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Abstract: Background

The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusk with
a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic
waters. The elusiveness of the species makes it difficult to study. Thus, having a
genome assembled for this deep-sea dwelling species will allow unlocking several
pending evolutionary questions.Findings

We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of
Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size
matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also
present an alternative assembly including 27 Gb raw reads generated using the Pacific
Biosciences platform. In addition, we sequenced the proteome of the same individual
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and RNA from three different tissue types from three other species of squid species
(Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist
genome annotation. We annotated 33,406 protein coding genes supported by
evidence and the genome completeness estimated by BUSCO reached 92%.
Repetitive regions cover 49.17% of the genome.Conclusions

This annotated draft genome of A. dux provides a critical resource to investigate the
unique traits of this species, including its gigantism and key adaptations to deep-sea
environments.
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Response to Reviewers: Dear Editor,

We herewith submit our revised manuscript ‘A draft genome sequence of the elusive
giant squid, Architeuthis dux’.

Regarding the points that you have highlighted, please find the answers below:

1) Please clarify the rationale for the unconventional assembly strategy in the revised
manuscript. If this has "historic" rather than scientific reasons, the reviewer feels this
may be fine, but I agree that the reasons should be discussed in the manuscript, for the
benefit of readers who are looking for best practice examples.

The reviewer is correct that there is some degree of history involved. We initially did
the assembly without PacBio, and did the presented analyses on this. Later we were
offered the chance to try and improve it with PacBio, which we did, but as you can see
there was minimal improvement in the assembly statistics (Table 1 and Table S2), but
i) an increase of the total genome size to 3.155 Gb, beyond the expected 2.7 Gb
estimated in kmergenie, and ii) a slight decrease in the BUSCO completeness
assessment. As such, we elected to retain the results based on the original assembly
(based on Dovetail), but given that we assume others may wish to use the alternative
assembly and explore the differences, we provide both.
In the beginning of the “Data analyses” section, we now clearly state which assembly
was used in the comparative genomics analyses (from Line 297) and provide an
explanation for that choice.

2) Please expand on the methods for protein-coding gene modelling and have another
look at your data whether 50K genes may be an overestimate. I also agree with the
reviewer's recommendation to analyze gene models in BUSCO to give readers a better
idea of their completeness.

We now expanded the section detailing the filtering of the protein-coding gene set and

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



present a total of 33,406 gene annotations in the final set, as these have validation by
matching to cephalopod transcripts and/or SwissProt/UniRef90 proteins. We also
provide the results from BUSCO when using the gene models as input for comparison
(added to Table 1).

Answers to the reviewer’s comments:

Reviewer #1: In this study, de Fonseca et al. report the genome of the giant squid as a
resource to investigate the unique traits of this fascinating organism. Two assemblies,
which are of comparable contiguity to most other recently published molluscan
genomes, as well as a set of over 51,000 gene models are reported. Analysis of the
genome focuses on repetitive elements (e.g., TEs), non-coding RNAs, and gene
families of interest to the authors (WNT genes, Protocadherins, Hox genes, and
reflectins). Overall this is a straightforward study that provides a resource that will be
broadly useful and I feel it should be published. However, I have a number of
suggestions for improvement including a few important issues that need to be
addressed.

Major points:

1.1. It is unclear why two different genome assemblies are presented instead of just
one most optimal assembly. This is not the way I would have gone about assembling
this combination of data but presumably Dovetail scaffolding and gene modelling were
performed before PacBio sequencing and scaffolding? Re-doing the assembly would a
more logical way would probably have relatively little improvement but a little more
explanation of the rationale or 'historical' reasons for two different assemblies and/or
this assembly strategy would be a helpful addition to readers looking in the literature for
examples on best practices  for genome assembly.

Thank you for this comment. The reviewer is correct that there is some degree of
history involved. We initially did the assembly without PacBio, and did the presented
analyses on this. Later we were offered the chance to try and improve it with PacBio,
which we did, but as you can see there was minimal improvement in the assembly
statistics (Table 1 and Table S2), but i) an increase of the total genome size to 3.155
Gb, beyond the expected 2.7 Gb estimated in kmergenie, and ii) a slight decrease in
the BUSCO completeness assessment. As such, we elected to retain the results based
on the Dovetail assembly, but given that we assume others may wish to use the
alternative assembly and explore the differences, we provide both.

1.2. Related to this issue, there is little comparison of the two genome assemblies and
it is unclear which assembly was used for what analyses and even Table 1 and Table
S2's titles are a bit ambiguous with respect to which assembly statistics are presented.
Please explicitly state which assembly was used for which analyses.

In the beginning of the “Data analyses” section, we now clearly state which assembly
was used in the comparative genomics analyses (from Line 297) and provide an
explanation for that choice. Additionally, we also mention the choice in the Methods
section (Lines 183 to 185) before describing the strategies for annotation and
comparative analyses.

1.3. The approach used for gene annotation is unconventional and the inferred number
of protein-coding gene models is very high. This does not mean the gene model set is
bad, but I feel that data needed for the reader to assess the quality of the gene models
are lacking. Please run BUSCO on the gene models and report these data as well.

We now also provide the results from BUSCO when using the gene models as input for
comparison.

1.4. Specimen collection data are not reported in the manuscript.

This information has now been added to Table S1.

Minor points:
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1.5. Scientific names of species need to be italicized throughout.

Done.

1.6. Did all the giant squid DNA come from the same individual?

Yes, this is now clear in Line 172.

1.7. Lines 140-141: "currently increasing locally" is a bit awkward and vague.

Replaced by “in some regions”.

1.8. Line 176: Which reads? All Illumina reads? PE reads only?

This has now been clarified on Line 176.

1.9. Line 185: Again, this seems to me to be a strange assembly strategy and I think
that it should be clearly stated that PacBio data became available 'late in the game' if
that is the case. Otherwise, the logic behind this assembly strategy needs to be
explained.

In the beginning of the “Data analyses” section, we now clearly state which assembly
was used in the comparative genomics analyses (from Line 297) and provide an
explanation for that choice.

1.10. Line 199: High-throughput is misspelled.

Done.

1.11. Line 203: Clarify what is meant by reference transcriptome. All reads from all
tissues were pooled and assembled together?

This has now been clarified in Lines 203-204.

1.12. Line 205: "EvidencialGene" is a tyo.

Corrected.

1.13. Lines 261-262: Please provide details on exactly what was done in this study in
the supplementary material. Description of how the final gene models were selected is
vague.

We now further discuss the filters applied in lines 272-275. The total number of protein-
coding genes passing all the filters is 33,406.

1.14. Line 277: What is meant by a "bespoke pipeline"? Custom scripts should be
made available.

No custom analysis scripts were developed. We simply use ‘bespoke’ to mean 'tailored
to our particular purpose'. Here this refers an analysis pipeline combining: a preliminary
analysis using RepeatMasker, followed by a de novo analysis using RepeatModeler
and a referenced and publicly available script by Platt et al, followed by a full
annotation using RepeatMasker. These steps are fully outlined and referenced in the
methods section. We have simplified the sentence which now reads:
“Repetitive elements were first identified using RepeatMasker v.4.0.8”

1.15. Line 450: Correct "Sampling was following"

Done.

1.16. BUSCO results are presented in the methods section (should be in the results by
the way) for the pre-PacBio scaffolding genome but not the post-PacBio scaffolding
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genome.

The results of BUSCO for post-PacBio step are presented in Table S2 (as indicated in
Line 186). We moved the description of the BUSCO results to the “Data analyses”
section and added a clarification regarding the choice of the assembly for the overall
comparative genomics analyses (from Line 297).

1.17. Table 1: BUSCO should be in all capital letters.

Done.

1.18. Figure 3: What does the note "Gene size only" mean?

This gene was reported to be fully isolated from other Hox genes in a different scaffold
but was not alone in the scaffold. There were other non-Hox genes. Figure 3 aims to
show both the organisation and the range occupied by Hox genes. Considering the
organisation, the gene is isolated such as in O. bimaculoides. Regarding the size, the
schematic representation indicates only the Hox “cluster” area. In O. bimaculoides, the
scaffolds contain only the Hox genes. This means it could be possible for the cluster to
be there but only when considering a very vast distance. In this scenario for C. teleta,
the gene is found in the middle of the scaffold, surrounded by other genes. It is not part
of the cluster. Indicating the full scaffold size could lead to a wrong interpretation of the
gene size and of the Hox gene range. As such, only the gene size is indicated.

1.19. Table S1: Please provide total number of reads and somewhere it should be
clarified how many different instrument runs were conducted and if different libraries
were multiplexed on the Illumina platform.

This information has now been added to Table S1.

Reviewer #2: The authors present the genome of the giant squid Architeuthis dux.
Several cephalopod genomes have been sequenced, but our genomic understanding
of cephalopods living in the deep-sea environment is still poor. The authors sequenced
a giant squid species A. dux together with several transcriptomes from the gonad, liver
and brain tissues derived from three other squid species including Onychoteuthis
banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis.

Having a giant squid genome is an important contribution to the field of cephalopod
genomics, especially for further meaningful comparative genomics. The authors
provide a decent genome assembly. And the observation of a non-tightly physically
linked Hox cluster is interesting. The manuscript is well written in general, however,
there are a lot of editing errors throughout the whole manuscript, which distracts the
reading. The authors need to carefully fix all these typos and errors during the revision.
Further comments are provided below.

Major comments:

2.1.      In the Abstract/Findings, there is a lot of information about "Methods" (e.g. how
many raw reads, sequencing of proteome and RNA) instead of what the authors found
from the genome itself. Also, the statement "RNA from three different tissue types from
three other species of squid to assist genome annotation." is very vague. What tissue
types from what species should be clearly described. The authors need to rewrite this
section.

In the abstract we followed the format that is usual in a data note, providing detailed
information on the data provided by this work. We have now added the names of the
three species of squid to the abstract.

2.2.      Line 153: Body patterning system? Usage of body patterning is confusing here
since body patterning often refers to the developmental process during embryogenesis
but not the skin color pattern.

We have rephrased the sentence to: “Cephalopods can rapidly alter the texture,
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pattern, colour and brightness of their skin, and this both enables a complex
communication system, as wells as provides exceptional camouflage and mimicry.”

2.3.      The authors cited that there is a global proliferation of cephalopods (Lines 140
and 141) but later cited other studies saying that there is a regional extinction. It is a bit
confusing whether cephalopods are undergoing proliferation or extinction. Given that
the earlier citation is more recent (Doubleday et al., 2016) than others, it is wondering
which condition is closer to the current situation.

We have removed the second statement to avoid confusion.

2.4.      Although it is agreeable in general to have genome resources from unexplored
species, the authors' argument in the last paragraph of Data description/Context is not
convincing. The link between having a genome and aiding conservation efforts as well
as ensuring continued existence is not clear.

Without a genome, population genomic studies that provide information regarding the
genetic diversity and structure of populations becomes very challenging, with genome-
wide data having to be produced from reduced-representation methods that have
many biases. In this last paragraph, we state this specifically: “A genome is an
important resource for future population genomics studies[…]”.

2.5.      Do the authors have any idea why the genome contains so many protein-
coding genes (51,225 genes predicted) in comparing to other cephalopod species
usually having only 20,000-30,000 genes? For example, is it due to that A. dux has
more lineage-specific genes or expansions of certain gene families?

We have revised our gene models and now further discuss the filters applied in lines
272-275. The total number of protein-coding genes passing all the filters is 33,406.

2.6.      Given that genome size and polyploidy of the organisms are often correlated to
increased body size (Session et al., 2016), have the authors checked if there is whole-
genome duplication or polyploidy in the A. dux genome? Session et al. (2016) Genome
evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336-343.

We did confirm that the genome was not polyploid by testing for Hardy–Weinberg
equilibrium using re-sequencing data from 32 giant squid individuals (Winkelman et al,
unpublished results) and there is no evidence for an ancient duplication since we only
found one intact Hox complement.

2.7.      Figure 3: The authors should provide scaffold numbers for the Hox clusters
from each species. Also, in most cases, Hox genes in the Hox cluster are adjacent to
each other without the insertion of other non-Hox genes. If there is a special case in A.
dux and E. scolopes, the authors should show the real gene arrangement on that
scaffold, especially for the non-Hox genes (with brief annotation) that are in between
Hox genes. This can be achieved by having an additional panel in the same figure. The
authors are encouraged to show an illustration on the types of Hox gene organization
in order to give the readers a better understanding of this context.

Figure 3 has received new panels. Scaffold information for A. dux was added in panel
C (Figure 3-C). As the assemblies of the other species were retrieved from other
studies, the readers are directed to the appropriate references for further detail. An
extra panel depicting the Hox cluster organisation in more detail has been added. E.
scolopes data is shown as reported in its published study. No non-Hox genes were
indicated for the area covered in this representation. An additional panel with a
simplified version of the various Hox "cluster" types was inserted in panel A (Figure 3-
A).

Minor comments:

2.1.1.      Line 149: ~2cm -> "~2 cm"
Done.
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2.1.2.      Line 150: 3 orders -> "three orders"
Done.

2.1.3.      Line 150: Architeuthis dux -> "A. dux"
Done.

2.1.4.      Lines 150 and 151: 10-12cm… 20m -> "10-12 cm… 20 m"
Done.

2.1.5.      Line 152: 500kg -> "500 kg"
Done.

2.1.6.      Line 171: a Architeuthis dux sample -> "an A. dux sample"
Done.

2.1.7.      Line 172: What is CTAB?
CTAB = “cetyl trimethylammonium bromide”; this description has been included in the
text (Line 172)

2.1.8.      Line 184: For Eukaryota and Metazoa we identified… -> "For Eukaryota and
Metazoa, we identified…"
Done.

2.1.9.      Line 184: … 90.4 % and 92.1 %... -> "… 90.4% and 92.1%..."
Done.

2.1.10.     Line 185: 23.38Gb -> "23.38 Gb"
Done.

2.1.11.     Line 186: 14.79kb -> "14.79 kb"

Done.

2.1.12.     "k-mer" (Line 204) or "kmer" (Line 176) to be consistent.
Chose to use “kmer”.

2.1.13.     Line 216: 100,000 g -> "100,000×g"
Done.

2.1.14.     Lines 219 and 222: SDS-PAGE -> "SDS-PAGE" (hyphen but not en dash)
Done.

2.1.15.     Line 221: Tris - HCl -> Tris-HCl (single hyphen but not en dash with spaces)
Done.

2.1.16.     Line 226: LC-MS/MS analyses -> "LC-MS/MS analyses" (hyphen but not en
dash)
Done.

2.1.17.     Line 254: Using italic for scientific names (i.e. Octopus bimaculatus,
Crassostrea gigas, and Lottia gigantea)
Done.

2.1.18.     Line 260: … 200kb (total length 199Mb)… -> "… 200 kb (total length 199
Mb)…"
Done.

2.1.19.     Line 290: Transposable elements -> "transposable elements"
Done.

2.1.20.     Line 300: Architeuthis dux -> "A. dux"
Done.

2.1.21.     Line 323: ~5-8% -> "~5¬-8%" (en dash but not hyphen for a range)
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Done.

2.1.22.     Line 381: Octopus bimaculoides -> "O. bimaculoides"
Done.

2.1.23.     Line 383: Euprymna scolopes -> "E. scolopes" (in italic)
Done.

2.1.24.     Line 395: Euprymna scolopes -> "E. scolopes"
Done.

2.1.25.     Lines 397 & 398: 500 - 10,000 kb -> "500-10,000 kb" (en dash but not
hyphen for a range)
Done.

2.1.26.     Line 406: ... observed in Hox 1, Hox 4, ANTP, Lox 2, Lox 5, Post 1 and Post
2. Hox 1 did,... -> "... observed in Hox1, Hox4, ANTP, Lox2, Lox5, Post1 and Post2.
Hox1 did,..."
Done.

2.1.27.     Line 407: Hox 1 -> "Hox1"
Done.

2.1.28.     Line 408: Hox 3 -> "Hox3"
Done.

2.1.29.     Line 409: Lox 4 -> "Lox4"
Done.

2.1.30.     Lines 410, 412 & 413: Hox 2 -> "Hox2"
Done.

2.1.31.     Line 421: ... contains 7 reflectin genes and 3 reflectin-like genes… -> "...
contains seven reflectin genes and three reflectin-like genes…"
Done.

2.1.32.     Line 422: … exception of 1 reflectin gene, … -> "… exception of one reflectin
gene, …"
Done.

2.1.33.     Line 436: … (tsa)… -> "… (TSA)…"
Done.

2.1.34.     Lines 647 & 657: Architeuthis dux -> "A. dux"
Done.

2.1.35.     Line 659: Hox 2 -> "Hox2"
Done.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the

Yes
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data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 113 

Background 114 

The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusk with a circumglobal 115 

distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the 116 

species makes it difficult to study. Thus, having a genome assembled for this deep-sea dwelling species 117 

will allow unlocking several pending evolutionary questions. 118 

Findings 119 

We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic 120 

long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 121 

Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads 122 

generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same 123 

individual and RNA from three different tissue types from three other species of squid species 124 

(Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. 125 

We annotated 33,406 protein coding genes supported by evidence and the genome completeness 126 

estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.  127 

Conclusions 128 

This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this 129 

species, including its gigantism and key adaptations to deep-sea environments. 130 

Keywords 131 

Cephalopod, invertebrate, genome assembly. 132 

  133 
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Data description 134 

Context 135 

Cephalopods are the most behaviourally complex of the invertebrate protostomes [1] . Their large, highly 136 

differentiated brains are comparable in relative size and complexity to those of vertebrates [2], as are 137 

their cognitive capabilities [1]. Cephalopods are distributed worldwide from tropical to polar marine 138 

habitats, from benthic to pelagic zones and from intertidal areas down to the abyssal parts of the deep 139 

sea, with the only exception being the Black Sea. Cephalopod populations are thought to be currently 140 

increasing in some regions for a variety of reasons [3], including potential predator release as a 141 

consequence of the depletion of fish stocks [4]. The class Cephalopoda contains approximately 800 142 

species, with the vast majority belonging to the soft-bodied subclass Coleoidea (cuttlefishes, octopuses 143 

and squids), and a small handful belonging to the Nautiloidea (nautiluses) [5]. Cephalopods are 144 

ecologically important as a primary food source for marine mammals, birds and for many fish species. 145 

They are also increasingly important as a high-protein food source for humans and are a growing target 146 

for commercial fisheries and farming [6]. 147 

Cephalopods show a wide variety of morphologies, lifestyles and behaviours [7], but with the exception 148 

of the nautiluses they are characterised by having rapid growth and short lifespans, despite a considerable 149 

investment in costly sensory adaptations [2]. They range in size from the tiny pygmy squids (~2 cm) to 150 

animals that are nearly three orders of magnitude larger, such as the giant squid, A. dux (average length 151 

10–12 m, and reported up to 20 m total length) [6,8,9], to the colossal squid, Mesonychoteuthis hamiltoni 152 

(maximum length remains unclear, but a recorded weight of 500 kg makes it the largest known 153 

invertebrate [10]). Cephalopods can rapidly alter the texture, pattern, colour and brightness of their skin, 154 

and this both enables a complex communication system, as wells as provides exceptional camouflage and 155 

mimicry [11]. Together these allow cephalopods to both avoid predators, and hunt prey highly efficiently, 156 

making them some of the top predators in the ocean. The remarkable adaptations of cephalopods also 157 
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extend to their genome, with recent work demonstrating increased levels of RNA editing to diversify 158 

proteins involved in neural functions [12]. 159 

Over recent years, oceanic warming and acidification, pollution, expanding hypoxia and fishing [13–15] 160 

have been shown to affect cephalopod populations. Mercury has been found in high concentrations in 161 

the tissue of giant squid specimens [16], and accumulation of flame retardant chemicals has also been 162 

detected in the tissue of deep-sea cephalopods [17]. Consequently, there is an urgent need for greater 163 

biological understanding of these important, but rarely encountered animals, in order to aid conservation 164 

efforts and ensure their continued existence. A genome is an important resource for future population 165 

genomics studies aiming at characterizing the diversity of the legendary giant squid, the species which has 166 

inspired generations to tell tales of the fabled Kraken.  167 

 168 

Methods 169 

DNA extraction, library building, and de novo genome assembly 170 

High-molecular-weight genomic DNA was extracted from a single A. dux individual (NCBI taxon id: 171 

256136) using a cetyl trimethylammonium bromide (CTAB) based buffer followed by organic solvent 172 

purification, following Winkelmann et al [18] (details in the Supplementary Information). We generated 173 

116 Gb of raw reads from Illumina short-insert libraries, 76 Gb of paired-end reads from libraries ranging 174 

from 500 bp to 800 bp in insert size, and 5.4 Gb of mate-pair with a 5 kb insert (Table S1). Furthermore, 175 

we generated 3.7 Gb of paired-end reads using Moleculo libraries (3 High-Throughput libraries and 4 176 

High-Fidelity libraries). The kmer distribution of the reads under a diploid model in kmergenie [19] 177 

predicted the genome size to be 2.7 Gb. 178 

An initial assembly generated with Meraculous [20] using Illumina and Moleculo data (N50 of 32 Kb, 179 

assembly statistics in Table S2) was used as input for Dovetail Genomic’s HiRise scaffolding software 180 

together with the Hi-C data generated from two Chicago libraries corresponding to a physical coverage 181 
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of the genome of 52.1X. This “Meraculous + Dovetail” assembly (statistics in Table 1) was the one used 182 

for the genome annotation (non-coding RNAs, protein-coding genes and repeats) and comparative 183 

genomics analyses presented in this paper. Further scaffolding was done using 23.38 Gb of PacBio reads 184 

(19 SMRT cells, average read length is 14.79 kb) using the default parameters in PBJelly [21] (see 185 

assembly statistics in Table S2). The genome gene content completeness was evaluated through the 186 

Benchmarking Universal Single-Copy Orthologs (BUSCO v.3.0.2, datasets: Eukaryota, Metazoan) [22].  187 

Transcriptome sequencing and de novo assembly 188 

Given the extreme rarity of live giant squid sightings, we were unable to collect fresh organ samples 189 

(following the recommendations in [23]) containing intact RNA from the species to assist with the 190 

genome annotation. As an alternative, we extracted total RNA from gonad, liver and brain tissue from 191 

live caught specimens of three other oegopsid squid species (Onychoteuthis banksii, Dosidicus gigas, and 192 

Sthenoteuthis oualaniensis; NCBI taxon ids 392296, 346249 and 34553, respectively; Supplementary 193 

Figure S1), using the Qiagen RNeasy extraction kit (Qiagen,CA, USA). The RNA integrity and quantity was 194 

measured on a Qubit fluorometer (Invitrogen, OR, USA) and on the Agilent Bioanalyzer 2100 (Agilent, 195 

CA, USA). The Illumina TruSeq Kit v.2.0 was used to isolate the mRNA and prepare cDNA libraries for 196 

sequencing, following the recommended protocol. Compatible index sequences were assigned to 197 

individual libraries to allow for multiplexing on four lanes of 100bp paired-end technology on an Illumina 198 

HiSeq 2000 flow cell. Sequencing of the cDNA libraries was done at the National High-Throughput 199 

Sequencing Center at the University of Copenhagen in Denmark. We assessed the quality of the raw 200 

reads using FastQC v0.10.0 [24]. After removing indexes and adaptors with CutAdapt [25], we trimmed 201 

the reads with the FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit) removing bases with a Phred-202 

scale quality score lower than 25. Reference transcriptomes for each species were built after pooling the 203 

reads from all tissues and using these as input in Trinity [26]. This software was used with the default 204 

settings including a fixed kmer size of 25 as suggested by the authors. Annotation of coding regions was 205 
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done with the EvidentialGene pipeline [27]. 206 

Protein extraction, separation by 1D SDS–PAGE, MALDI-TOF/TOF and Protein Identification  207 

Given the practical impossibility of obtaining RNA from a giant squid specimen, we produced a library of 208 

giant squid peptide sequences to guide the gene annotation process. 209 

Proteins were solubilised from a giant squid mantle tissue sample according to the procedure described 210 

by Kleffmann et al. [28] and employing the following buffers: (1) 40 mM Tris–HCl, 5 mM MgCl2 and 1 211 

mM DTT, pH 8.5; (2) 8 M urea, 20 mM Tris, 5 mM MgCl2 and 20 mM DTT; (3) 7 M urea, 2 M thiourea, 20 212 

mM Tris, 40 mM DTT, 2% CHAPS (w ⁄ v) and 1% Triton X-100 (v ⁄ v) and (4) 40 mM Tris, 4% SDS (w ⁄ v) 213 

and 40 mm DTT. All buffers were augmented with protease inhibitors (Halt™ Protease Inhibitor Cocktail, 214 

EDTA-Free, Thermo Scientific). Tissue samples were ground in liquid nitrogen before homogenization, or 215 

homogenized directly with ultrasound (probe sonication at 60 Hz, for 3 min) in buffer 1. Solubilised 216 

proteins were collected by ultracentrifugation at 100,000xg and 4 ºC. Each extraction was performed in 217 

duplicate for each specific buffer and extracts were pooled. Protein extracts were subsequently stored 218 

at -20 ºC. Total protein content was estimated according to the Bradford (1976) method [29]. 219 

Protein separation by 1D SDS-PAGE electrophoresis was carried out as described in Santos et al. [30]. 53 220 

µL of sample (39 µg protein) was diluted in 72 µL of Loading Buffer (0.01% bromophenol blue, 2% SDS 221 

(Sodium-DodecylSulfate), 20% glycerol, 5% β-mercaptoethanol (w/v/v) in 62.5 mM Tris-HCl, pH 6.8). The 222 

resulting solution was heated for 3 min at 99°C. Proteins were separated by SDS–PAGE with 12% (w/v) 223 

polyacrylamide gels. Electrophoresis was carried out using the mini Protean Cell (BioRad) at a constant 224 

voltage of 150 V. The separated proteins were visualized by staining with Colloidal Coomassie Brilliant 225 

Blue (CCB) [31], and lanes were cut into 15 gel sections for subsequent LC-MS/MS analysis. 226 

LC-MS/MS analyses  227 

All samples were analysed with the Easy-nLC system (Thermo Fisher Scientific), connected online to a Q 228 

Exactive mass spectrometer (Thermo Fisher Scientific) equipped with a nanoelectrospray ion source 229 
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(Thermo Fisher Scientific). Tryptic peptides were loaded in a fused silica column (75 µm inner diameter) 230 

packed with C18 resin (3-µm beads, Reprosil, Dr. Maisch), with solvent A (0.5% acetic acid). They were 231 

then eluted with a 120 minute gradient of solvent B (80% ACN, 0.5% acetic acid) with a constant flow of 232 

250 nL/min. The Q exactive was operated in positive mode with a capillary temperature of 250 °C, using 233 

the data dependent acquisition method, which switches from full MS scans to MS/MS scans for the 12 234 

most intense ions. Fragmentation was achieved by higher-energy collisional dissociation (HCD) with a 235 

normalized collisional energy (NCE) of 25. Full MS ranged from 300 to 1750 m/z at a resolution of 236 

70,000, an Automatic Gain Control (AGC) of 1e6 and a maximum injection time of 120 ms, whereas 237 

MS/MS events were scanned at a resolution of 35,000, an AGC of 1e5, maximum injection time of 124 238 

ms, isolation windows of 2 m/z and an exclusion window of 45 seconds. 239 

de novo peptide prediction 240 

Raw LC-MS/MS data were read using Thermo Fisher MSRawFileReader 2.2 library and imported into 241 

PEAKS Studio 7.0 and subsequently preprocessed for precursor mass and charge correction, MS/MS de-242 

isotoping, and deconvolution. PEAKS de novo sequencing [31] was performed on each refined MS/MS 243 

spectrum with a precursor and fragment ion error tolerance of 7 ppm and 0.02 da respectively. 244 

Carbamidomethylation (Cys) was set as a fixed modification and oxidation (Met) and N-terminal 245 

Acetylation as variable modifications. At most, five variable modifications per peptide were allowed. For 246 

each tandem spectrum, five de novo candidates were reported along with their Local Confidence Scores 247 

(the likelihood of each amino acid assignment in a de novo candidate peptide). This score was used to 248 

determine the accuracy of the de novo peptide sequences. The top de novo peptide for each spectrum 249 

was determined by the highest Average Local Confidence score (ALC) among the candidates for that 250 

spectrum. 251 

Genome annotation 252 

Protein-coding genes were predicted by ExonHunter [32] , which combines probabilistic models of 253 

sequence features with external evidence from alignments. As external evidence, we have used known 254 
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proteins from Octopus bimaculatus, Crassostrea gigas (Pacific oyster) and Lottia gigantea (Giant owl 255 

limpet) and the predicted proteins encoded by the transcriptomes of the three other oegopsid species 256 

analysed in this paper (O. banksii, D. gigas, and S. oualaniensis). These proteins were aligned to the 257 

genome by BLASTX. De-novo identified MS/MS-based peptides were initially also considered as external 258 

evidence, but were later omitted due to low coverage. Evidence from predicted repeat locations was 259 

used to discourage the model to predict genes overlapping repeats. Since no sufficiently close annotated 260 

genome was available for training gene finding parameters, ExonHunter was first run using Drosophila 261 

melanogaster parameters on a randomly chosen subset of 118 scaffolds longer than 200kb (total length 262 

199 Mb). Out of 12,912 exons predicted in this run, 5,716 were supported by protein alignment data 263 

and selected to train the parameters of the gene finding model for A. dux, using the methods described 264 

in [32]. Rerunning ExonHunter with the resulting A. dux  model parameters on the entire genome 265 

yielded 51,225 gene predictions genes. Gene prediction in A. dux is challenging due to the fragmentary 266 

nature of the genome assembly (60% of predictions span a sequencing gap). This results in a significant 267 

number of artifacts, for example short genes with long introns spanning gaps in the assembly. 18,054 268 

predictions yield protein product shorter than 100 amino acids, yet the median span of these 269 

predictions is more than 4kb and only 32% of them are supported by transcript or protein alignments. In 270 

contrast, 83% of genes with product longer than 100aa are supported. In most of the analyses below, 271 

we consider only 33,406 genes that were found to have transcript evidence (blastp match to a sequence 272 

from a cephalopod transcriptome, with at least 50% of the giant squid coding region covered) and/or 273 

matches in Swissprot or UniRef90 databases (Table 1). This supported set contains much fewer 274 

extremely short genes (Figure S4). 275 

The function of the protein-coding genes was inferred with Annocript 0.2 [33], which is based on the 276 

results from blastp [34] runs against the SwissProt (SP) and UniRef90 (Uf). In addition, we performed a 277 
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rpsblast search using matrices from the conserved domain database (CDD) to annotate specific domains 278 

present on the protein queries.  279 

Non-coding RNAs were annotated using the cmsearch program from INFERNAL 1.1 and the covariance 280 

models (CMs) from the Rfam database v12.0 [35,36]. All matches above the curated GA threshold were 281 

included. INFERNAL was selected because it implements the CMs that provide the most accurate 282 

bioinformatic annotation tool for ncRNAs available [37]. tRNA-scan v.1.3.1 was subsequently used to 283 

refine the annotation of tRNA genes (Table S3). The method uses a number of heuristics to increase the 284 

search-speed, annotates the Isoacceptor Type of each prediction, infers if predictions are likely to be 285 

functional or tRNA-derived pseudogenes [38,39]. This method uses CMs to identify tRNAs. Rfam 286 

matches and the tRNA-scan results for families belonging to the same clan were then “competed”, so 287 

that only the best match was retained for any genomic region [36]. 288 

Transposable element annotation 289 

Repetitive elements were first identified using RepeatMasker v.4.0.8 [40] with the eukaryota RepBase 290 

[41] repeat library. Low-complexity repeats were ignored (-nolow) and a sensitive (-s) search was 291 

performed. Following this, a de novo repeat library was constructed using RepeatModeler v.1.0.11 [42] , 292 

including RECON v.1.08 [43] and RepeatScout v.1.0.5 [44]. Novel repeats identified by RepeatModeler 293 

were analyzed with a ‘BLAST, Extract, Extend’ process to characterise elements along their entire length 294 

[45]. Consensus sequences and classification information for each repeat family were generated. The 295 

resulting de novo repeat library was utilized to identify repetitive elements using RepeatMasker. 296 
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Data analyses 297 

We present a main draft genome assembly produced using 200 Gb of Illumina reads, 4 Gb of Moleculo 298 

synthetic long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome 299 

size of 2.7 Gb, and a scaffold N50 of 4.8 Mb (assembly and annotation statistics in Table 1). Genome 300 

completeness estimated by BUSCO reached 90.4% (Eukaryota) and 92.1% (Metazoa), and the 301 

completeness for the 33,406 protein-coding genes was 91.2% (Eukaryota) and 84.0 (Metazoa). 302 

We also produced an alternative assembly including 27 Gb raw reads generated using the Pacific 303 

Biosciences platform, but this showed minimal improvement in assembly statistics, genome size larger 304 

than the predicted and lower BUSCO completeness (Table S2).  305 

Comparative analyses of transposable elements 306 

We estimated the total repeat content of the giant squid genome to be approximately half its total size 307 

(~49.1%) (Figure 1, Supplementary Table S4). Out of all the repeats present in the giant squid genome, 308 

only a few were predicted to be small RNAs, satellites, simple or low complexity repeats (~0.89% of the 309 

total genome), with the vast majority (~48.21%) instead consisting of transposable elements (TEs; i.e. 310 

SINEs, LINEs, LTR retrotransposons, and DNA transposons; Figure 1, Supplementary Table S4). Of the TE 311 

portion of the giant squid genome, the main contribution from annotated TEs is from DNA elements 312 

(11.06%) and LINEs (6.96%), with only a small contribution from SINEs (1.99%) and LTR elements 313 

(0.72%). TEs are a nearly universal feature of eukaryotic genomes, often comprising a large proportion 314 

of the total genomic DNA (e.g. the maize genome is ~85% TEs [46], stick insect genome is ~52% TEs [47], 315 

and the human genome is >45% TEs [48]), consequently these account for the majority of observed 316 

genome size variation among animals. 317 

In Figure 1, we summarise the recently reported TE analyses performed on assembled cephalopod 318 

genomes, as follows: California two-spot octopus (Octopus bimaculatus) [11] and long-arm octopus (O. 319 

minor) [49], Hawaiian bobtail squid (Euprymna scolopes) [50], and giant squid (A. dux). The varying 320 

sequencing strategies employed to generate currently available cephalopod genomes (and 321 
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accompanying variation in assembly quality) complicates the comparative analysis of TE content for this 322 

group. However, notwithstanding this caveat, it does seem clear that TEs make up a large fraction of the 323 

total genomic content across all cephalopod genomes published to date (Figure 1). DNA transposons 324 

and LINEs dominate in available cephalopod genomes, while LTR elements and SINEs generally 325 

represent a minor portion of cephalopod TEs (Figure 1). Within decapod cephalopods (i.e. squid and 326 

cuttlefish), patterns in TE content are generally similar, however, the giant squid has a notably larger 327 

proportion of DNA transposons (1,626,482 elements, 11.06% of the total genome) than the Hawaiian 328 

bobtail squid (855,308 elements, 4.05% of the total genome), with the bobtail squid in turn having a 329 

similar proportion of LINEs (752,629 elements, 6.83% of the total genome) than the giant squid (766,382 330 

elements, 6.96% of the total genome; Figure 1). 331 

The defining ability of TEs to mobilise, in other words, to transfer copies of themselves into other parts 332 

of the genome, can result in harmful mutations. However, TEs can also facilitate the generation of 333 

genomic novelty, and there is increasing evidence of their importance for the evolution of host-adaptive 334 

processes [51]. In the giant squid genome, all classes of TEs were more frequent (~38.23) in intergenic 335 

regions (here defined as regions >2kb upstream or downstream of an annotated gene), than in genic 336 

regions versus % of the genome in intergenic regions (~16.6%; Figure 2A). These findings are broadly 337 

similar to those reported for other cephalopods, although a larger proportion of the giant squid genome 338 

is composed of repeats located within genic regions (percentage of the genome represented by TEs for 339 

O. bimaculoides: ~6% genic versus ~30% intergenic, and for O. minor ~6% genic versus ~40% intergenic 340 

[49]). 341 

A Kimura distance-based copy divergence analysis revealed that the most frequent TE sequence 342 

divergence relative to the TE consensus sequence in the giant squid genome was ~5–8% across all 343 

repeat classes, suggesting a relatively recent transposition burst across all major TE types (Figure 2B). 344 

Divergence peaks were most pronounced in LINE RTE elements, Tc/Mar and hAT DNA transposons, and 345 
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unclassified TEs, with smaller divergence peaks in SINE tRNA elements and Penelope LINE elements 346 

(Figure 2B). Divergence peaks were most pronounced in LINE RTE elements, Tc/Mar and hAT DNA 347 

transposons, and unclassified TEs, with smaller divergence peaks in SINE tRNA elements and Penelope 348 

LINE elements (Figure 2B). In comparison to observations from other cephalopods, these results suggest 349 

a shorter and more intense burst of recent TE activity in the giant squid genome. Overall, further 350 

genomic sampling within each of the cephalopod clades will be needed to understand TE evolution, as 351 

closely related species can show significant differences (e.g., O. bimaculoides to O. vulgaris) [52]. 352 

Non-coding RNAs 353 

We identified 50,598 ncRNA associated loci in the squid sequencing data, using curated homology-based 354 

probabilistic models from the Rfam database[53] and the specialized tRNAscan-SE transfer RNA 355 

annotation tool [38]. The essential and well conserved Metazoan ncRNAs: tRNAs, rRNAs (5S, 5.8S, SSU 356 

and LSU), RNase P, RNase MRP, SRP and the major spliceosomal snRNAs (U1, U2, U4, U5, U6), as well as 357 

the minor spliceosomal snRNAs (U11, U12, U4atac & U6atac), are all found in the A. dux genome. Some 358 

of the copy numbers associated with the core ncRNAs are extreme. For example, we identified: i) 359 

approximately 24,000 loci that appear to derive from 5S rRNA; ii) approximately 17,000 loci that are 360 

predicted to be tRNA derived; iii) approximately 3,200 Valine tRNAs isotypes and approximately 1,300 361 

U2 spliceosomal RNAs. The microRNA mir-598 also exhibits high copy-numbers at 172. Many of these 362 

are likely to be SINEs derived by transposition. All 20 tRNA isotypes were identified in A. dux genome. 363 

Again, many of these had relatively large copy numbers (summarised in Table 1). These ranged from 46 364 

(Cys) up to 2,541 (Val). We identified 174 loci that share homology with 34 known snoRNA families, 365 

these included 15 scaRNA, 41 H/ACA box and 118 C/D box snoRNA associated loci [10]. The snoRNAs are 366 

predominantly involved in rRNA maturation. We identified 7,049 loci that share homology with 283 367 

families of microRNA. Some of these may be of limited reliability, as CMs for simple hairpin structures 368 

can also match other, non-homologous, hairpin-like structures in the genome e.g. inverted repeats. A 369 



16 
 

number of cis-regulatory elements were also identified. These included 235 hammerhead 1 ribozymes, 370 

133 Histone 30 UTR stem-loops, and 14 Potassium channel RNA editing signal sequences. There are very 371 

few matches to obvious non-metazoan RNA families in the current assemblies. The only notable 372 

exceptions are bablM, IMES-2, PhotoRC-II and rspL. Each of these families are also found in marine 373 

metagenomic datasets, possibly explaining their presence as “contamination” from the environment. 374 

  375 

Analyses of specific gene families  376 

Several gene families involved in development, such as transcription factors or signaling ligands, are 377 

highly conserved across metazoans and may therefore reveal signatures of genomic events, such as a 378 

whole genome duplication. 379 

WNT is a family of secreted lipid-modified signaling glycoproteins with a key role during development 380 

[54]. Comparative analysis of molluscan genomes indicates that the ancestral state was 12 WNT genes, 381 

as Wnt3 is absent in all protostomes examined thus far [55]. The giant squid has the typical 12 382 

lophotrochozoan WNTs (1, 2, 4, A, 5, 6, 7, 8, 9, 10, 11 and 16; Supplementary Figure S2), and therefore 383 

has retained the ancestral molluscan complement, including Wnt8, which is absent, for instance, in the 384 

genome of the slipper snail Lottia gigantea [56]. 385 

Protocadherins are a family of cell adhesion molecules that appear to play an important role in 386 

vertebrate brain development [57]. It is thought that they act as multimers at the cell surface in a 387 

manner akin to DSCAM in flies, which lack protocadherins [58]. Cephalopods have massively expanded 388 

this family, with 168 identified in the O. bimaculoides genome, whereas only 17-25 protocadherins have 389 

been identified in the genomes of annelids and non-cephalopod molluscs [11]. We identified 390 

approximately 135 protocadherin genes in A. dux, many of which are located in clusters in the genome. 391 

The possibility that this gene family plays a developmental role parallel to that of protocadherins in 392 

vertebrate neurodevelopment thus remains a compelling hypothesis. 393 
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Development organisation of the highly diverse body plans found in the Metazoa is controlled by a 394 

conserved cluster of homeotic genes, which includes, among others, the Hox genes. These are 395 

characterized by a DNA sequence referred to as the homeobox, comprising 180 nucleotides that encode 396 

the homeodomain [59]. Hox genes are usually found in tight physical clusters in the genome and are 397 

sequentially expressed in the same chronological order as they are physically located in the DNA 398 

(temporal and spatial collinearity) [60]. Different combinations of Hox gene expression in the same 399 

tissue type can lead to a wide variety of different structures [61]. This makes the Hox genes a key subject 400 

for understanding the origins of the multitude of forms found in the cephalopods. In O. bimaculoides 401 

genome assembly no scaffold contained more than a single Hox gene, meaning that they are fully 402 

atomised [11]. However, in E. scolopes, the Hox cluster was found spanning two scaffolds [50]. In the 403 

giant squid, we recovered a full Hox gene cluster in a single scaffold (Figure 3-B). The Hox gene 404 

organization found in the giant squid genome suggests either the presence of a disorganised cluster, so-405 

called type D, or atomised clusters, type A [61], or possibly a combination of the two (the genes are still 406 

organized, but physically distant from each other). The existence of a "true" cluster seems unlikely, given 407 

the presence of other unrelated genes in between and the relatively large distances (Figure 3-C). The 408 

classification as type A (atomised) might seem most obvious, despite the co-presence of the genes in a 409 

single scaffold, due to these large distances. However, the definition of type D (disorganised) does allow 410 

for the presence of non-Hox genes in between members of the cluster (Figure 3-A). Thus, it is difficult to 411 

clearly categorise the recovered "cluster", but it does remain clear that these genes are not as tightly 412 

bundled as they are in other Bilateria lineages. The A. dux Hox “cluster” is spread across 11 Mb of a 38 413 

Mb scaffold, and this suggests a far larger size range in the cephalopods than in other described animals, 414 

as recently suggested based on the genome of E. scolopes [50]. It is possible that this is the reason for 415 

the apparent atomisation of Hox genes in the more fragmented O. bimaculoides assembly. Hox clusters 416 

are usually found in contigs of around 100 kb length in vertebrates [6, 7] and between 500 – 10,000 kb 417 
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in invertebrates [8] An assembled contig easily containing the complete cluster for these smaller cluster 418 

sizes, would manage to cover only one member of the Hox gene cluster in the studied coleoids. As such, 419 

our results suggest that the Hox cluster may not be fully atomised in O. bimaculoides as previously 420 

hypothesised. Further improvements of genome assemblies in cephalopods will be required to address 421 

this question. The biological reason for this dramatic increase in the distance between the genes in the 422 

Hox cluster presents an intriguing avenue of future research. The homeodomain of all the obtained Hox 423 

genes in cephalopods were compared with those of other mollusks. Few differences were found relative 424 

to a previous study [62], as no significant modifications were observed in Hox1, Hox4, ANTP, Lox2, Lox5, 425 

Post1 and Post2. Hox1 did, however, show reduced conservation in residues 22 to 25 in the A. dux 426 

sequence. This observation for Hox1 in A. dux is visible only in the Pacbio assembly. Additionally, the 427 

Hox3 homeodomain analysis supports a basal placement of the nautiloids within cephalopods. The Lox4 428 

gene was the most variable among all groups. As of to date, Hox2 still remains undetected in the coleoid 429 

cephalopods [63]. Assembly errors notwithstanding, gain and loss of Hox genes has been attributed to 430 

fundamental changes in animal body plans, and the apparent loss of Hox2 may therefore be significant. 431 

For example, Hox gene loss has been associated with the reduced body-plan segmentation of spider 432 

mites [42]. The circumstance that Hox2 has been readily found in Nautilus, but remains undetected in all 433 

coleoids sequenced thus far, might signify an important developmental split within the Cephalopoda. 434 

Alternatively, and equally intriguing, this Hox gene may have undergone such drastic evolutionary 435 

modifications that it is presently undetectable by conventional means. 436 

On a final note, we analyzed genes encoding reflectins, a class of cephalopod-specific proteins first 437 

described in E. scolopes [64]. Reflectins form flat structures that reflect ambient light (other marine 438 

animals use purine-based platelets), thus modulating iridescence for communication or camouflage 439 

purposes [65]. The giant squid genome contains seven reflectin genes and three reflectin-like genes 440 

(Supplementary Figure S3). All of these genes, with the exception of one reflectin gene, appear on the 441 



19 
 

same scaffold, which corresponds very well with the distribution pattern of octopus reflectin genes 442 

[11]). 443 

Conclusions  444 

Not only because of its astonishing proportions, but also for the lack of knowledge of the key facets of 445 

its deep-sea lifestyle, the giant squid has long captured the imagination of scientists and the general 446 

public alike. With the release of this annotated giant squid genome, we set the stage for future research 447 

into the enigmas that enshroud this truly awe-inspiring creature. Further, given the paucity of available 448 

cephalopod genomes, we provide a valuable contribution to the genomic description of cephalopods, 449 

and more widely to the growing number of fields that are recognizing the potential, which this group of 450 

behaviourally advanced invertebrates holds for improving our understanding of the diversity of life on 451 

Earth in general. 452 
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Tables 725 

Table 1. Statistics of the giant squid genome assembly (Meraculous + Dovetail) and corresponding gene 726 

prediction and functional annotation. The transcript evidence was confirmed by blastp hits with e-value 727 

< 10E-6 using the transcriptomes of three other species of squid (see the “Transcriptome sequencing” 728 

section). 729 

 730 

Global Statistics   

Genome assembly* Genome 
Gene models with 

evidence 

Input assembly Meraculous  

Contig N50 length (Mb) 0.005  

Longest contig (Mb) 0.120  

Scaffold N50 length (Mb) 4.852  

Longest scaffold (Mb) 32.889  

Total length (Gb) 2.693  

BUSCO statistics (1Euk / 2Met)   

Complete BUSCOs, (%) 86.1 / 88.5 81.6 / 78.3 

Complete and single-copy, (%) 85.1 / 87.6 79.9 / 77.7 

Complete and duplicated, (%) 1.0 / 0.9 1.7 / 0.6 

Partial, (%) 4.3 / 3.6 9.6 / 5.7 

Missing, (%) 9.6 / 7.9 8.8 / 16.0 

Total Buscos found, (%) 90.4 / 92.1 91.2 / 84.0 

Genome annotation / Gene Prediction   

Protein-coding gene number 33,406  

Transcript evidence 30,472  

Average Protein length, (aa) 339  

Longest Protein, (aa) 17,047  

Average CDS length, (bp) 1,015  

Longest CDS, (bp) 51,138  
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 731 
 732 

 733 

  734 

Average exon length, (bp) 199  

Average exons per gene 5  

Functional annotation (Number of Hits)   

Swissprot 15,749  

Uniref90 29,553  

GO Terms 4,712  

Conserved Domains Database (CDD) 15,280  

*The presented statistics are to contigs/scaffolds with length >= 500 bp. 

1Euk: Database of Eukaryota orthologs genes, containing a total of 303 BUSCO groups.  

2Met: Database of Metazoa orthologs genes, containing a total of 978 BUSCO groups.  

 

 



34 
 

Figure legends 735 

Figure 1. Comparison of genome repeat content among available cephalopod genomes with assembled 736 

genomes (repeat data for O. minor and O. bimaculoides from [49] and for E. scolopes from [50]). The 737 

tree indicates evolutionary relationships among the two available octopod cephalopods and the two 738 

available decapod cephalopods. Pie charts are scaled according to genome size (O. bimaculoides: 2.7Gb, 739 

O. minor: 5.09Gb, E. scolopes: 5.1Gb, A. dux: 2.7Gb), with different repeat types indicated by the colours 740 

presented in the key. 741 

Figure 2. A) Stacked bar chart illustrating the proportions (expressed as percentage of the total genome) 742 

of repeats found in genic (≤2kb from an annotated gene) and intergenic regions (>2kb from an 743 

annotated gene) for the giant squid genome. B) Transposable element (TE) accumulation history in the 744 

giant squid genome, based on a Kimura distance-based copy divergence analysis of TEs, with Kimura 745 

substitution level (CpG adjusted) illustrated on the x-axis, and percentage of the genome represented by 746 

each repeat type on the y-axis. Repeat type is indicated by the colour chart below the x-axis. 747 

Figure 3. Schematic representation of the Hox gene clusters. Different scaffolds are separated by two 748 

slashes. A) Simplified classification of the Hox clusters genomic organisation. Type A identifies the lack of 749 

a “typical” Hox cluster configuration, i.e. genes are scattered through the genome (not closely placed); 750 

Type S indicates a Hox cluster that is separated by a chromosomal breakpoint; Type D clusters 751 

comprehend all the genes in the same location but encompassing a larger region than in organised 752 

clusters and may display non-Hox genes and repeats in between; Type O indicates a very compact 753 

cluster embracing a short region with only Hox genes. Non-coding RNA and miRNA can be found. B) 754 

Simplified scheme of the chromosomal organisation in various invertebrates. Scaffold length is shown 755 

underneath. Unlike in other coleoids, for Architeuthis dux all Hox genes were found in the same scaffold. 756 

However, the distance between the genes was larger than expected for invertebrate organisms, and 757 
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non-homeobox genes were also present within the cluster. Hox2 remains undetected in coleoids. A. dux 758 

cluster can be found in scaffold25. E. scolopes, O. bimaculoides, L. gigantea, C. teleta and D. 759 

melanogaster assemblies and Hox cluster details can be found in [11,50,56,66]. (*) This gene was 760 

reported in a different scaffold, adjacent to non-Hox genes (the length corresponds to the size of the 761 

gene). C) Complete representation of the Hox cluster found in A. dux including the non-Hox genes. PO – 762 

Predicted open reading frame; TATDN2 – Putative deoxyribonuclease TATDN2; ZMYM1 – Zinc finger 763 

MYM-type protein 1; POGK – Pogo transposable element with KRAB; Zinc finger – Zinc finger protein; 764 

MYB-like – Putative Myb-like DNA-binding domain protein; MAPRE1 – Microtubule-associated protein 765 

RP/EB family member 1; MGC12965 – Similar to Cytochrome c, somatic. 766 

 767 
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Dear Editor, 

 

We herewith submit our revised manuscript ‘A draft genome sequence of the elusive giant squid, 

Architeuthis dux’. 

 

Regarding the points that you have highlighted, please find the answers below: 

 

1) Please clarify the rationale for the unconventional assembly strategy in the revised manuscript. If this 

has "historic" rather than scientific reasons, the reviewer feels this may be fine, but I agree that the 

reasons should be discussed in the manuscript, for the benefit of readers who are looking for best 

practice examples. 

 

The reviewer is correct that there is some degree of history involved. We initially did the assembly 
without PacBio, and did the presented analyses on this. Later we were offered the chance to try and 
improve it with PacBio, which we did, but as you can see there was minimal improvement in the 
assembly statistics (Table 1 and Table S2), but i) an increase of the total genome size to 3.155 Gb, 
beyond the expected 2.7 Gb estimated in kmergenie, and ii) a slight decrease in the BUSCO 
completeness assessment. As such, we elected to retain the results based on the original assembly 
(based on Dovetail), but given that we assume others may wish to use the alternative assembly and 
explore the differences, we provide both. 
In the beginning of the “Data analyses” section, we now clearly state which assembly was used in the 
comparative genomics analyses (from Line 297) and provide an explanation for that choice. 
 
 

2) Please expand on the methods for protein-coding gene modelling and have another look at your data 

whether 50K genes may be an overestimate. I also agree with the reviewer's recommendation to 

analyze gene models in BUSCO to give readers a better idea of their completeness. 

We now expanded the section detailing the filtering of the protein-coding gene set and present a total 

of 33,406 gene annotations in the final set, as these have validation by matching to cephalopod 

transcripts and/or SwissProt/UniRef90 proteins. We also provide the results from BUSCO when using the 

gene models as input for comparison (added to Table 1). 

 

Answers to the reviewer’s comments: 

 

Reviewer #1: In this study, de Fonseca et al. report the genome of the giant squid as a resource to 

investigate the unique traits of this fascinating organism. Two assemblies, which are of comparable 

contiguity to most other recently published molluscan genomes, as well as a set of over 51,000 gene 

models are reported. Analysis of the genome focuses on repetitive elements (e.g., TEs), non-coding 

RNAs, and gene families of interest to the authors (WNT genes, Protocadherins, Hox genes, and 

reflectins). Overall this is a straightforward study that provides a resource that will be broadly useful and 

I feel it should be published. However, I have a number of suggestions for improvement including a few 
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important issues that need to be addressed. 

 

Major points: 

 

 

1.1. It is unclear why two different genome assemblies are presented instead of just one most optimal 

assembly. This is not the way I would have gone about assembling this combination of data but 

presumably Dovetail scaffolding and gene modelling were performed before PacBio sequencing and 

scaffolding? Re-doing the assembly would a more logical way would probably have relatively little 

improvement but a little more explanation of the rationale or 'historical' reasons for two different 

assemblies and/or this assembly strategy would be a helpful addition to readers looking in the literature 

for examples on best practices  for genome assembly.  

Thank you for this comment. The reviewer is correct that there is some degree of history involved. We 
initially did the assembly without PacBio, and did the presented analyses on this. Later we were offered 
the chance to try and improve it with PacBio, which we did, but as you can see there was minimal 
improvement in the assembly statistics (Table 1 and Table S2), but i) an increase of the total genome 
size to 3.155 Gb, beyond the expected 2.7 Gb estimated in kmergenie, and ii) a slight decrease in the 
BUSCO completeness assessment. As such, we elected to retain the results based on the Dovetail 
assembly, but given that we assume others may wish to use the alternative assembly and explore the 
differences, we provide both. 
 

1.2. Related to this issue, there is little comparison of the two genome assemblies and it is unclear which 

assembly was used for what analyses and even Table 1 and Table S2's titles are a bit ambiguous with 

respect to which assembly statistics are presented. Please explicitly state which assembly was used for 

which analyses. 

In the beginning of the “Data analyses” section, we now clearly state which assembly was used in the 

comparative genomics analyses (from Line 297) and provide an explanation for that choice. Additionally, 

we also mention the choice in the Methods section (Lines 183 to 185) before describing the strategies 

for annotation and comparative analyses. 

 

1.3. The approach used for gene annotation is unconventional and the inferred number of protein-

coding gene models is very high. This does not mean the gene model set is bad, but I feel that data 

needed for the reader to assess the quality of the gene models are lacking. Please run BUSCO on the 

gene models and report these data as well. 

We now also provide the results from BUSCO when using the gene models as input for comparison. 

 

1.4. Specimen collection data are not reported in the manuscript. 

This information has now been added to Table S1. 

 

Minor points: 

1.5. Scientific names of species need to be italicized throughout. 



Done. 

 

1.6. Did all the giant squid DNA come from the same individual? 

Yes, this is now clear in Line 172. 

 

1.7. Lines 140-141: "currently increasing locally" is a bit awkward and vague. 

Replace by “in some regions”. 

 

1.8. Line 176: Which reads? All Illumina reads? PE reads only? 

This has now been clarified on Line 176. 

 

1.9. Line 185: Again, this seems to me to be a strange assembly strategy and I think that it should be 

clearly stated that PacBio data became available 'late in the game' if that is the case. Otherwise, the 

logic behind this assembly strategy needs to be explained. 

In the beginning of the “Data analyses” section, we now clearly state which assembly was used in the 

comparative genomics analyses (from Line 297) and provide an explanation for that choice. 

 

 

1.10. Line 199: High-throughput is misspelled. 

Done. 

 

1.11. Line 203: Clarify what is meant by reference transcriptome. All reads from all tissues were pooled 

and assembled together? 

This has now been clarified in Lines 203-204. 

 

1.12. Line 205: "EvidencialGene" is a tyo. 

Corrected. 

 

1.13. Lines 261-262: Please provide details on exactly what was done in this study in the supplementary 

material. Description of how the final gene models were selected is vague. 

We now further discuss the filters applied in lines 272-275. The total number of protein-coding genes 

passing all the filters is 33,406. 

 

1.14. Line 277: What is meant by a "bespoke pipeline"? Custom scripts should be made available. 

No custom analysis scripts were developed. We simply use ‘bespoke’ to mean 'tailored to our particular 

purpose'. Here this refers an analysis pipeline combining: a preliminary analysis using RepeatMasker, 

followed by a de novo analysis using RepeatModeler and a referenced and publicly available script by 

Platt et al, followed by a full annotation using RepeatMasker. These steps are fully outlined and 

referenced in the methods section. We have simplified the sentence which now reads: 



“Repetitive elements were first identified using RepeatMasker v.4.0.8” 

 

1.15. Line 450: Correct "Sampling was following" 

Done. 

 

1.16. BUSCO results are presented in the methods section (should be in the results by the way) for the 

pre-PacBio scaffolding genome but not the post-PacBio scaffolding genome. 

The results of BUSCO for post-PacBio step are presented in Table S2 (as indicated in Line 186). We 

moved the description of the BUSCO results to the “Data analyses” section and added a clarification 

regarding the choice of the assembly for the overall comparative genomics analyses (from Line 297). 

 

1.17. Table 1: BUSCO should be in all capital letters. 

Done. 

 

1.18. Figure 3: What does the note "Gene size only" mean? 

This gene was reported to be fully isolated from other Hox genes in a different scaffold but was not alone 

in the scaffold. There were other non-Hox genes. Figure 3 aims to show both the organisation and the 

range occupied by Hox genes. Considering the organisation, the gene is isolated such as in O. 

bimaculoides. Regarding the size, the schematic representation indicates only the Hox “cluster” area. In 

O. bimaculoides, the scaffolds contain only the Hox genes. This means it could be possible for the cluster 

to be there but only when considering a very vast distance. In this scenario for C. teleta, the gene is found 

in the middle of the scaffold, surrounded by other genes. It is not part of the cluster. Indicating the full 

scaffold size could lead to a wrong interpretation of the gene size and of the Hox gene range. As such, 

only the gene size is indicated. 

 

 

1.19. Table S1: Please provide total number of reads and somewhere it should be clarified how many 

different instrument runs were conducted and if different libraries were multiplexed on the Illumina 

platform. 

 

This information has now been added to Table S1. 

 

Reviewer #2: The authors present the genome of the giant squid Architeuthis dux. Several cephalopod 

genomes have been sequenced, but our genomic understanding of cephalopods living in the deep-sea 

environment is still poor. The authors sequenced a giant squid species A. dux together with several 

transcriptomes from the gonad, liver and brain tissues derived from three other squid species including 

Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis. 

 

Having a giant squid genome is an important contribution to the field of cephalopod genomics, 

especially for further meaningful comparative genomics. The authors provide a decent genome 

assembly. And the observation of a non-tightly physically linked Hox cluster is interesting. The 

manuscript is well written in general, however, there are a lot of editing errors throughout the whole 



manuscript, which distracts the reading. The authors need to carefully fix all these typos and errors 

during the revision. Further comments are provided below. 

 

Major comments: 

 

2.1.      In the Abstract/Findings, there is a lot of information about "Methods" (e.g. how many raw 

reads, sequencing of proteome and RNA) instead of what the authors found from the genome itself. 

Also, the statement "RNA from three different tissue types from three other species of squid to assist 

genome annotation." is very vague. What tissue types from what species should be clearly described. 

The authors need to rewrite this section. 

In the abstract we followed the format that is usual in a data note, providing detailed information on the 

data provided by this work. We have now added the names of the three species of squid to the abstract. 

 

2.2.      Line 153: Body patterning system? Usage of body patterning is confusing here since body 

patterning often refers to the developmental process during embryogenesis but not the skin color 

pattern. 

We have rephrased the sentence to: “Cephalopods can rapidly alter the texture, pattern, colour and 

brightness of their skin, and this both enables a complex communication system, as wells as provides 

exceptional camouflage and mimicry.” 

 

2.3.      The authors cited that there is a global proliferation of cephalopods (Lines 140 and 141) but later 

cited other studies saying that there is a regional extinction. It is a bit confusing whether cephalopods 

are undergoing proliferation or extinction. Given that the earlier citation is more recent (Doubleday et 

al., 2016) than others, it is wondering which condition is closer to the current situation. 

We have removed the second statement to avoid confusion. 

 

2.4.      Although it is agreeable in general to have genome resources from unexplored species, the 

authors' argument in the last paragraph of Data description/Context is not convincing. The link between 

having a genome and aiding conservation efforts as well as ensuring continued existence is not clear. 

Without a genome, population genomic studies that provide information regarding the genetic diversity 

and structure of populations becomes very challenging, with genome-wide data having to be produced 

from reduced-representation methods that have many biases. In this last paragraph, we state this 

specifically: “A genome is an important resource for future population genomics studies[…]”. 

 

2.5.      Do the authors have any idea why the genome contains so many protein-coding genes (51,225 

genes predicted) in comparing to other cephalopod species usually having only 20,000-30,000 genes? 

For example, is it due to that A. dux has more lineage-specific genes or expansions of certain gene 

families?  

We have revised our gene models and now further discuss the filters applied in lines 272-275. The total 

number of protein-coding genes passing all the filters is 33,406. 



2.6.      Given that genome size and polyploidy of the organisms are often correlated to increased body 

size (Session et al., 2016), have the authors checked if there is whole-genome duplication or polyploidy 

in the A. dux genome? Session et al. (2016) Genome evolution in the allotetraploid frog Xenopus laevis. 

Nature 538, 336-343. 

 

We did confirm that the genome was not polyploid by testing for Hardy–Weinberg equilibrium using re-

sequencing data from 32 giant squid individuals (Winkelman et al, unpublished results) and there is no 

evidence for an ancient duplication since we only found one intact Hox complement. 

 

 

2.7.      Figure 3: The authors should provide scaffold numbers for the Hox clusters from each species. 

Also, in most cases, Hox genes in the Hox cluster are adjacent to each other without the insertion of 

other non-Hox genes. If there is a special case in A. dux and E. scolopes, the authors should show the 

real gene arrangement on that scaffold, especially for the non-Hox genes (with brief annotation) that 

are in between Hox genes. This can be achieved by having an additional panel in the same figure. The 

authors are encouraged to show an illustration on the types of Hox gene organization in order to give 

the readers a better understanding of this context. 

 

Figure 3 has received new panels. Scaffold information for A. dux was added in panel C (Figure 3-C). As 

the assemblies of the other species were retrieved from other studies, the readers are directed to the 

appropriate references for further detail. An extra panel depicting the Hox cluster organisation in more 

detail has been added. E. scolopes data is shown as reported in its published study. No non-Hox genes 

were indicated for the area covered in this representation. An additional panel with a simplified version 

of the various Hox "cluster" types was inserted in panel A (Figure 3-A). 

 

Minor comments: 

 

2.1.1.      Line 149: ~2cm -> "~2 cm" 

Done. 

 

2.1.2.      Line 150: 3 orders -> "three orders"  

Done. 

 

2.1.3.      Line 150: Architeuthis dux -> "A. dux" 

Done. 

 

2.1.4.      Lines 150 and 151: 10-12cm… 20m -> "10-12 cm… 20 m" 

Done. 

 

2.1.5.      Line 152: 500kg -> "500 kg" 



Done. 

 

2.1.6.      Line 171: a Architeuthis dux sample -> "an A. dux sample" 

Done. 

 

2.1.7.      Line 172: What is CTAB? 

CTAB = “cetyl trimethylammonium bromide”; this description has been included in the text (Line 172) 

 

2.1.8.      Line 184: For Eukaryota and Metazoa we identified… -> "For Eukaryota and Metazoa, we 

identified…" 

Done. 

 

2.1.9.      Line 184: … 90.4 % and 92.1 %... -> "… 90.4% and 92.1%..." 

Done. 

 

2.1.10.     Line 185: 23.38Gb -> "23.38 Gb" 

Done. 

 

2.1.11.     Line 186: 14.79kb -> "14.79 kb" 

 

Done. 

 

2.1.12.     "k-mer" (Line 204) or "kmer" (Line 176) to be consistent. 

Chose to use “kmer”. 

 

2.1.13.     Line 216: 100,000 g -> "100,000×g" 

Done. 

 

2.1.14.     Lines 219 and 222: SDS-PAGE -> "SDS-PAGE" (hyphen but not en dash) 

Done. 

 

2.1.15.     Line 221: Tris - HCl -> Tris-HCl (single hyphen but not en dash with spaces) 

Done. 

 

2.1.16.     Line 226: LC-MS/MS analyses -> "LC-MS/MS analyses" (hyphen but not en dash) 

Done. 

 



2.1.17.     Line 254: Using italic for scientific names (i.e. Octopus bimaculatus, Crassostrea gigas, and 

Lottia gigantea) 

Done. 

 

2.1.18.     Line 260: … 200kb (total length 199Mb)… -> "… 200 kb (total length 199 Mb)…" 

Done. 

 

2.1.19.     Line 290: Transposable elements -> "transposable elements" 

Done. 

 

2.1.20.     Line 300: Architeuthis dux -> "A. dux" 

Done. 

 

2.1.21.     Line 323: ~5-8% -> "~5¬-8%" (en dash but not hyphen for a range) 

Done. 

 

2.1.22.     Line 381: Octopus bimaculoides -> "O. bimaculoides" 

Done. 

 

2.1.23.     Line 383: Euprymna scolopes -> "E. scolopes" (in italic) 

Done. 

 

2.1.24.     Line 395: Euprymna scolopes -> "E. scolopes" 

Done. 

 

2.1.25.     Lines 397 & 398: 500 - 10,000 kb -> "500-10,000 kb" (en dash but not hyphen for a range) 

Done. 

 

2.1.26.     Line 406: ... observed in Hox 1, Hox 4, ANTP, Lox 2, Lox 5, Post 1 and Post 2. Hox 1 did,... -> "... 

observed in Hox1, Hox4, ANTP, Lox2, Lox5, Post1 and Post2. Hox1 did,..." 

Done. 

 

2.1.27.     Line 407: Hox 1 -> "Hox1" 

Done. 

 

2.1.28.     Line 408: Hox 3 -> "Hox3" 



Done. 

 

2.1.29.     Line 409: Lox 4 -> "Lox4" 

Done. 

 

2.1.30.     Lines 410, 412 & 413: Hox 2 -> "Hox2" 

Done. 

 

2.1.31.     Line 421: ... contains 7 reflectin genes and 3 reflectin-like genes… -> "... contains seven 

reflectin genes and three reflectin-like genes…" 

Done. 

 

2.1.32.     Line 422: … exception of 1 reflectin gene, … -> "… exception of one reflectin gene, …" 

Done. 

 

2.1.33.     Line 436: … (tsa)… -> "… (TSA)…" 

Done. 

 

2.1.34.     Lines 647 & 657: Architeuthis dux -> "A. dux" 

Done. 

 

2.1.35.     Line 659: Hox 2 -> "Hox2" 

Done. 


