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Abstract: Background

The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusk with
a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic
waters. The elusiveness of the species makes it difficult to study. Thus, having a
genome assembled for this deep-sea dwelling species will allow unlocking several
pending evolutionary questions.

Findings

We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of
Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size
matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also
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present an alternative assembly including 27 Gb raw reads generated using the Pacific
Biosciences platform. In addition, we sequenced the proteome of the same individual
and RNA from three different tissue types from three other species of squid to assist
genome annotation. We annotated 51,225 unique protein coding genes, from which
30,472 have transcript evidence. Genome completeness estimated by BUSCO
reached 92%. Repetitive regions cover 49.17% of the genome.

Conclusions

This annotated draft genome of A. dux provides a critical resource to investigate the
unique traits of this species, including its gigantism and key adaptations to deep-sea
environments.
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Abstract 113 

Background 114 

The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusk with a circumglobal 115 

distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the 116 

species makes it difficult to study. Thus, having a genome assembled for this deep-sea dwelling species 117 

will allow unlocking several pending evolutionary questions. 118 

Findings 119 

We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic 120 

long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 121 

Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads 122 

generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same 123 

individual and RNA from three different tissue types from three other species of squid to assist genome 124 

annotation. We annotated 51,225 unique protein coding genes, from which 30,472 have transcript 125 

evidence. Genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of 126 

the genome.  127 

Conclusions 128 

This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this 129 

species, including its gigantism and key adaptations to deep-sea environments. 130 

Keywords 131 

Cephalopod, invertebrate, genome assembly. 132 

  133 
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Data description 134 

Context 135 

Cephalopods are the most behaviourally complex of the invertebrate protostomes [1] . Their large, highly 136 

differentiated brains are comparable in relative size and complexity to those of vertebrates [2], as are 137 

their cognitive capabilities [1]. Cephalopods are distributed worldwide from tropical to polar marine 138 

habitats, from benthic to pelagic zones and from intertidal areas down to the abyssal parts of the deep 139 

sea, with the only exception being the Black Sea. Cephalopod populations are thought to be currently 140 

increasing locally for a variety of reasons [3], including potential predator release as a consequence of the 141 

depletion of fish stocks [4]. The class Cephalopoda contains approximately 800 species, with the vast 142 

majority belonging to the soft-bodied subclass Coleoidea (cuttlefishes, octopuses and squids), and a small 143 

handful belonging to the Nautiloidea (nautiluses) [5]. Cephalopods are ecologically important as a primary 144 

food source for marine mammals, birds and for many fish species. They are also increasingly important as 145 

a high-protein food source for humans and are a growing target for commercial fisheries and farming [6]. 146 

Cephalopods show a wide variety of morphologies, lifestyles and behaviours [7], but with the exception 147 

of the nautiluses they are characterised by having rapid growth and short lifespans, despite a considerable 148 

investment in costly sensory adaptations [2]. They range in size from the tiny pygmy squids (~2cm) to 149 

animals that are nearly 3 orders of magnitude larger, such as the giant squid, Architeuthis dux (at least 10-150 

12m and reported up to 20m total length) [6,8,9], to the colossal squid, Mesonychoteuthis hamiltoni 151 

(maximum length remains unclear, but a recorded weight of 500kg makes it the largest known 152 

invertebrate [10]). A sophisticated adaptive body patterning system that can rapidly alter the texture, 153 

pattern, colour and brightness of its skin, facilitates a complex communication system, while also 154 

providing exceptional camouflage and mimicry [11]. Together these allow cephalopods to both avoid 155 

predators, and hunt prey highly efficiently, making them some of the top predators in the ocean. The 156 

remarkable adaptations of cephalopods also extend to their genome, with recent work demonstrating 157 
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increased levels of RNA editing to diversify proteins involved in neural functions [12]. 158 

Over recent years, oceanic warming and acidification, pollution, expanding hypoxia and fishing [13–15] 159 

have been shown to affect cephalopod populations. Depletion due to high rates of cephalopod by-catch 160 

in commercial fisheries can also result in regional extinction [16]. Mercury has been found in high 161 

concentrations in the tissue of giant squid specimens [17], and accumulation of flame retardant chemicals 162 

has also been detected in the tissue of deep-sea cephalopods [18]. Consequently, there is an urgent need 163 

for greater biological understanding of these important, but rarely encountered animals, in order to aid 164 

conservation efforts and ensure their continued existence. A genome is an important resource for future 165 

population genomics studies aiming at characterizing the diversity of the legendary giant squid, the 166 

species which has inspired generations to tell tales of the fabled Kraken.  167 

 168 

Methods 169 

DNA extraction, library building, and de novo genome assembly 170 

High-molecular-weight genomic DNA was extracted from a Architeuthis dux (NCBI taxon id: 256136) 171 

sample using a CTAB based buffer followed by organic solvent purification, following Winkelmann et al 172 

[19] (details in the Supplementary Information). We generated 116 Gb of raw reads from Illumina short-173 

insert libraries, 76 Gb of paired-end reads from libraries ranging from 500 bp to 800 bp in insert size, and 174 

5.4 Gb of mate-pair with a 5 kb insert (Table S1). Furthermore, we generated 3.7 Gb of Moleculo 175 

libraries (3 High-Throughput libraries and 4 High-Fidelity libraries). The kmer distribution of the reads 176 

under a diploid model in kmergenie [20] predicted the genome size to be 2.7 Gb. 177 

An initial assembly generated with Meraculous [21] using Illumina and Moleculo data (N50 of 32 Kb, 178 

assembly statistics in Table S2) was used as input for Dovetail Genomic’s HiRise scaffolding software 179 

together with the Hi-C data generated from two Chicago libraries corresponding to a physical coverage 180 

of the genome of 52.1X. The final assembly with an N50 of 4.8 Mb (other statistics in Table 1) was used 181 
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for the genome annotation presented in this paper. The genome gene content completeness was 182 

evaluated through the Benchmarking Universal Single-Copy Orthologs (BUSCO v.3.0.2, datasets: 183 

Eukaryota, Metazoan) [22]. For Eukaryota and Metazoa we identified a total of 90.4 % and 92.1 % of 184 

BUSCO ortholog genes, respectively. Further scaffolding was done using 23.38Gb of PacBio reads (19 185 

SMRT cells, average read length is 14.79kb) using the default parameters in PBJelly [23] (see assembly 186 

statistics in Table S2).  187 

Transcriptome sequencing and de novo assembly 188 

Given the extreme rarity of live giant squid sightings, we were unable to collect fresh organ samples 189 

(following the recommendations in [24]) containing intact RNA from the species to assist with the 190 

genome annotation. As an alternative, we extracted total RNA from gonad, liver and brain tissue from 191 

live caught specimens of three other oegopsid squid species (Onychoteuthis banksii, Dosidicus gigas, and 192 

Sthenoteuthis oualaniensis; NCBI taxon ids 392296, 346249 and 34553, respectively; Supplementary 193 

Figure S1), using the Qiagen RNeasy extraction kit (Qiagen,CA, USA). The RNA integrity and quantity was 194 

measured on a Qubit fluorometer (Invitrogen, OR, USA) and on the Agilent Bioanalyzer 2100 (Agilent, 195 

CA, USA). The Illumina TruSeq Kit v.2.0 was used to isolate the mRNA and prepare cDNA libraries for 196 

sequencing, following the recommended protocol. Compatible index sequences were assigned to 197 

individual libraries to allow for multiplexing on four lanes of 100bp paired-end technology on an Illumina 198 

HiSeq 2000 flow cell. Sequencing of the cDNA libraries was done at the National High-hroughput 199 

Sequencing Center at the University of Copenhagen in Denmark. We assessed the quality of the raw 200 

reads using FastQC v0.10.0 [25]. After removing indexes and adaptors with CutAdapt [26], we trimmed 201 

the reads with the FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit) removing bases with a Phred-202 

scale quality score lower than 25. Reference transcriptomes were built with Trinity [27]. This software 203 

was used with the default settings including a fixed k-mer size of 25 as suggested by the authors. 204 

Annotation of coding regions was done with the EvidencialGene pipeline [28]. 205 
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Protein extraction, separation by 1D SDS–PAGE, MALDI-TOF/TOF and Protein Identification  206 

Given the practical impossibility of obtaining RNA from a giant squid specimen, we produced a library of 207 

giant squid peptide sequences to guide the gene annotation process. 208 

Proteins were solubilised from a giant squid mantle tissue sample according to the procedure described 209 

by Kleffmann et al. [29] and employing the following buffers: (1) 40 mM Tris–HCl, 5 mM MgCl2 and 1 210 

mM DTT, pH 8.5; (2) 8 M urea, 20 mM Tris, 5 mM MgCl2 and 20 mM DTT; (3) 7 M urea, 2 M thiourea, 20 211 

mM Tris, 40 mM DTT, 2% CHAPS (w ⁄ v) and 1% Triton X-100 (v ⁄ v) and (4) 40 mM Tris, 4% SDS (w ⁄ v) 212 

and 40 mm DTT. All buffers were augmented with protease inhibitors (Halt™ Protease Inhibitor Cocktail, 213 

EDTA-Free, Thermo Scientific). Tissue samples were ground in liquid nitrogen before homogenization, or 214 

homogenized directly with ultrasound (probe sonication at 60 Hz, for 3 min) in buffer 1. Solubilised 215 

proteins were collected by ultracentrifugation at 100,000 g and 4 ºC. Each extraction was performed in 216 

duplicate for each specific buffer and extracts were pooled. Protein extracts were subsequently stored 217 

at -20 ºC. Total protein content was estimated according to the Bradford (1976) method [30]. 218 

Protein separation by 1D SDS–PAGE electrophoresis was carried out as described in Santos et al. [31]. 53 219 

µL of sample (39 µg protein) was diluted in 72 µL of Loading Buffer (0.01% bromophenol blue, 2% SDS 220 

(Sodium-DodecylSulfate), 20% glycerol, 5% β-mercaptoethanol (w/v/v) in 62.5 mM Tris – HCl, pH 6.8). 221 

The resulting solution was heated for 3 min at 99°C. Proteins were separated by SDS–PAGE with 12% 222 

(w/v) polyacrylamide gels. Electrophoresis was carried out using the mini Protean Cell (BioRad) at a 223 

constant voltage of 150 V. The separated proteins were visualized by staining with Colloidal Coomassie 224 

Brilliant Blue (CCB) [32], and lanes were cut into 15 gel sections for subsequent LC-MS/MS analysis. 225 

LC–MS/MS analyses  226 

All samples were analysed with the Easy-nLC system (Thermo Fisher Scientific), connected online to a Q 227 

Exactive mass spectrometer (Thermo Fisher Scientific) equipped with a nanoelectrospray ion source 228 

(Thermo Fisher Scientific). Tryptic peptides were loaded in a fused silica column (75 µm inner diameter) 229 
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packed with C18 resin (3-µm beads, Reprosil, Dr. Maisch), with solvent A (0.5% acetic acid). They were 230 

then eluted with a 120 minute gradient of solvent B (80% ACN, 0.5% acetic acid) with a constant flow of 231 

250 nL/min. The Q exactive was operated in positive mode with a capillary temperature of 250 °C, using 232 

the data dependent acquisition method, which switches from full MS scans to MS/MS scans for the 12 233 

most intense ions. Fragmentation was achieved by higher-energy collisional dissociation (HCD) with a 234 

normalized collisional energy (NCE) of 25. Full MS ranged from 300 to 1750 m/z at a resolution of 235 

70,000, an Automatic Gain Control (AGC) of 1e6 and a maximum injection time of 120 ms, whereas 236 

MS/MS events were scanned at a resolution of 35,000, an AGC of 1e5, maximum injection time of 124 237 

ms, isolation windows of 2 m/z and an exclusion window of 45 seconds. 238 

de novo peptide prediction 239 

Raw LC-MS/MS data were read using Thermo Fisher MSRawFileReader 2.2 library and imported into 240 

PEAKS Studio 7.0 and subsequently preprocessed for precursor mass and charge correction, MS/MS de-241 

isotoping, and deconvolution. PEAKS de novo sequencing [31] was performed on each refined MS/MS 242 

spectrum with a precursor and fragment ion error tolerance of 7 ppm and 0.02 da respectively. 243 

Carbamidomethylation (Cys) was set as a fixed modification and oxidation (Met) and N-terminal 244 

Acetylation as variable modifications. At most, five variable modifications per peptide were allowed. For 245 

each tandem spectrum, five de novo candidates were reported along with their Local Confidence Scores 246 

(the likelihood of each amino acid assignment in a de novo candidate peptide). This score was used to 247 

determine the accuracy of the de novo peptide sequences. The top de novo peptide for each spectrum 248 

was determined by the highest Average Local Confidence score (ALC) among the candidates for that 249 

spectrum. 250 

Genome annotation 251 

Protein-coding genes were predicted by ExonHunter [33] , combining probabilistic models of sequence 252 

features with external evidence from alignments. As external evidence, we have used proteins from 253 

Octopus bimaculatus, Crassostrea gigas (Pacific oyster) and Lottia gigantea (Giant owl limpet) and 254 
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predicted proteins encoded by the transcriptomes of the three other oegopsid species analysed. These 255 

proteins were aligned to the genome by BLASTX. De-novo identified MS/MS-based peptides were 256 

initially also used as evidence, but these were later omitted due to low coverage. Evidence from 257 

predicted repeat locations was used to discourage the model to predict genes overlapping repeats. 258 

Initially, ExonHunter was run using Drosophila parameters on a randomly chosen subset of 118 contigs 259 

longer than 200kb (total length 199Mb). Out of 12,912 exons predicted in this run, 5,716 were 260 

supported by alignment data and selected to train parameters of the model for A. dux, using the 261 

methods described in [33]. The final predicted gene set using this model on the entire genome 262 

contained 51,225 protein-coding genes. The function of the protein-coding genes was inferred with 263 

Annocript 0.2 [34], which is based on the results from blastp [35] runs against the SwissProt (SP) and 264 

UniRef90 (Uf). In addition, we performed an rpsblast search using matrices from the conserved domain 265 

database (CDD) to annotate specific domains present on the protein queries.  266 

Non-coding RNAs were annotated using the cmsearch program from INFERNAL 1.1 and the covariance 267 

models (CMs) from the Rfam database v12.0 [36,37]. All matches above the curated GA threshold were 268 

included. INFERNAL was selected because it implements the CMs that provide the most accurate 269 

bioinformatic annotation tool for ncRNAs available [38]. tRNA-scan v.1.3.1 was subsequently used to 270 

refine the annotation of tRNA genes (Table S3). The method uses a number of heuristics to increase the 271 

search-speed, annotates the Isoacceptor Type of each prediction, infers if predictions are likely to be 272 

functional or tRNA-derived pseudogenes [39,40]. This method uses CMs to identify tRNAs. Rfam 273 

matches and the tRNA-scan results for families belonging to the same clan were then “competed”, so 274 

that only the best match was retained for any genomic region [37]. 275 

Transposable element annotation 276 

Repetitive elements were identified using a bespoke pipeline. Firstly, elements were identified using 277 

RepeatMasker v.4.0.8 [41] with the eukaryota RepBase [42] repeat library. Low-complexity repeats were 278 
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ignored (-nolow) and a sensitive (-s) search was performed. Following this, a de novo repeat library was 279 

constructed using RepeatModeler v.1.0.11 [43] , including RECON v.1.08 [44] and RepeatScout v.1.0.5 280 

[45]. Novel repeats identified by RepeatModeler were analyzed with a ‘BLAST, Extract, Extend’ process 281 

to characterise elements along their entire length [46]. Consensus sequences and classification 282 

information for each repeat family were generated. The resulting de novo repeat library was utilized to 283 

identify repetitive elements using RepeatMasker. 284 

Data analyses 285 

Comparative analyses of transposable elements 286 

We estimated the total repeat content of the giant squid genome to be approximately half its total size 287 

(~49.1%) (Figure 1, Supplementary Table S4). Out of all the repeats present in the giant squid genome, 288 

only a few were predicted to be small RNAs, satellites, simple or low complexity repeats (~0.89% of the 289 

total genome), with the vast majority (~48.21%) instead consisting of Transposable elements (TEs; i.e. 290 

SINEs, LINEs, LTR retrotransposons, and DNA transposons; Figure 1, Supplementary Table S4). Of the TE 291 

portion of the giant squid genome, the main contribution from annotated TEs is from DNA elements 292 

(11.06%) and LINEs (6.96%), with only a small contribution from SINEs (1.99%) and LTR elements 293 

(0.72%). TEs are a nearly universal feature of eukaryotic genomes, often comprising a large proportion 294 

of the total genomic DNA (e.g. the maize genome is ~85% TEs [47], stick insect genome is ~52% TEs [48], 295 

and the human genome is >45% TEs [49]), consequently these account for the majority of observed 296 

genome size variation among animals. 297 

In Figure 1, we summarise the recently reported TE analyses performed on assembled cephalopod 298 

genomes, as follows: California two-spot octopus (Octopus bimaculatus) [11] and long-arm octopus (O. 299 

minor) [50], Hawaiian bobtail squid (Euprymna scolopes) [51], and giant squid (Architeuthis dux). The 300 

varying sequencing strategies employed to generate currently available cephalopod genomes (and 301 

accompanying variation in assembly quality) complicates the comparative analysis of TE content for this 302 

group. However, notwithstanding this caveat, it does seem clear that TEs make up a large fraction of the 303 
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total genomic content across all cephalopod genomes published to date (Figure 1). DNA transposons 304 

and LINEs dominate in available cephalopod genomes, while LTR elements and SINEs generally 305 

represent a minor portion of cephalopod TEs (Figure 1). Within decapod cephalopods (i.e. squid and 306 

cuttlefish), patterns in TE content are generally similar, however, the giant squid has a notably larger 307 

proportion of DNA transposons (1,626,482 elements, 11.06% of the total genome) than the Hawaiian 308 

bobtail squid (855,308 elements, 4.05% of the total genome), with the bobtail squid in turn having a 309 

similar proportion of LINEs (752,629 elements, 6.83% of the total genome) than the giant squid (766,382 310 

elements, 6.96% of the total genome; Figure 1). 311 

The defining ability of TEs to mobilise, in other words, to transfer copies of themselves into other parts 312 

of the genome, can result in harmful mutations. However, TEs can also facilitate the generation of 313 

genomic novelty, and there is increasing evidence of their importance for the evolution of host-adaptive 314 

processes [52]. In the giant squid genome, all classes of TEs were more frequent (~38.23) in intergenic 315 

regions (here defined as regions >2kb upstream or downstream of an annotated gene), than in genic 316 

regions versus % of the genome in intergenic regions (~16.6%; Figure 2A). These findings are broadly 317 

similar to those reported for other cephalopods, although a larger proportion of the giant squid genome 318 

is composed of repeats located within genic regions (percentage of the genome represented by TEs for 319 

O. bimaculoides: ~6% genic versus ~30% intergenic, and for O. minor ~6% genic versus ~40% intergenic 320 

[50]). 321 

A Kimura distance-based copy divergence analysis revealed that the most frequent TE sequence 322 

divergence relative to the TE consensus sequence in the giant squid genome was ~5-8% across all repeat 323 

classes, suggesting a relatively recent transposition burst across all major TE types (Figure 2B). 324 

Divergence peaks were most pronounced in LINE RTE elements, Tc/Mar and hAT DNA transposons, and 325 

unclassified TEs, with smaller divergence peaks in SINE tRNA elements and Penelope LINE elements 326 

(Figure 2B). Divergence peaks were most pronounced in LINE RTE elements, Tc/Mar and hAT DNA 327 
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transposons, and unclassified TEs, with smaller divergence peaks in SINE tRNA elements and Penelope 328 

LINE elements (Figure 2B). In comparison to observations from other cephalopods, these results suggest 329 

a shorter and more intense burst of recent TE activity in the giant squid genome. Overall, further 330 

genomic sampling within each of the cephalopod clades will be needed to understand TE evolution, as 331 

closely related species can show significant differences (e.g., O. bimaculoides to O. vulgaris) [53]. 332 

Non-coding RNAs 333 

We identified 50,598 ncRNA associated loci in the squid sequencing data, using curated homology-based 334 

probabilistic models from the Rfam database[54] and the specialized tRNAscan-SE transfer RNA 335 

annotation tool [39]. The essential and well conserved Metazoan ncRNAs: tRNAs, rRNAs (5S, 5.8S, SSU 336 

and LSU), RNase P, RNase MRP, SRP and the major spliceosomal snRNAs (U1, U2, U4, U5, U6), as well as 337 

the minor spliceosomal snRNAs (U11, U12, U4atac & U6atac), are all found in the A. dux genome. Some 338 

of the copy numbers associated with the core ncRNAs are extreme. For example, we identified: i) 339 

approximately 24,000 loci that appear to derive from 5S rRNA; ii) approximately 17,000 loci that are 340 

predicted to be tRNA derived; iii) approximately 3,200 Valine tRNAs isotypes and approximately 1,300 341 

U2 spliceosomal RNAs. The microRNA mir-598 also exhibits high copy-numbers at 172. Many of these 342 

are likely to be SINEs derived by transposition. All 20 tRNA isotypes were identified in A. dux genome. 343 

Again, many of these had relatively large copy numbers (summarised in Table 1). These ranged from 46 344 

(Cys) up to 2,541 (Val). We identified 174 loci that share homology with 34 known snoRNA families, 345 

these included 15 scaRNA, 41 H/ACA box and 118 C/D box snoRNA associated loci [10]. The snoRNAs are 346 

predominantly involved in rRNA maturation. We identified 7,049 loci that share homology with 283 347 

families of microRNA. Some of these may be of limited reliability, as CMs for simple hairpin structures 348 

can also match other, non-homologous, hairpin-like structures in the genome e.g. inverted repeats. A 349 

number of cis-regulatory elements were also identified. These included 235 hammerhead 1 ribozymes, 350 

133 Histone 30 UTR stem-loops, and 14 Potassium channel RNA editing signal sequences. There are very 351 
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few matches to obvious non-metazoan RNA families in the current assemblies. The only notable 352 

exceptions are bablM, IMES-2, PhotoRC-II and rspL. Each of these families are also found in marine 353 

metagenomic datasets, possibly explaining their presence as “contamination” from the environment. 354 

  355 

Analyses of specific gene families  356 

A number of gene families involved in development, such as transcription factors or signalling ligands, 357 

are highly conserved across metazoans and may therefore reveal signatures of genomic events, such as 358 

a whole genome duplication. 359 

WNT is a family of secreted lipid-modified signaling glycoproteins with a key role during development 360 

[55]. Comparative analysis of molluscan genomes indicates that the ancestral state was 12 WNT genes, 361 

as Wnt3 is absent in all protostomes examined thus far [56]. The giant squid has the typical 12 362 

lophotrochozoan WNTs (1, 2, 4, A, 5, 6, 7, 8, 9, 10, 11 and 16; Supplementary Figure S2), and therefore 363 

has retained the ancestral molluscan complement, including Wnt8, which is absent, for instance, in the 364 

genome of the slipper snail Lottia gigantea [57]. 365 

Protocadherins are a family of cell adhesion molecules that appear to play an important role in 366 

vertebrate brain development [58]. It is thought that they act as multimers at the cell surface in a 367 

manner akin to DSCAM in flies, which lack protocadherins [59]. Cephalopods have massively expanded 368 

this family, with 168 identified in the O. bimaculoides genome, whereas only 17-25 protocadherins have 369 

been identified in the genomes of annelids and non-cephalopod molluscs [11]. We identified 370 

approximately 135 protocadherin genes in A. dux, many of which are located in clusters in the genome. 371 

The possibility that this gene family plays a developmental role parallel to that of protocadherins in 372 

vertebrate neurodevelopment thus remains a compelling hypothesis. 373 

Development organisation of the highly diverse body plans found in the Metazoa is controlled by a 374 

conserved cluster of homeotic genes, which includes, among others, the Hox genes. These are 375 
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characterized by a DNA sequence referred to as the homeobox, comprising 180 nucleotides that encode 376 

the homeodomain [60]. Hox genes are usually found in tight physical clusters in the genome and are 377 

sequentially expressed in the same chronological order as they are physically located in the DNA 378 

(temporal and spatial collinearity) [61]. Different combinations of Hox gene expression in the same 379 

tissue type can lead to a wide variety of different structures [62]. This makes the Hox genes a key subject 380 

for understanding the origins of the multitude of forms found in the cephalopods. In Octopus 381 

bimaculoides genome assembly no scaffold contained more than a single Hox gene, meaning that they 382 

are fully atomised [11]. However, in Euprymna scolopes, the Hox cluster was found spanning two 383 

scaffolds [51]. In the giant squid, we recovered a full Hox gene cluster in a single scaffold (Figure 3). The 384 

Hox gene organization found in the giant squid genome suggests either the presence of a disorganised 385 

cluster, so-called type D, or atomised clusters, type A [62], or possibly a combination of the two (the 386 

genes are still organized, but physically distant from each other). The existence of a "true" cluster seems 387 

unlikely, given the presence of other unrelated genes in between and the relatively large distances. The 388 

classification as type D (atomised) might seem most obvious, despite the co-presence of the genes in a 389 

single scaffold, due to these large distances. However, the definition of type A (disorganised) does allow 390 

for the presence of non-Hox genes in between members of the cluster. Thus, it is difficult to clearly 391 

categorise the recovered "cluster", but it does remain clear that these genes are not as tightly bundled 392 

as they are in other Bilateria lineages. The A. dux Hox “cluster” is spread across 11 Mb of a 38 Mb 393 

scaffold, and this suggests a far larger size range in the cephalopods than in other described animals, as 394 

recently suggested based on the genome of Euprymna scolopes [51]. It is possible that this is the reason 395 

for the apparent atomisation of Hox genes in the more fragmented O. bimaculoides assembly. Hox 396 

clusters are usually found in contigs of around 100 kb length in vertebrates [6, 7] and between 500 - 397 

10,000 kb in invertebrates [8] An assembled contig easily containing the complete cluster for these 398 

smaller cluster sizes, would manage to cover only one member of the Hox gene cluster in the studied 399 
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coleoids. As such, our results suggest that the Hox cluster may not be fully atomised in O. bimaculoides 400 

as previously hypothesised. Further improvements of genome assemblies in cephalopods will be 401 

required to address this question. The biological reason for this dramatic increase in the distance 402 

between the genes in the Hox cluster presents an intriguing avenue of future research. The 403 

homeodomain of all the obtained Hox genes in cephalopods were compared with those of other 404 

mollusks. Few differences were found relative to a previous study [63], as no significant modifications 405 

were observed in Hox 1, Hox 4, ANTP, Lox 2, Lox 5, Post 1 and Post 2. Hox 1 did, however, show reduced 406 

conservation in residues 22 to 25 in the A. dux sequence. This observation for Hox 1 in A. dux is visible 407 

only in the Pacbio assembly. Additionally, the Hox 3 homeodomain analysis supports a basal placement 408 

of the nautiloids within cephalopods. The Lox 4 gene was the most variable among all groups. As of to 409 

date, Hox 2 still remains undetected in the coleoid cephalopods [64]. Assembly errors notwithstanding, 410 

gain and loss of Hox genes has been attributed to fundamental changes in animal body plans, and the 411 

apparent loss of Hox 2 may therefore be significant. For example, Hox gene loss has been associated 412 

with the reduced body-plan segmentation of spider mites [42]. The circumstance that Hox 2 has been 413 

readily found in Nautilus, but remains undetected in all coleoids sequenced thus far, might signify an 414 

important developmental split within the Cephalopoda. Alternatively, and equally intriguing, this Hox 415 

gene may have undergone such drastic evolutionary modifications that it is presently undetectable by 416 

conventional means. 417 

On a final note, we analyzed genes encoding reflectins, a class of cephalopod-specific proteins first 418 

described in E. scolopes [65]. Reflectins form flat structures that reflect ambient light (other marine 419 

animals use purine-based platelets), thus modulating iridescence for communication or camouflage 420 

purposes [66]. The giant squid genome contains 7 reflectin genes and 3 reflectin-like genes 421 

(Supplementary Figure S3). All of these genes, with the exception of 1 reflectin gene, appear on the 422 
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same scaffold, which corresponds very well with the distribution pattern of octopus reflectin genes 423 

[11]). 424 

Conclusions  425 

Not only because of its astonishing proportions, but also for the lack of knowledge of the key facets of 426 

its deep-sea lifestyle, the giant squid has long captured the imagination of scientists and the general 427 

public alike. With the release of this annotated giant squid genome, we set the stage for future research 428 

into the enigmas that enshroud this truly awe-inspiring creature. Further, given the paucity of available 429 

cephalopod genomes, we provide a valuable contribution to the genomic description of cephalopods, 430 

and more widely to the growing number of fields that are recognizing the potential, which this group of 431 

behaviourally advanced invertebrates holds for improving our understanding of the diversity of life on 432 

Earth in general. 433 
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Tables 633 

Table 1. Statistics of the genome assembly, gene prediction and functional annotation of giant squid. 634 

The transcript evidence was confirmed by blastp hits with e-value < 10E-6 using the transcriptomes of 635 

three other species of squid (see the “Transcriptome sequencing” section). 636 

 637 

Global Statistics Meraculous + Dovetail 

Genome assembly*  

Input assembly Meraculous 

Contig N50 length (Mb) 0.005 

Longest contig (Mb) 0.120 

Scaffold N50 length (Mb) 4.852 

Longest scaffold (Mb) 32.889 

Total length (Gb) 2.693 

Busco statistics (1Euk / 2Met)  

Complete BUSCOs, (%) 86.1 / 88.5 

Complete and single-copy, (%) 85.1 / 87.6 

Complete and duplicated, (%) 1.0 / 0.9 

Partial, (%) 4.3 / 3.6 

Missing, (%) 9.6 / 7.9 

Total Buscos found, (%) 90.4 / 92.1 

Genome annotation / Gene Prediction  

Protein-coding gene number 51,225 

Transcript evidence 30,472 

Average Protein length, (aa) 253 

Longest Protein, (aa) 17,047 

Average CDS length, (bp) 758 

Longest CDS, (bp) 51,138 

Average exon length, (bp) 186 
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 638 

 639 

 640 

  641 

Average exons per gene 4 

Functional annotation (Number of Hits)  

Swissprot 15,749 

Uniref90 29,553 

GO Terms 4,712 

Conserved Domains Database (CDD) 15,280 

*The presented statistics are to contigs/scaffolds with length >= 500 bp. 

1Euk: Database of Eukaryota orthologs genes, containing a total of 303 BUSCO groups.  

2Met: Database of Metazoa orthologs genes, containing a total of 978 BUSCO groups.  
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Figure legends 642 

Figure 1. Comparison of genome repeat content among available cephalopod genomes with assembled 643 

genomes (repeat data for O. minor and O. bimaculoides from [50] and for E. scolopes from [51]). The 644 

tree indicates evolutionary relationships among the two available octopod cephalopods and the two 645 

available decapod cephalopods. Pie charts are scaled according to genome size (O. bimaculoides: 2.7Gb, 646 

O. minor: 5.09Gb, E. scolopes: 5.1Gb, Architeuthis dux: 2.7Gb), with different repeat types indicated by 647 

the colours presented in the key. 648 

Figure 2. A) Stacked bar chart illustrating the proportions (expressed as percentage of the total genome) 649 

of repeats found in genic (≤2kb from an annotated gene) and intergenic regions (>2kb from an 650 

annotated gene) for the giant squid genome. B) Transposable element (TE) accumulation history in the 651 

giant squid genome, based on a Kimura distance-based copy divergence analysis of TEs, with Kimura 652 

substitution level (CpG adjusted) illustrated on the x-axis, and percentage of the genome represented by 653 

each repeat type on the y-axis. Repeat type is indicated by the colour chart below the x-axis. 654 

Figure 3. Schematic representation of the Hox gene cluster chromosomal organization in various 655 

invertebrates. Different scaffolds are separated by two slashes. Scaffold length is shown underneath. 656 

Unlike in other coleoids, for Architeuthis dux all Hox genes were found in the same scaffold. However, 657 

the distance between the genes was larger than expected for invertebrate organisms, and non-658 

homeobox genes were also present within the cluster. Hox 2 remains undetected in coleoids. 659 
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Dear Editor, 

 

We herewith submit our manuscript ‘A draft genome sequence of the elusive giant squid, Architeuthis 

dux’ as Data Note for your formal consideration as a publication in GigaScience. 

We present a draft genome assembly with a scaffold N50 of 4.8 Mb (estimated genome size of 2.7 Gb) 

produced using Illumina, Moleculo and Chicago libraries. We also provide the corresponding gene, RNAs 

and transposable element annotations, as well as the results of a comparative genomics analyses with 

other available cephalopod genomes. 

Besides providing the community with an important resource for further studying this enigmatic animal, 

given the paucity of available cephalopod genomes, this is a valuable contribution to the genomic 

description of cephalopods, and therefore we believe it has the potential to be published in GigaScience. 

The sequence data and annotations have been submitted to the NCBI database as Bioproject 

PRJNA534469, which will be made available upon request from your journal. 

We have no competing interests and all authors have approved the manuscript for submission. 

 

We look forward to your assessment. 
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