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Details on the DNA extraction 
Details from Winkelman et al 1: DNA extraction from cephalopods is challenging owing to high concentrations of mucopolysaccharides found in their soft tissues, which tend to co-separate with DNA during extraction, and subsequently can inhibit many downstream enzymatic processes. Furthermore, the muscular tissues of Architeuthis (as well as squid belonging to 15 other families of the order Oegopsida) naturally contain high levels of ammonia, conferring additional complications to DNA extraction 2. Tissue samples were initially digested at 56C with agitation, in a cetyltrimethylammonium bromide (CTAB) containing buffer (100 mM Tris–HCl, pH 8.0; 1.4 M NaCl; 20 mM EDTA; 2% w/v CTAB; 0.2% w/v dithiothreitol; 500 mg/ml proteinase K). Subsequently, the digests underwent three purifications, each of one volume of 25:24:1 phenol:chloroform:isoamyl alcohol saturated with 10 mM Tris–HCl (pH 8.0) and 1 mM EDTA. One volume of ddH2O was subsequently added to the aqueous phase in order to dilute the salt concentration, prior to precipitation of the DNA by adding one volume of 100 percent isopropanol and centrifugation at 20000 r.p.m., followed by a 70 percent ethanol wash step. The extracted DNA was eluted in 1x TE buffer pH 8.0 (10 mM Tris –HCl, pH 8.0; 1 mM EDTA). The quality of all extracts was assessed by electrophoresis on 0.7 percent agarose gels with ethidium bromide, as well as by fluorometric quantitation on the Qubit1.0 fluorometer (Invitrogen, Carlsbad, CA, USA).
Proteomics
Proteomics: MALDI‑TOF/TOF and Protein Identification
MALDI-TOF/TOF analysis was performed according to 3 with modifications. Peptide samples were concentrated in a Centrivap (Labconco) and re-suspended in trifluoroacetic acid 0.1% (v/v). Samples were concentrated and cleaned according to the manufacturer’s instructions on a micro C18 column (ZipTip, Millipore, Bedford, MA, USA). The proteins were eluted in 1.7 µL directly onto the MALDI plate using the matrix α-cyano-4-hydroxycinnamic acid (α-CHCA) at 7 mg/mL prepared in ACN (50%), trifluoroacetic acid (0.1%) and ammonium phosphate (6 mM). Peptide mass spectrometry analyses were performed by MALDI-TOF/TOF (4700 Proteomics Analyzer MALDI-TOF/ TOF, SCIEX, Framingham, MA, USA) in reflector positive mode (700–4000 Da). The experimental mass spectra were searched against the UniprotKB protein sequence database with the MASCOT (Matrix-Science, London, UK) algorithm, integrated in the GPS Explorer software (AB SCIEX, Framingham, MA, USA). Moreover, the peek list was also searched against the NCBI (Metazoa, Mollusca). The search parameters were up to two maximum trypsin missed cleavages, mass tolerance of 50 ppm, cysteine carbamidomethylation (fixed modification), methionine oxidation (variable modification) and a charge state of +1. For the sequences that gave uncharacterized, predicted or putative proteins, a blast search was performed in the NCBI to obtain more information by homology. Searches on PFam 4 were done for one entry, and for the rest of the proteins we the molecular function, biological process and cellular component were obtained from the Gene Ontology (GO) 5 in UniprotKb 6.  
Transposable element annotation from raw reads
Repeat assembly from raw reads with REPdenovo
A repeat library was generated with REPdenovo 7. Briefly, raw reads from 500bp insert libraries were cut to kmers (by default 19mer, 29mer, and 39mer are used) and the kmer frequency was assessed. Then, high frequency kmers (by default 10 times the average coverage as cutoff) were collected and used as input of the repeats assembly step. A two stage assembly step is applied: firstly, raw contigs are assembled from the high frequency kmers with a genome assembler (by default velvet), and then an overlap-graph based approach is used to merge the raw contigs to longer contigs. Raw reads are then aligned to the merged contigs to scaffold them, after which the scaffolded contigs are used as the final assembled repeats. Also, based on the number of aligned reads , repeat copy number is estimated for each assembled repeat.
Repeat assembly from raw reads with ReAS
We subsampled trimmed Illumina reads and applied ReAS 8 with parameters “-d 100 -m 80 -size 50 -min_extend 5 -max_extend 50” to select reads that were corresponding to repetitive sequences over their full length. Those reads were then assembled with Trinity and annotated by similarity to known repeat elements in RepeatMasker, as well as BLAST similarity to a custom library of repeats using an in-house pipeline. After further filtering of unassembled sequences this library contained 1444 sequences.
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Supplementary Figures

Figure S1. Photographs (by Ricardo Tafur) depicting the three squid specimens for which we generated transcriptomes and information regarding the specimen collection.
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	Dosidicus gigas
LM: 206 mm
TW: 220 g
Sx: ♂

	Date: 22/12/11
Lat: 3º59.9’ S
Long: 86º0.8’ W
METHOD OF CAPTURE: JIGGING
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	Onychoteuthis sp. Aff. Banksia
LM: 61 mm
TW: 9 g


	Date: 9/01/12
Lat: 13º59.46’ S
Long: 80º00.03’ W
METHOD OF CAPTURE:
MIDWATER TRAWL NET NICHIMO LC-100 m2 – R3 (LC)
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	Sthenoteuthis oualaniensis
LM: 250 mm
TW: 631.5 g
Sx: ♀

	Date: 24/12/11
Lat: 5º59.9’ S
Long: 85º06.94’ W
METHOD OF CAPTURE: JIGGING
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Figure S2. Phylogenetic tree obtained with FastTree 9 showing the relationship between WNTs across Metazoa. WNT are a family of secreted lipid-modified signaling glycoproteins with a key role during development 10. The giant squid has the typical 12 lophotrochozoan WNTs (1, 2, 4, A, 5, 6, 7, 8, 9, 10, 11 and 16). The tips are colored by species, and the names correspond to abbreviated Genus and species names. Architeuthis dux (Adu, purple), Octopus bimaculoides (Obi, dark blue), Lottia gigantea (Lgi, teal), Crassostrea gigas (Cgi, sky blue), Capitella teleta (Cte, green), Mus musculus (Mmu, pink), Homo sapiens (Hsa, red), Tribolium castaneum (Tca, burnt orange), Drosophila melanogaster (Dme, orange).
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Figure S3. Phylogenetic tree showing the relationship between reflectin genes across cephalopods, with Octopus bimaculoides (Obi, dark blue) representing class Octopoda, cuttlefishes being represented by Sepia officinalis (Sof, blue) and Euprymna scolopes (Esc, sky blue), and including three species of squid (Loligo forbesii (Lfo), Doryteuthis pealeii (Dpe), Doryteuthis opalescens (Dop)) besides the giant squid (Architeuthis dux (Adu, purple)).

[image: ]
Figure S4. Size distribution of the 51,225 sequences initially annotated as protein-coding. 33,406 sequences were found to have transcript evidence (blastp match to a sequence from a cephalopod transcriptome, with at least 50% of the giant squid coding region covered) and/or matches in Swissprot or UniRef90 databases (Table 1). The remaining 17,819 sequences were found to be fragmentary and were discarded from the main annotation set.

Supplementary Tables

Table S1. Summary of the sequence data used in this project.
	Type
	Notes
	Number of reads
	Coverage (X)
	Total (Gb)

	Illumina (170bp insert)
	6 libraries
	 1,166,547,216   
	116
	116

	Illumina (500bp insert)
	3 libraries
	 382,595,608   
	38
	38

	Illumina (800bp insert)
	3 libraries
	 380,827,014   
	38
	38

	Illumina (5 kb insert)
	1 libraries
	[bookmark: _GoBack]54,929,603
	2
	5.4

	MOLECULO
	7 libraries
	1,292,292
	1.4
	3.8

	Chicago libraries
	2 libraries
	
	40
	108.0

	PACBIO
	19 smrtcells
	
	10
	27.0





Table S2. Statistics of the additional Giant Squid genome assemblies produced by this study. 
	Global Statistics
	Meraculous
	Meraculous + Dovetail + Pacbio

	Genome assembly*

	Input assembly
	-
	Meraculous + Dovetail

	Contig N50 length (Mb)
	0.005
	0.009

	Longest contig (Mb)
	0.120
	0.166

	Scaffold N50 length (Mb)
	0.032
	5.478

	Longest scaffold (Mb)
	0.683
	38.303

	Total length (Gb)
	2.673
	3.155

	Busco Statistics (1Euk / 2Met)

	Complete BUSCOs (%)
	74.3 / 79.1
	85.5 / 88.9

	Complete and single-copy (%)
	73.6 / 78.3
	84.5 / 88.0

	Complete and duplicated (%)
	0.7 / 0.8
	1.0 / 0.9

	Partial (%)
	13.5 / 10.4
	5.0 / 3.0

	Missing (%)
	12.2 / 10.5
	9.5 / 8.1

	Total Buscos found (%)
	87.8 / 89,4
	90.5 / 91.9





Table S3. The number of genomic copy numbers of the different transfer RNA isotypes predicted by tRNAscan-SE version 1.3.1 and Rfam v. 12.0 with the Infernal v. 1.1. The Rfam predictions that did not overlap with tRNAscan predictions are in parentheses.

	Isotype
	Num
	Isotype
	Num
	Isotype
	Num
	Isotype
	Num
	Isotype
	Num

	Ala
	322
	Gln
	129
	Leu
	198
	Ser
	186
	Val
	3203

	Arg
	202
	Glu
	110
	Lys
	85
	Sup
	42
	Pseudo
	7996

	Asn
	224
	Gly
	123
	Met
	334
	Thr
	284
	SeC
	51(+23)

	Asp
	47
	His
	55
	Phe
	65
	Trp
	61
	Undet
	402

	Cys
	77
	Ile
	178
	Pro
	106
	Tyr
	860
	Rfam
	8328





Table S4. Summary of repeat types present in the genome of the giant squid (Architeuthis dux).

	Summary Genome Information
	Meraculous + Dovetail

	Sequences in Query Fasta
	7,376

	Total Genome Length (bp)
	2,693,623,328 (2,242,358,460 excl N/X-runs)

	GC level
	36.10%

	Bases masked
	1,324,572,421 (49.17%)



	Class/Family
	Number of Elements
	Length Occupied (bp)
	Percentage of Sequence (%)

	SINEs
	354,924
	53,472,360
	1.99

	ALUs
	0
	0
	0.00

	MIRs
	0
	0
	0.00

	LINEs
	766,382
	187,367,738
	6.96

	LINE1
	26,666
	4,980,003
	0.18

	LINE2
	25,624
	4,603,689
	0.17

	L3/CR1
	71,358
	19,166,237
	0.71

	LTR elements
	90,553
	19,503,842
	0.72

	ERVL
	0
	0
	0.00

	ERVL-MaLRs
	0
	0
	0.00

	ERV_classI
	9,073
	1,403,201
	0.05

	ERV_classII
	867
	207,457
	0.01

	DNA elements
	1,626,482
	298,004,768
	11.06

	hAT-Charlie
	215,409
	42,311,790
	1.57

	TcMar-Tigger
	173,131
	29,451,995
	1.09

	Unclassified
	4,556,131
	740,142,866
	27.48

	Total interspersed repeats
	0
	1,298,491,574
	48.21

	Small RNA
	168,903
	24,891,018
	0.87

	Satellites
	118,384
	564,234
	0.02

	Simple Repeats
	4,395
	0
	0.00

	Low complexity
	0
	0
	0.00
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