cases placed last regarding this metric and never
reaches the top �ve (Tab. S9). Furthermore, IDBA-Tran is one
of the tools with the lowest amount of complete BUSCOs and
a high amount of fragmented and missing BUSCOs (Fig. 3 and
Fig. S8). The number of 95%-assembled isoforms is generally
low (Tab. S10). IDBA-Tran is placed in the lower half of all met-
ric scores (OMS=73.3, Fig. 2) and showed the best performances
for smaller RNA-Seq data sets.
Oases.
The re-mapping rates of Oases [11] were generally good
(>85%). However, they dropped for the simulated human data
(73.26%), the HSA-EBOV-23h data (70.05%) and the E. coli
data (49.16%) below acceptable thresholds (Fig. S4). Oases
introduced the highest amount of ambiguous bases in the as-
semblies and arranges among the last places regarding the
TransRate statistics (Tab. S6). Oases assemblies place in the last
third regarding the RSEM-EVAL scores calculated by DETONATE.
However, a good amount of complete BUSCOs could be detected,
but many duplicate hits are included, which could be again a
result of theMK approach (Fig. 3). In addition, the Oases assem-
blies comprise an enormous number of contigs (as well as high
duplication rates) and introduce many misassemblies (Fig. S5).
Oases performed best for the plant, bacteria, and simulated data
and achieved an OMS of only 62.6 (Fig. 2).
BinPacker.
The re-mapping rates of BinPacker [15] were generally low
and vary a lot between data sets (36.6–96.7%, Fig. S4). The
TransRate metrics of the BinPacker assemblies are compara-
ble to the Bridger results, placing BinPacker among the lower-
performing tools regarding this statistic (Tab. S6). On the
other hand, BinPacker introduced only a low amount of am-
biguous bases in the assemblies. The RSEM-EVAL score is com-
paratively low, except for the human simulated data, where
BinPacker achieved a scoring similar to Bridger and reaches the
third place behind Trinity and Trans-ABySS (Tab. S9). Regard-
ing the detection of orthologs, BinPacker had the lowest perfor-
mance of all tools and was only able to assemble a reasonable
amount of complete BUSCOs for C. albicans, HSA-EBOV-7h and
the human simulated data set (Fig. 3 and Fig. S8). BinPacker
built the smallest assemblies in terms of the number of contigs
(Fig. S5). Interestingly, BinPacker achieved for most data sets
(and especially for the large human data sets) the best Ex90N50
values (Tab. S7). Therefore, it seems that BinPacker can con-
struct highly expressed transcripts into long contigs very well.

However, the general statistics and for example the BUSCO re-
sults show, that BinPackermisses a lot of transcripts that might
be of low expression in the data sets. Overall, the performance
of BinPacker is quite low (OMS=54.1, Fig. 2) and surprisingly far
away from the performance of Bridger (OMS=89.3), although
the assembler is build on the same principles and as an exten-
sion of Bridger [15]. In summary, BinPacker showed quite dif-
ferent behavior in relation to the MS values, which were gener-
ally low between 5.1 (M.musculus) and 12.24 (C. albicans), Fig. 2.
When designing this study, we also aimed to include an as-

sembly tool that is not based on k-mers. Mira [46] (v4.0rc5)
uses an overlap-consensus-graph for assembly and can be ex-
ecuted in EST mode for RNA-Seq data. However, for one hu-
man sample 62h runtime were needed, >300GB temporary
�les were produced and ∼130GB RAM consumed. Furthermore,
we were not able to detect any BUSCO hits in the Mira assem-
blies. Due to this low performance and high running time and
memory consumption, we decided to remove the tool from our
comparison.

Usability

We rated our experiences regarding the installation and usabil-
ity of each tool (Tab. 3). These experiences may be subjec-
tive, but we want to share them to give inexperienced users
an idea of how di�cult it is to install and run each tool.
Some of the tools rely on many dependencies and/or are more
di�cult to compile (Shannon, SOAPdenovo-Trans, Trans-ABySS),
at least on our test system without administrative permis-
sions, while others could be installed easily (SPAdes). Fur-
thermore, some assemblers need additional parameter �les
for execution (SOAPdenovo-Trans), are circuitous to run (Oases,
SOAPdenovo-Trans), need additional preprocessing steps of the
reads (IDBA-Tran assumes paired-end reads to be in order
forward–reverse), or are just not terminating for all data sets
(Bridger), while with others we had no problems and could ex-
ecute them straightforward (Trinity, SPAdes, BinPacker).

Bridger failed in the path search step for some of the gen-
erated temporary �les. Therefore we performed the last step
of Bridger by manually combining the transcript output. Fur-
thermore, we had to start Bridger two times for each data set,
because the tool crashed each time after the �rst start, but con-
tinued with the assembly when started a second time on the
same output folder (see execution commands in Files S3).
In the past, Oases and Trans-ABySS were always circuitous to

run, because the corresponding genome assemblers Velvet [45]
and ABySS [47] needed to be executed �rst withmultiple k-mers.
These di�culties were somehow emasculated by new wrapper
scripts provided by the developers to automatically execute the
underlying genome assemblers.

Computational e�ciency

Since de novo transcriptome assembly can involve the analysis
of large sequencing data, computational e�ciency is an impor-
tant benchmark, especially for deep sequencing projects and
large sample sizes. Furthermore, it is highly recommended to
runmultiple assemblies with di�erent tools and parameter set-
tings (for example di�erent k-mers), so computation time is
an important part of each tool. Tab. 3 summarizes the com-
putational time and the memory consumption of all data sets
and assemblers. Details can be found in Electronic Supplement
Fig. S11.
Runtime. By far, SOAPdenovo-Trans proved to be the fastest al-
gorithm with a median runtime of only 24m, followed by
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Figure 3. Selected BUSCO (benchmarked universal single-copy orthologs) [43, 44] assessment results for E. coli (A), C. albicans (B), A. thaliana (C), H. sapiens (D), HuH7
cells infected with EBOV 7h post infection (E) and flux simulated reads [29] of human chromosome 1 (F). The numbers indicate the absolut amount of complete
(C) and single-copy (S), complete and duplicated (D), fragmented (F), and missing (M) BUSCOs (see Methods for details). For our evaluation, we have used the
number of missing BUSCOs and the combined number of complete/single-copy and complete/duplicated BUSCOs to better consider alternative transcripts. BUSCO
results for all other data sets can be found in the Electronic Supplement, Fig. S8.
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SPAdes-rna (2h 17m), SPAdes-sc (2h 26m), IDBA-Tran (2h
44m), BinPacker (3h 3m), and Shannon (3h 18m) (Tab. 3,
Fig. S11). Older tools such as Oases (6h 47m) and Trans-ABySS
(11 h 11m), that are additionally based on a multiple k-mer
strategy (MK), are comparatively slower. For example, Oases
neededmore than 8 days for the large human RNA-Seq data set.
If these tools would be executed only on one k-mer, the run-
time would be comparable with the other assemblers or even
faster. SOAPdenovo-Trans can also run on di�erent k-mers, but
no automatic merge function for the di�erent assemblies is
implemented. The Trinity runtime (6h 40m) lays between
the faster tools and the slower MK approaches, although the
tool relies on one k-mer only. Although based on a MK strat-
egy, IDBA-Tran and SPAdes are much faster than the older MK-
algorithms and can compete against the other single-k-mer
tools in the sense of speed.
Memory consumption. IDBA-Tran appeared to be the tool with
less memory consumption estimated over all data sets (median
9.6GB and maximum 29.1GB, Tab. 3, Fig. S11). Shannon showed
really high memory peaks (median 83.6GB), especially for the
larger data sets (more than 100GB for the EBOV-infected hu-
man samples, see Fig. S11), followed by Oases (31.3GB), Bridger
(30.4GB) and BinPacker (27.9GB).
When running Trinity (median memory 27.7GB), we ob-

served in the �rst phase of assembly (meaning in the �rst
seconds up too few minutes, depending on the size of the in-
put data set) very high memory peaks, especially for the larger
data sets. For example, in the �rst �ve minutes of execution
of all human data sets we noticed memory peaks of ∼240GB
with Trinity. Immediately after this initial peak, the mem-
ory consumption dropped down to comparatively normal lev-
els (Fig. S11). In the Electronic Supplement �gures S11, we re-
moved the high initial memory peaks observed for Trinity from
the comparison to achieve a better overview of the memory us-
age of all assemblers. The high memory consumption in the
�rst phase might be a result of the many individual de Bruijn
graphs build by Trinity based on partitions of the sequence
data [10].
Users should pay particular attention to planning enough

processing power and time when usingmany tools for di�erent
parameter settings, especially when working on projects with
high sequencing depth and large sample size.

Contamination of viruses drops performance of most
assembly tools

Although not the main focus of this study, we were interested
in how the assemblers work with RNA-Seq data as virus con-
tamination increases, and whether they are still able to con-
struct complete viral genomes. Therefore, we used Blastn [48]
to search for contigs in the virus-infected assemblies (Fig. 1)
that match the full genome of the Ebola virus (EBOV). The EBOV
genome comprises a single-stranded RNA genome with neg-
ative orientation and a size of approximately 19kb [49]. We
assembled three human samples infected with EBOV at three
di�erent time points. Therefore, we were able to investigate
how the di�erent assemblers perform on increasing amounts
of viral reads in the data (3h: ∼0.1% viral reads, 7h: ∼2%, 23h:
∼20%; compare [33]).
Surprisingly, the performance of most assembly tools

in constructing the viral RNA genome decreased with a
higher amount of viral reads. In general, Trans-ABySS,
SOAPdenovo-Trans, Trinity, Shannon, Bridger, BinPacker, and
SPAdes (--sc and --rna mode) performed well and constructed
the full EBOV genome out of the 3h data set. On the 7h data set
(∼2% viral reads), Trinity and SOAPdenovoTrans performed best.

Trans-ABySS assembled two contigs (9.2kb and 9.7kb) that to-
gether would represent the entire EBOV genome. Bridger and
BinPacker were only able to construct the same 10kb partial
EBOV genome. SPAdes-rna assembled a partial viral contig of a
length of 16kb. After 23h post infection and a viral read con-
tamination of almost ∼20%, only SOAPdenovo-Trans was able to
construct the full EBOV genome with a high accuracy (18,901nt,
99.53%). Bridger, BinPacker, and Trans-ABySS constructed par-
tial virus genomes of a length of 14.8kb, 12kb, and 10.6kb,
respectively. Trinity built two contigs of similar length that
together would cover the entire viral genome.

Discussion

Although the evaluation of de novo transcriptome assemblies
was frequently performed in the past [6, 19–24, 26], there is
still a lack of knowledge which assembler should be used for
which kind of RNA-Seq data. Furthermore, these studies rely
on limited data sets (e.g. a single species, a single sequencing
protocol) or focus only on a subset of all currently available
assembly tools. Here, we present a comprehensive evaluation
of ten de novo assembly tools across various RNA-Seq data sets
of di�erent kingdoms of life.

Using a combination of biological-based and
reference-free metrics to evaluate an assembly

We evaluated biological/reference-based metrics and
statistical/reference-free metrics only based on the in-
put read data and the �nal assembly itself. Evaluation metrics
are very important to assess the quality of a genome or
transcriptome assembly. However, there is a lack of consensus
which evaluation metrics work best for de novo transcriptome
assembly.
For example, Rana et al. [50] compared di�erent assemblers

and k-mer strategies using killi�sh RNA-Seq data and based
their comparisons on eleven selected metrics, such as con-
tig number, N50 value, contigs >1kb, re-mapping rate, num-
ber of full-length transcripts, number of open reading frames,
DETONATEs RSEM-EVAL score and the percentage of alignments
to closely related �sh. Another study performed comparisons
on peanut RNA-Seq data and evaluated the assemblies on met-
rics such as N50, average contig length, number of contigs and
the number of full-length transcripts [51]. Moreton et al. also
used the N50 length, the number of transcripts, the number
of transcripts ≥1 kb and RMBT and CEGMA percentages when
evaluating di�erent assemblies of duck [52]. Surely, more in-
formation on which metrics best predict the quality of a de novo
transcriptome assembly would help to establish “best practice”
protocols that could be further utilized to develop automatic
evaluations to improve assemblies.
There is still a general lack of which metrics should be

used for an appropriate evaluation of de novo transcriptome
assemblies. More complicating, we observed that some met-
rics are contradicting each other, such as the optimal assembly
score calculated by TransRate [42] and the RSEM-EVAL score
of DETONATE [41]. For example, assemblies of the Homo sapiens
simulated data set achieved the best RSEM-EVAL scores for
Trans-ABySS and Trinity, whereas Shannon and IDBA-Tran per-
formed worst (Tab. S9 and S10). However, IDBA-Tran achieved
the second-best optimal score of TransRate only outperformed
by SPAdes-sc and Shannon arranges on the next-to-last place
regarding this metric (Tab. S6 and S10). On the other hand,
certain metrics can be highly correlated (Figs. S12) and there-
fore lead to further distortions in assembly evaluation.
We conclude, that a careful selection of biological-based
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and reference-free evaluation metrics is necessary to select
the best performing results out of multiple assembly runs. In
addition, the normalization and the way the results of di�er-
ent metrics are summarized can have a high in�uence on the
evaluation. Based on our observations, we suggest to initially
use reference-free metrics as provided by the TransRate [42]
software. In general, TransRate’s optimal assembly score seems
to be a good measure of the quality of an assembly. Assem-
blies, that needed fewer contigs for a comprehensive descrip-
tion of the whole transcriptome achieved in most cases also
good TransRate scores (Tab. S6). However, this score can be
only calculated for paired-end RNA-Seq data at the moment.
If biological/reference-based metrics should be in-

cluded, the 95%-assembled isoforms statistics calculated by
rnaQUAST [39] as well as the scores calculated by BUSCO [43, 44]
and the number of fully reconstructed protein-coding transcripts
are good metrics for the evaluation of the best assembly
results.

Di�erent species and RNA-Seq setups require special-
ized assembly tools

Although no tool performed dominantly best for all data sets,
we found that Trinity [10], SPAdes [17, 18] and Trans-ABySS [9]
produced consistently good assemblies among all data sets, fol-
lowed by Bridger [14] and SOAPdenovo-Trans [13] (Fig. 2).

SPAdes, although originally developed as de novo assembly
tool for small genomes, produced also highly accurate tran-
scriptome assemblies in bothmodes, for single-cell (SPAdes-sc)
and RNA-Seq data (SPAdes-rna). Interestingly, the single-cell
mode outperformed the RNA mode for some of the data sets re-
garding our metrics (Fig. 2). This might be a result of the two
k-mer approach and the di�erent handling of single-end data
in the RNAmode. According to the authors [17], SPAdes-rnawas
initially designed based on the principles of SPAdes-sc, so amul-
tiple k-mer option could be easily activated as well. However,
it was noticed that smaller k-mers result in a higher number of
false junctions and lead to more misassemblies for transcrip-
tomic data. Therefore, the authors decided to only use two k-
mers as the default in RNA mode [17]. Furthermore, to join
sequences with small overlaps, SPAdes-rna uses a gap-closing
procedure based on read-pairs [17]. Indeed, this might be one
reason why SPAdes-rna achieved for some metrics lower scores
for single-end data. Taking a closer look at the BUSCO results,
SPAdes produced in both modes the lowest amount of complete
and duplicated transcripts (Fig. 3). This could further indicate
that SPAdes merges highly similar transcripts into single con-
tigs, therefore losing similar isoforms. This behavior can be
also observed when looking at the number of 95%-assembled
isoforms calculated with rnaQUAST (Fig. S5 and Tab. S10). Here,
the single-cell mode of SPAdes arranges for most data sets in
the mid�eld whereas in RNA mode more complete isoform as-
semblies are constructed.
On closer examination of the BUSCO (Fig. 3) and fully-

reconstructed transcript results, Oases [11] performed well over-
all. However, the tool produced the highest quantities of com-
plete and duplicated hits, which might indicate that highly
similar isoforms derived from the multiple k-mer approach
are not resolved e�ciently. Oases, as well as Trans-ABySS
and SOAPdenovo-Trans, are constructing large assemblies with
a high number of (sometimes very small) contigs. By far,
Oases constructed the highest amount of contigs, however did
not achieve the best reference coverage in all test cases. For
example the Oases assembly of the H. sapiens data set com-
prises ∼207,000 transcripts with a length >1000nt, covering
only 8% of the reference transcripts (Tab. 2). In compari-
son, the Trans-ABySS assembly needed only ∼59,000 contigs

with a length >1000nt to achieve a reference coverage of 26%
(Tab. S10). Therefore, Oases has the potential to create good
assembly results, but also produces big assemblies with many
contigs that might complicate and confuse downstream analy-
ses.
With an average runtime of only 24 minutes over all data

sets (maximum runtime 1h 48min), SOAPdenovo-Trans [13] out-
performed all other assemblers (Tab. 3, Fig. S11). Combined
with the moderate memory consumption (median 26.4GB,
maximum 45.6GB), this makes SOAPdenovo-Trans the most
resource-e�cient tool evaluated in this study. However, it
might be interesting to run multiple k-mer assemblies with
SOAPdenovo-Trans and use another assembly merge strategy
(e.g., conducted from Oases or TransABySS) to merge the �nal
transcripts resulting from each run. In general, multiple k-mer
approaches (Trans-ABySS, SPAdes, IDBA-Tran, Oases) performed
better than single k-mer approaches regarding full-length iso-
form reconstruction and assembly completeness.
As long as the amount of viral contamination in RNA-

Seq data is low (∼0.1%), all assembly tools except Oases and
IDBA-Tran generated accurate viral contigs with high similar-
ity to the EBOV genome and a length >18kb. In general,
SOAPdenovoTrans performed best on all three virus infected data
sets by constructing accurate full-length contigs with high
similarity to the EBOV genome. Therefore, it is interesting to
evaluate the performance of SOAPdenovo-Trans for the construc-
tion of RNA viral genomes out of meta-transcriptomic RNA-
Seq data in the future.

Potential implications

Here, we present a large-scale comparative study by applying
ten de novo assembly tools to nine RNA-Seq data sets compris-
ing di�erent kingdoms of life (Fig. 1). Overall, we calculated
more than 200 single assemblies and evaluated their perfor-
mance on di�erent metrics (Tab. 4). All results are summa-
rized in a comprehensive Electronic Supplement, that is easily
extendible bymore RNA-Seq data sets, new assembler versions,
parameter settings and tools. We summarize some key �nd-
ings from our comparative study:
(I) No tool performed dominantly best for all data sets. How-

ever, Trinity, SPAdes and Trans-ABySS, followed by Bridger
and SOAPdenovo-Trans, were among the best assembly tools
(Fig. 2).

(II) SOAPdenovo-Trans followed by Trinity performed best for
the construction of the Ebola virus single-stranded RNA
genome at all three time points tested.

(III) SOAPdenovo-Trans had the lowest runtime, followed by
SPAdes, IDBA-Tran, Shannon and BinPacker.

(IV) For assembly evaluation, we recommend a hybrid-approach
by combining biological-based (e.g. BUSCO [43, 44], the num-
ber of full-lenght transcripts) and reference-free metrics (e.g.
TransRate [42], DETONATE [41]).
In general, assembly tools such as Trinity, SPAdes and

Trans-ABySS, which are still well maintained, outperformed
other tools and should be preferred.
Some of our metrics might not provide independent assess-

ment metrics, such as the number of Complete BUSCOs and the
number of full-length transcripts (see Figs. S12). To account for
such bias between highly correlated metrics, each of our (0,1)-
normalized scoring vectors (see Methods) could be multiplied
with a weight value (e.g. 0.5). Since it is a somewhat arbitrary
decision on how to set the weight value for each metric and
because we have also observed di�erences between the data
sets, we have decided to not adjust weights in this comparison.
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However, we only chose one of several metrics if our results
suggested a strong correlation. In addition, our overall results
do not appear to be strongly in�uenced by such metric correla-
tions on the basis of our internal comparisons. Future assembly
evaluation tools may allow the user to de�ne weights for spe-
ci�c metrics or could calculate di�erent weights automatically
based on other statistics. Another possibility could be to bun-
dle potentially correlated metrics on the basis of very similar
normalized evaluation vectors.
Furthermore, our current comparison does not accurately

test how well the individual assemblers reconstruct alterna-
tively spliced transcripts. Therefore, another metric could be
included to consider the assembler’s ability to reconstruct dif-
ferent isoforms as an important aspect of a comprehensive
evaluation of transcriptome assemblies.

Limitations and future work

We still recommend applying di�erent tools and parameter
settings for de novo transcriptome assembly, followed by the
evaluation of the output transcripts and selecting the best-
performing results. This general idea needs to be investigated
in more detail in future studies. The selection of the best
assemblies based on appropriate metrics and the subsequent
clustering process (without loss of isoforms and the additional
introduction of greater redundancy) remain challenging and
open tasks.
Dynamic extension of this comparison.
A common problem of many comparative studies is that they
can only make limited proposals based on the tools and data
sets available at the time they were conducted. The Electronic
Supplement provided here remains consistent with the pre-
sented results, but can be extended with other metrics, data
sets and assembly tools in future updates.
Cluster assembly.
Furthermore, the complementary performance of the top per-
forming tools motivated the development of an ensemble
method by combining the best performing methods to achieve
an overall better assembly. Based on our �ndings, a pipeline
should be developed, that automatically selects the top per-
forming assemblies (or only the best transcripts from each
assembly) using a hybrid approach of biological-based and
reference-free metrics and clusters them based on sequence-
similarity and read-coverage to achieve a more comprehensive
assembly.
For the large bioinformatics community working in the area

of RNA-Seq, the development of a high-performing (accurate
and fast) de novo transcriptome cluster work�ow to automati-
cally select and combine the output of top-performing assem-
bly tools remains a challenging however crucial task.

Methods

Description of assembly tools and executed commands

We collected ten de novo assembly tools for the transcriptome
reconstruction of the nine RNA-Seq data sets (Tab. 1), summa-
rized in Tab. 3 and Electronic Supplement Tab. S2.
Six of these transcriptome assemblers are specially de-

signed for working with RNA-Seq data and are based on
de Bruijn graphs: Trans-ABySS (RRID:SCR_013322) [9], Trinity
(RRID:SCR_013048) [10], Oases (RRID:SCR_011896) [11],
IDBA-Tran (RRID:SCR_011891) [12], SOAPdenovo-Trans
(RRID:SCR_013268) [13], and Shannon [16].

Trans-ABySS and Oases are built on top of the de novo genome
assemblers ABySS v2.1.1 (RRID:SCR_010709) [47] and Velvet
v1.2.10 (RRID:SCR_010755) [45], respectively. Both support
multiple k-mer values by running the underlying genome as-
sembler multiple times and merging the assembled contigs.
We executed Trans-ABySS (v2.0.1) and Oases (v0.2.08) with mul-
tiple k-mers (MK) and in strand-speci�c mode, if suitable
(Files S3).

Trinity and SOAPdenovo-Trans (the later one build on
the principles of SOAPdenovo2 (RRID:SCR_014986) [53]) are
stand-alone de novo transcriptome assembly tools, also based
on de Bruijn graphs but lacking an automated MK support.
Whereas for SOAPdenovo-Trans di�erent single k-mer values can
be applied, Trinity relies on a �xed k-mer value of 25. Trinity
(v2.8.4) was run with default parameters and, if suitable, in
strand-speci�c mode (Files S3). For SOAPdenovo-Trans (v1.03),
currently no strand-speci�c assembly is supported [13].

IDBA-Tran (v1.1.1), a novel assembly tool that claims to be
more robust regarding uneven expression levels in RNA-Seq
data [12], was run with multiple k-mers and has no option for
strand-speci�c assembly (Files S3). IDBA-Tran assumes paired-
end reads to be in order (->, <-; forward–reverse), therefore we
manually converted reads if necessary.

Shannon (v0.0.2), a so-called information-optimal de novo
RNA-Seq assembler [16], was used with a single default k-mer
value and if suitable in strand-speci�c mode (--ss; Files S3).
We used Bridger [14] (v2014-12-01) and BinPacker [15]

(v1.0), two assembly tools that rely on splicing graphs [14] in-
stead of de Bruijn graphs. Bridger provides a new framework
for de novo transcriptome assembly, that “bridges” between
techniques employed in the Cufflinks [54] pipeline and the
Trinity tool, in order to overcome the limitations of Trinity.
BinPackerwas developed based on the principles of Bridger and
utilizes similar to Shannon coverage information to e�ciently
dissolve corresponding isoforms. Bridger can only run with
single k-mer values between 19 and 32 with a default of 25.
We executed Bridger with the default k-mer and, if possible,
with the strand-speci�c option (--SS_lib_type). However, for
two strand-speci�c RNA-Seq data sets (M. musculus, H. sapi-
ens) the tool failed and was executed in the default unstranded
mode (Files S3). We observed problems with strand-speci�c
paired-end data in this version of Bridger. The strand-speci�c
assembly of the single-end E. coli data (--SS_lib_type F) was
running without problems. BinPacker was executed on a single
k-mer value and if suitable in strand-speci�c (-m F|RF) mode
(Files S3).
We further included SPAdes v3.13.0 (RRID:SCR_000131) [18],

a widely used de novo genome assembler based on de Bruijn
graphs and multiple k-mer values. We were interested, how
good the tools optimization for single-cell assembly can be
applied to RNA-Seq data and how the tool performs in con-
trast to the specialized transcriptome assemblers mentioned
above. Since version 3.9.0 an RNA-Seq mode is implemented,
which uses two k-mers for assembly so far [17]. We evaluated
the performance of SPAdes in single-cell (--sc; SPAdes-sc) and
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RNA-Seq (--rna; SPAdes-rna) mode. Henceforth, we refer to
SPAdes-sc and SPAdes-rna as two di�erent assemblers, although
both are based on the same tool.
In total, we calculated more than 200 single k-mer as-

semblies (Files S3; doi.org/10.17605/OSF.IO/5ZDX4). Each as-
sembler was run on each data set (Fig. 1). If possible, mul-
tiple k-mers were used (Tab. 3). Trans-ABySS, Oases and
IDBA-Tran dispose a built-in functionality for multiple k-mers.
SPAdes-sc/-rna can automatically choose multiple/two k-mers
for the assembly process and were therefore executed with this
default options. For the E. coli, A. thaliana, H. sapiens, and the
arti�cial data sets k-mers 25, 35, 45, 55 and 65 were used with
Trans-ABySS, Oases, and IDBA-Tran. M. musculus data was as-
sembled with the k-mers: 25, 35, 45 and 55, because the read
length is shorter in comparison to the bacterial and plant data
sets. The short-read C. albicans data was run with k-mers 21,
27, 33 and 39. The EBOV infected HuH7 samples were run with
k-mers 25, 29, 33, 37 and 41. All k-mer values were selected
based on previous results for these data sets and in relation to
the di�erent read lengths and sequencing setups. All assem-
blers were run with default parameters, if not otherwise stated.
Details about the execution of each tool on each data set can be
found in the Electronic Supplement, Files S3.

Evaluation metrics

We benchmarked all assembly results using various evaluation
tools (Fig. 1) from which 20 metrics were selected (summa-
rized in Tab. 4). Nine metrics are based on reference sequences
and annotations, whereas the others are only based on the �-
nal assembly itself (the contigs) or the reads that were used to
construct the assembly. We also evaluated the computational
e�ciency (runtime, memory) to assess the applicability of the
tools for deeply sequenced data sets and/or large sample size.
Mapping rate.
We have used HISAT2 v2.0.4 (RRID:SCR_015530) [40] to map
the quality controlled reads back to each assembly. The re-
mapping rate can give �rst insights into the quality of a tran-
scriptome assembly (Fig. S4), however further metrics are
needed to assess a more complete picture of each assembler’s
performance.
Ex90N50.
We have used the Trinity [10] toolkit utilities to calculate a
modi�cation of the widely used Nx statistic that also takes tran-
script expression data into account. This so-called expression-
informed ExN50 statistic compensates for short and weakly ex-
pressed transcripts that can dominate a transcriptome assem-
bly and can drive the N50 value towards small values for high-
quality assemblies. Here we refer to the Ex90N50 value, which
calculates the N50 statistics as usual, but is limited to the most
highly expressed transcripts, which account for 90% of the to-
tal normalized expression data. We used Salmon [55] (v0.11.3)
for fast alignment-free abundance estimation to calculate the
Ex90N50 values (Tab. S7).
Reconstruction of full-length protein-coding transcripts.
To assess the number of (nearly) full-length recon-
structed protein-coding transcripts, we used Blastx
(RRID:SCR_001653) [48] against the UniProtKB/Swiss-
Prot database (RRID:SCR_004426) [56] followed by scripts
provided by the Trinity [10] toolkit utilities. To improve the
overall sequence coverage, we �rst grouped Blast hits of a
single transcript aligning to a single protein sequence with
several discontinuous alignments for each assembly (Trinity
toolkit script: blast_outfmt6_group_segments.pl). Based on

Table 4. Selected evaluation metrics applied for each assemblyand data set. Metrics highlighted in gray are biological/reference-based. All other metrics only rely on the reads used to build theassembly and/or the resulting contigs. Details can be found in theMethods.
Nr. Tool Selected metric Ref.
1 HISAT2 Overall mapping rate [40]
2 rnaQUAST Transcripts ≥1,000nt [39]
3 Misassemblies
4 Mismatches per transcript
5 Average alignment length
6 95%-assembled isoforms
7 Duplication ratio
8 Trinity/Salmon Ex90N50a [10, 55]
9 Trinity/Blastx Full-length transcriptsb [10, 48]
10 TransRate Reference coverage [42]
11 Mean ORF percentage
12 Optimal scorec
13 Percentage bases uncoveredc
14 Number of ambiguous bases
15 DETONATE Nucleotide F1 [41]
16 Contig F1
17 KC score
18 RSEM-EVAL
19 BUSCO Complete BUSCOsd [43, 44]
20 Missing BUSCOs
aN50 statistic limited to the most highly expressed transcripts, which account for 90% of
the total normalized expression data, calculated with the Trinity toolkit utilities.
bNumber of proteins covered by more than 90% by assembled transcripts.
cNot available for the E. coli and A. thaliana data set because only calculated by TransRate

if paired-end data is available.
dSum of complete single-copy and complete duplicated BUSCOs.

the grouped output, we have calculated the distribution of
the percentage length coverage for the top matching database
entries (blast_outfmt6_group_segments.tophit_coverage.pl).
Finally, for each assembly the number of proteins that
are covered by more than 90% of their proteins length by
assembled transcripts were reported.
Please note, that we performed the Blastx search with the

parameters -evalue 1e-20 and -max_target_seqs 1. By setting
the maximum target sequences to 1, we drastically reduced
the runtime but only reported the �rst hit passing the e-value
threshold. Therefore, we not necessarily report the best match
for each transcript. This problem of misinterpretation of the
parameter was recently discussed in the bioinformatics com-
munity [57]. However, for our comparison the overall results
would only change slightly by increasing the maximum num-
ber of target sequences.

rnaQUAST.

We used rnaQUAST [39] (v1.5.1) to calculate various statistics for
each assembly and to demonstrate the completeness and cor-
rectness levels of the assembled transcripts. The tool was run
with reference transcriptomes to calculate the sensitivity and
speci�city of an assembly. In order to check for redundancy in
the assemblies, we have included the duplication ratio from the
sensitivity report as one metric. Furthermore, rnaQUAST calcu-
lates various bar plots and histograms to visualize basic statis-
tics such as transcript lengths, mismatch rates and the num-
ber of transcript alignments per isoform. All plots and detailed
statistics can be found in the Electronic Supplement, Fig. S5.
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TransRate.
TransRate [42] (v1.0.3) examines an assembly and compares it
to experimental evidence such as the reads the assembly was
built on. One of our metrics relies on the optimal reference-
free TransRate score that utilizes only the reads that were used
to generate the assembly as an evidence (Tab. 4). Such a met-
ric should be generally better to optimize the assembly process
because the comparison to a reference will always penalize gen-
uine biological novelty contained in the assembly. The score is
produced for the whole assembly and for every single contig.
Currently, the score can be only calculated for paired-end data.
The score of an assembly is calculated as the geometric mean
of all contig scores multiplied by the proportion of input reads
that provide positive support for the assembly [42]. Thus, the
score captures how con�dent one can be in what was assem-
bled, as well as how complete the assembly is. The minimum
possible score is 0.0, while 1.0 is the maximum score.
DETONATE.
We further used the DETONATE work�ow: a pipeline for the “DE
novo TranscriptOme rNa-seq Assembly with or without the
Truth Evaluation” [41] (v1.11). We mainly focused on DETONATEs
RSEM-EVAL score. This statistically based evaluation score uti-
lizes multiple factors, such as the compactness of the assembly
and its support from the RNA-Seq reads. Therefore, the RSEM-
EVAL score can be used to evaluate assemblies even when the
ground truth is unknown. Assemblies with higher RSEM-EVAL
scores are considered better. DETONATE was run for all assem-
blies as recommended in the online vignette [58]. The main
metrics calculated by DETONATE can be found in Electronic Sup-
plement Tab. S9.
BUSCO.
We benchmarked universal single-copy orthologs with BUSCO
v2.0 (RRID:SCR_015008) [43]. The tool detects orthologous
candidate genes in the assemblies and assesses the presence
and abundance of single-copy orthologs as an evaluation crite-
ria. The so-called BUSCOs are selected from OrthoDB ortholo-
gous groups at major species radiations requiring orthologs to
be present as single-copy genes in the vast majority (> 90%)
of available species. BUSCO provides a quantitative assessment
of the completeness of an assembly in terms of expected gene
content. The results are further simpli�ed into categories of
(i) complete and single-copy, (ii) complete and duplicated, (iii)
fragmented, or (iv) missing BUSCOs. For our evaluation, we
summed up the amount of complete/single-copy and com-
plete/duplicated BUSCOs to also take into account the di�erent
isoforms reconstructed from the assembly tools.
For the evaluation of the simulated human data set, the

Euarchontoglires reference data set was reduced to BUSCO or-
thologs originating only from human chromosome 1 (#671
BUSCOs). The full BUSCO output for each data set can be found
in the Electronic Supplement, Fig. S8.

Calculation of normalized evaluation scores

We investigated the performance of ten de novo assembly tools
ak ∈ {a1, . . . , a10} on nine RNA-Seq data sets di ∈ {d1, . . . , d9}using 20 pre-selected metrics mj ∈ {m1, . . . ,m20}. For eachcombination of a data set di and a metric mj we de�ne a vector
v̄i,j of raw scores ri,jk for each assembly tool ak as

v̄i,j = (ri,j1 , . . . , ri,j10)
Then, we normalized the values of the vector v̄i,j to the in-

terval (0,1) using

normalize(v̄i,jk ) =
v̄i,jk –min(v̄i,j)

max(v̄i,j) –min(v̄i,j) = n
i,j
k

and denoted the resulting vector of (0, 1)-normalized scores
as

n̄i,j = (ni,j1 , . . . ,ni,j10)
For example, the following vector of raw scores results for

the E. coli data set deco, the metric overall mapping rate momr,and the corresponding raw scores of all ten assembly tools:

v̄eco,omr = (77.0, 49.1, 95.7, 56.6, 87.4, 71.1, 34.3, 76.7, 88.0, 89.0)

In this case, the assembly tool a3 achieved an overall map-ping rate of 95.7. After (0,1)-normalization the vector results
in:

n̄eco,omr = (0.7, 0.24, 1.0, 0.36, 0.86, 0.6, 0.0, 0.69, 0.88, 0.89)

This normalization of the raw metric values to the interval
(0,1) yields the same results as a z-score transformation with
additional (0,1)-normalization.
We de�ne the metric score MS for an assembly tool ak and a

data set di as the sum of all (0, 1)-normalized scores n̄i,jk overall 20 pre-selected metrics mj as

MS(di, ak) =
20∑
j=1
n̄i,jk

An MS(di, ak) of 14.62 would mean that the assembler akfor data set di achieved a normalized and summarized scoreof 14.62 from a maximum possible score of 20 (the number of
metrics; denoted as 14.62/20).
To get a more general overview of the performance of each

assembler, we summed up the metric scores MS an assembler
achieved for each data set di to calculate an overall metric score(OMS) for each assembler:

OMS(ak) =
9∑
i=1
MS(di, ak)

The three human RNA-Seq data sets treated with the Ebola
virus 3, 7, and 23h post infection [33] are based on the same se-
quencing parameters and comprise roughly the same amount
of reads (Fig. 1 and Tab. S1). Due to this similarity, we de-
cided to reduce the impact of systematic assembly errors when
calculating the OMS for one assembly tool and used the mean
of all three MS scores for these three data sets (Fig. 2). For
example, Trans-ABySS [9] performed very well in constructing
the human transcripts out of all three Ebola-infected data sets
regarding the MS (14.35/20, 14.11/20, and 13.87/20), whereas
BinPacker [15] did not (4.81/20, 9.17/20, and 7.55/20), see
Fig. 2.
The maximum achievable metric score for the E. coli and

A. thaliana data sets is 18 and not 20, because the optimal
score and the percentage of uncovered bases are only calculated by
TransRate [42] in the case of paired-end data. The calculated
metric scores (MS) and overallmetric scores (OMS) are summarized
in Fig. 2.
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Computational resources

All calculations were run on two symmetric multiprocessing
servers with 14TB storage (raid-5) and 48CPU cores each, com-
prising four AMD Opteron 6238 CPUs and 512GB RAM. Each
assembly was executed on 48 threads.

Usability

We further aimed to install and run all tools without root rights
on our test system (Debian GNU/Linux 8 (jessie) 64-bit). Of
course, how easy a tool can be installed and executed heavily
depends on the used machine, the server setup and how famil-
iar the user is with the programing language the tool is based
on. Nevertheless, it should be the goal of each public available
piece of software to be as user-friendly as possible. Therefore,
we collected our experiences during the installation and execu-
tion of each assembler to share our observations (Tab. 3).

Availability of supporting data and materials

This study is accompanied by a comprehensive Electronic Sup-
plement publicly available at www.rna.uni-jena.de/supplements/
assembly [38]. The electronic supplement will stay consistent
with the results presented in this paper. Updates, including
new assembly tools, versions, and data sets, will be marked
and additionally linked on subpages online. In addition, we
have uploaded all processed read data, assemblies, blast align-
ments, mapping �les and the complete electronic supplement
as an additional archive into the Open Science Framework un-
der accession doi.org/10.17605/OSF.IO/5ZDX4 [59]. Additional
intermediate and �nal result �les for evaluation tools such as
BUSCO and TransRate as well as other results are also archived
in the GigaScience GigaDB respository [60].
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