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Abstract 

 
Following the miniaturization of integrated circuitry and other computer hardware over the past 

several decades, DNA sequencing is following a similar path. Leading this trend is the Oxford 

Nanopore sequencing platform, which currently offers the hand-held MinION instrument and even 

smaller instruments on the near horizon. This technology has been used in several important 

applications, including the analysis of genomes of major pathogens in remote stations around the 

world. However, despite the simplicity of the sequencer, an equally simple and portable analysis 

platform is not yet available. 

iGenomics is the first comprehensive mobile genome analysis application, with capabilities to 

align reads, call variants, and visualize the results entirely on an iOS device. Implemented in 

Objective-C using the FM-index, banded dynamic programming, and other high-performance 

bioinformatics techniques, iGenomics is optimized to run in a mobile environment. We benchmark 

iGenomics using a variety of real and simulated Nanopore sequencing datasets and show that 

iGenomics has performance comparable to the popular BWA-MEM/Samtools/IGV suite, without 

needing a laptop or server cluster. iGenomics is available open-source 

(https://github.com/stuckinaboot/iGenomics) and for free on Apple’s App Store 

(https://apps.apple.com/us/app/igenomics-mobile-dna-analysis/id1495719841). 

Background 

 

DNA sequencing technology has made tremendous progress over the past 30 years (Goodwin, 

McPherson, and McCombie 2016). The earliest automated approaches, beginning with the 

capillary-based Sanger sequencing devices in the 1980s, were large bench-top instruments requiring 

extensive sequencing facilities to prepare and sequence the DNA. In the 2000s, high throughput 

second-generation sequencing instruments advanced the field with more compact and simpler 

designs. However, these advances have been limited in their reach, because they are not readily 

accessible by most individual laboratories and citizen scientists.  

Within the past few years, Oxford Nanopore Technologies (ONT, Oxford, UK) has introduced 

small inexpensive hand-held sequencing instruments that have made it possible to perform genomics 

experiments with minimal facilities and in essentially any environment. Nanopore sequencing 

technology works by measuring the change in ionic current as a DNA molecule is passed through a 

nanopore. The DNA molecules are typically a few hundred to tens of thousands of nucleotides long, 

sampled from random positions throughout the genome.  Once sequenced, the raw signal data are 

base-called into nucleotide strings called reads (Wick, Judd, and Holt 2019), which are stored in fastq 

format and saved for further processing, especially read alignment and variant analysis.  

Several algorithms are available for this analysis. Modern aligners, such as Bowtie (Langmead et 

al. 2009) or BWA-MEM (Li 2013), often use the Burrows-Wheeler Transform (BWT) (Burrows and 
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Wheeler 1994) and the closely related FM-index (Ferragina and Manzini 2000) as their core indexing 

data structure. These new approaches are suited to large data sets because of their compact space 

requirements and fast alignment times. After alignment, variant calling platforms, such as Samtools 

(Li et al. 2009) or GATK (McKenna et al. 2010), systematically scan the alignments to find well 

supported variants in the sample using a statistical model to distinguish homozygous from 

heterozygous variants and rule out spurious sequencing errors. After this automated variant 

identification, priority variants are also often manually inspected using IGV (Robinson et al. 2011) 

and other genome browsers to review the evidence for the variant calls and further rule out false 

positives. 

The standard approach for analyzing reads is to align the reads to a reference genome on high-end 

laptops, servers, or even supercomputers. While this is possible for those with access to these 

technologies, these requirements are out of reach for many researchers and citizen scientists. There 

are many important scenarios where analyzing these data without high-end computing hardware is 

desirable, especially in remote environments. Interestingly, current iOS devices, including both iPads 

and iPhones, have significant computing resources, with clock speeds and onboard RAM approaching 

that of high-end laptop computers. That said, no standalone genomics analysis software is currently 

available for iOS devices. 

Addressing this critical gap, we have developed iGenomics, an iOS application that allows anyone 

to easily align and analyze DNA sequences in a mobile environment. iGenomics utilizes the same high 

performance algorithms for read alignment and variant calling as mainstream software, although 

iGenomics marks the first time these algorithms have been implemented in a mobile iOS 

environment. Additionally, using the advanced user interface features available in iOS, iGenomics 

allows for interactive visualization and inspection of the read alignments and variant calls, and 

contains additional features for reviewing critical mutations of interest. For example, iGenomics 

comes bundled with a listing of critical mutations in the influenza A virus that indicate which 

antivirals are most likely to be ineffective (Hussain et al. 2017). 
Due to the lower amount of processing power in mobile devices compared to high-end desktop 

computers or servers, iGenomics is limited in the size of the genome that can be processed. However, 

the implementations in iGenomics have been rigorously tested through direct comparisons with the 

BWA-MEM/Samtools framework for alignment and variant calling for viral and microbial genomes. 

All alignment and analysis algorithms employed by iGenomics have been tested on both real and 

simulated datasets to ensure consistent speed, accuracy, and reliability of both alignments and variant 

calls. Consequently, iGenomics is leading the shift of DNA analysis software and sequencing tools 

towards mobile devices and marks a great leap forward towards widespread DNA analysis by 

non-bioinformatician doctors, researchers and citizen scientists. Furthermore, iGenomics is available 

open-source to facilitate mobile genomics technology research and, in turn, accelerate the speed at 

which this technology is developed. 

Results 

Interactive Sequence Analysis on your Smartphone 

 
iGenomics brings a high level of interaction to DNA sequence analysis (Figure 1). Common 

touchscreen gestures allow for users to browse the alignment data in an easy-to-use and intuitive 

manner. This allows for the app to be used with almost no learning curve. 

The first step of analysis is selecting the reads and a reference genome for analysis in either fasta 

or fastq format. iGenomics provides multiple options for inputting both reads and reference files: 

selecting from a variety of default files for common bacterial genomes, using Dropbox to choose a file, 

or loading a fasta or fastq file straight into iGenomics from another app (such as Google Drive) or 

Airdrop. Then, from a single view, the user can choose the reads file, the reference file, and, 
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optionally, a tab-delimited file annotating known important mutations. For example, iGenomics 

comes with a preloaded known mutations file that indicates certain mutations in the influenza 

genome, which, if present, cause resistance to certain antivirals (Hussain et al. 2017). This single view 

design is meant to be simplistic and requires minimal user effort. After choosing the files to align, the 

user can either select the “Analyze” button to align reads to the reference genome using the default 

parameters or can choose to configure certain parameters before aligning. The parameters available 

include the maximum error rate for alignments and to enable trimming for fastq files.  

After aligning completes, the user is brought to the analysis pane. The main view, known as the 

alignments display, is an IGV-like rendering of how the reads are aligned to a reference genome, with 

the ability to scroll left, right, up, and down through all of the aligned reads. Aligned bases that differ 

from the reference base are highlighted in a different color, as are consensus calls. A long-touch on a 

read presents additional details about the read, including the read name, the edit distance of the 

alignment, the gapped read and gapped substring of the reference genome the read aligned to, and 

whether the forward read or the reverse complement aligned. The user can also use the pinch-gesture 

to zoom out, revealing a high-level overview of the individual alignments as well as a coverage profile 

of the number of reads that aligned at each position. Mutations are still highlighted after zooming out, 

allowing the user to see where all of the mutations occur in one view. 

Another powerful view within the analysis pane is the coverage profile, which displays the count of 

each base that aligned at each position. Positions where the reference base does not match the base of 

the reads are highlighted so that the user can see that this position contains a mutation (heterozygous 

mutation are highlighted with a different color). To scroll through the coverage profile, the user 

simply has to swipe left or right. If a user would like to view more detailed information about a given 

position, he/she simply holds down any of the boxes in that position and an informative view 

elaborating upon the position's contents will pop up. By using the pinch gesture to zoom-out, the user 

reveals a graph of the number of reads that aligned at each position, resembling that of the 

zoomed-out alignments display but with a full-screen graph.  

The Summary window, accessible from within the analysis pane, has four pages and provides 

some useful tools for high-level analysis. The first page provides buttons to view the alignments 

display, coverage profile, coverage histogram, and list of all found mutations. The coverage histogram 

graphs the frequency of each level of coverage, specifically the frequency of a particular number of 

reads aligned to a position, and is overlaid by a Poisson curve for context. Within the list of all found 

mutations, the user can scroll through all mutations, and then select one to inspect that position in 

the analysis pane. The second page gives an overview of the alignments, including the percent of reads 

matched, the total number of reads input, the number of mutations, and the names of the reads and 

reference files. This page also provides the user with the capability to search for positions in the 

reference genome by position or by a query string, which uses BWT exact match for rapid searching. 

The third page contains a large picker view that allows the user to intuitively move between 

sequences/segments in the reference genome. The last page contains a list of known mutations if the 

user selected a known mutations file during the file input stage. This list contains mutation position, 

mutation details (such as resistance to antivirals), and a color-coded indicator denoting if a mutation 

was found at that position and if that mutation indicates a known mutation. 

 

 

 

 

 

 

 

 

 

3 

https://paperpile.com/c/LGSSs6/hsq4


 

 

 

Figure 1: iGenomics iPhone screenshots (top-left) Alignments display; (top-right) Alignment 

display zoomed-out; (middle-left) Coverage profile; (middle-right) Coverage profile zoomed-out, 

(bottom) Known mutations display. In the known mutations display, green indicates the mutation is 

not present, dark red indicates the listed mutation is present and the mutation is homozygous, and 

pink indicates the listed mutation is present and the mutation is heterozygous. In both the alignments 

display and coverage profile, there is an indicator in the top right of the form [X, Y] that represents 

the minimum coverage X across all positions and maximum coverage Y across all positions.  
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Simulated read runtime analysis 

 

In order to observe the efficiency and accuracy of iGenomics running on an iPhone 8, we first tested 

several simulated data sets. The reference genomes we used were:  

(1) phiX174, a widely used control sequence for Illumina sequencing (Genbank:NC_001422.1); 

(2) a Zika virus genome (isolate Zika virus/H.sapiens-tc/KHM/2010/FSS13025);  

(3) a H3N2 influenza genome (A/California/7/2004(H3N2));  

(4) a H1N1 influenza genome (A/New York/205/2001(H1N1)); and  

(5) an Ebola genome (isolate Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3686.1).  

 

From these reference genomes, we then simulated reads using DWGSIM 

(https://github.com/nh13/DWGSIM) according to the following conditions: the average coverage is 

100x, the genetic mutation rate was set to 0.5% and the read characteristics would mirror reads 

produced by real-world sequencers. Accordingly, reads of length 100bp and sequence error rate of 

1.0% were simulated to mirror reads generated by Illumina sequencers and reads of length 1,000bp 

and sequence error rate of 10.0% were simulated to mirror reads generated by Oxford Nanopore 

sequencers. For comparison purposes, we also measured the runtime when aligning and identifying 

variations using a BWA-MEM (Li 2013) using “-x ont2d” and Samtools pipeline for the same datasets. 

Notably, iGenomics uses an FM-index and banded dynamic programming implementation similar to 

BWA-MEM allowing the analysis to focus on major differences in hardware. 

 

Figure 2: Runtimes for simulated reads from five reference genomes. The data sets consisted of 

reads averaging 100x coverage and a reference file. Each data set was tested, defined as aligning then 

variant calling, using iGenomics and a BWA/Samtools pipeline. Each trend line indicates the runtime 

for each data set using the denoted alignment and analysis software- iG for iGenomics and bwa for the 

BWA/Samtools pipeline. The dotted lines indicate the specific measurements recorded. 
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When comparing the runtime of iGenomics against datasets with different genome lengths, we 

observe a nearly linear relationship between genome length and alignment runtime (Figure 2). This 

is explained by a powerful feature of the BWT in which the time for an alignment of a single read is 

essentially independent of genome size. Consequently, since the simulations use a consistent amount 

of coverage per genome, the linear increase in runtime is explained by the linear increase in the 

number of reads to align. It is also worth noting that the iGenomics trend-lines closely follow the 

pattern of those of BWA-MEM+Samtools. This both adds credibility to iGenomics as a sequence 

alignment and analysis tool and to the field of portable genomics, as all of these important viruses can 

be analyzed in under 5 seconds on a mobile device. 

 

Simulated read accuracy analysis 

 
We next evaluated the accuracy of iGenomics using reads simulated from the H1N1 Influenza genome 

(same sample as above). In each trial, we simulated an average of 100x coverage for all combinations 

of the following sets of parameters: sequence error rates of 0.01, 0.1, and 0.2, mutation rates of 0.001, 

0.01, and 0.1, and read lengths of 100bp, 250bp, and 1,000bp. The range of the simulation 

parameters is designed to test iGenomics across a variety of different possible sets of reads that 

iGenomics could be used with. After simulating the read sets, each simulated sample was 

independently aligned to an H1N1 reference genome using iGenomics. For each sample, we recorded 

the runtime and the reported list of mutations found. In order to check the validity of the mutations 

found by iGenomics, the reported mutations were compared to the DWGSIM-generated list of 

simulated mutations. We then compare the variants reported by iGenomics to DWGSIM, allowing for 

up to 5bp differences to account for ambiguity that can occur, especially indels within locally 

repetitive sequencing. Key metrics that were evaluated relative to DWGSIM were precision, recall, 

and F-Score (the harmonic mean of precision and recall). 

The results of the comparisons between iGenomics’ reported mutations and DWGSIM’s list of 

mutations confirm iGenomics accuracy. Most datasets show a high-degree of accuracy (F1) well over 

90% (Figure 3). The few experiments with lower precision or recall occur with the most difficult 

scenarios of the highest sequencing error rate and the lowest mutation rate. For comparison, the same 

results were also computed with input from a BWA-MEM/Samtools pipeline. Interestingly, 

iGenomics tends to exhibit a higher degree of recall, precision, and overall accuracy. 

Another important consideration for iGenomics is the runtime required. The runtime of 

iGenomics for each of these simulated data-sets was below 3 seconds (Figure 2). Furthermore, 

iGenomics aligned reads and identified mutations in these simulated datasets about 4x to 5x faster 

than the BWA-MEM/Samtools pipeline (Figure 4). For context, the BWA-MEM/Samtools runtime 

for these data sets was computed on an early 2015 MacBook Pro with a 2.9GHz Intel Core i5 running 

OS X El Capitan while the iGenomics runtime was computed on a 2017 iPhone 8 with a 2.39 GHz A11 

Bionic Chip running iOS 12.3.1. 
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Figure 3: Mutation identification accuracy for simulated H1N1 flu datasets of varying mutation rates 

and error rates for iGenomics (left) and the BWA-MEM/Samtools (right) pipeline. The top, middle, 

and bottom plots show recall, precision, and F-score, respectively. 
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Figure 4: iGenomics runtime vs. BWA/Samtools pipeline runtime for simulated datasets of varying 

mutation rates and sequence error rates of H1N1. 

 

Viral Genome Analysis 

 
iGenomics was next tested on several clinical and environmental viral samples sequenced using the 

Oxford Nanopore MinION in order to demonstrate both the functionality and accuracy of iGenomics 

relative to standard tools such as BWA-MEM and Samtools. The purpose of these tests is to show the 

overall utility of iGenomics as a mobile counterpart to desktop aligners and analysis software typically 

used by researchers and as a novel sequence analysis platform. 

These tests focused on public MinION data from Ebola (sample 

https://raw.githubusercontent.com/nickloman/ebov/master/data/fastq/004674.2D.fastq from 

(Quick et al. 2016)), and Zika (sample http://s3.climb.ac.uk/nanopore/primal_KX369547_R9.tgz 

from (Faria et al. 2016)), as well as MinION and MiSeq data from a clinical H3N2 sample we 

previously collected (A/New York/A39/2015 (H3N2)) (Ding et al. 2019) (Methods). The Ebola trial 

focused on comparing iGenomics found mutations to those found by Samtools using the isolate Ebola 

virus/H.sapiens-wt/SLE/2014/Makona-G3686.1 as the reference (GenBank: KM034562.1). For Zika, 

the test was based on using a ground-truth set of mutations derived from a consensus genome using 

the isolate Zika virus/H.sapiens-tc/KHM/2010/FSS13025 (GenBank: KU955593.1) as the reference. 

The H3N2 test was designed to demonstrate iGenomics consistency across data produced by different 

sequencers by comparing the results of the Nanopore and MiSeq data when aligning to the isolate 

(A/California/7/2004(H3N2)) genome.  

In all of the cases examined, iGenomics had a faster runtime than the desktop alignment pipeline 

of BWA-MEM/Samtools (Figure 5). This is likely due to a difference in how iGenomics and the 

desktop software store the alignments in memory. Since iGenomics is targeted to be a focused mobile 

analysis platform for small genomes, iGenomics needs to run very rapidly. Instead of separately 

reporting each alignment and writing the alignments to disk, then separately sorting the alignments, 

and then scanning for variations, as BWA-MEM/Samtools does, iGenomics records the full gapped 
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alignments and coverage profile matrix in RAM so that the subsequent mutation identification can 

avoid repeating computations. Furthermore, iGenomics keeps this data in RAM until the user exits 

the analysis screen to allow for exploring the various visualizations and performing interactive 

analysis with negligible lag time. This presents a standard time vs RAM tradeoff present in many 

software applications, and here we have elected for fast processing to ensure the application is as 

responsive as possible. 

 

 

Figure 5: Comparison between iGenomics and BWA-MEM/Samtools pipeline for real reference 

genomes and reads obtained from MinION (Nanopore) and MiSeq sequencers. 

 
 

Influenza typing 

 

Influenza disease is caused by RNA viruses from the family Orthomyxoviridae (Krammer et al. 2018). 
There are three distinct viral types, A, B, and C that can infect humans. Influenza types A and B cause 

the annual epidemics, while influenza C is generally less severe. The influenza A genome is organized 

into eight segments, and is classified into subtypes based on genetic variants within the two proteins 

on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). There are 18 different 

hemagglutinin subtypes and 11 different neuraminidase subtypes (H1 through H18 and N1 through 

N11, respectively). Many of the major influenza pandemics have been caused by influenza type A 

infections. For example, the 1918 flu pandemic (the “Spanish flu”), was caused by a deadly Influenza A 

virus strain of subtype H1N1, and the Hong Kong Flu in 1968 was caused by the H3N2 subtype. 

Consequently, the type and subtype of an unknown influenza sample is extremely important and 

urgent to determine. 
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As a final demonstration of how iGenomics can be used, we also considered an influenza 

identification task where influenza sequencing data are aligned to several strains of flu at the same 

time in an attempt to determine the type and subtype. For this, we developed an influenza 

“pan-genome reference sequence” containing representatives for three different Influenza genomes 

related to antigenic strains that were circulating from 2009 to 2016: H1N1pdm09 

(A/California/04/2009), H3N2 (A/Brisbane/10/2007; A/Perth/16/2009; A/Texas/50/2012; 

A/Victoria/361/2011; and A/NewYork/03/2015), and Influenza B (B/New York/1352/2012). For this 

analysis, segments that are shared across influenza A subtypes were only reported once. For the 

pan-genome, we also include a catalog of mutations in these genomes that have specific variants 

known to reduce the efficacy of antiviral treatments. The identity of the A segment is identified by 

evaluating which of the potential segment types has the largest number of alignments.  

In order to test alignments against the pan-genome, we ran iGenomics using simulated MinION 

(1,000bp, sequence error rate 10.0%) and Illumina (100bp, sequence error rate 1.0%) reads from 

pH1N1 and H3N2 with mutations rates 0, 0.001, and 0.005. After alignment, we evaluated if the 

reads were correctly aligned to the type and subtype that they originated from. If the alignment 

matches the segment of origin, we consider that alignment “passing”. The segment identification rate 

is the number of passing alignments divided by the total number of alignments. The results of this 

experiment show that we have a greater than 93% identification rate, meaning that in most cases this 

simple process can accurately and quickly determine the type and subtype of the flu genome entirely 

on a mobile device (Figure 6). 

 

 

Figure 6: Table indicating alignment details for simulated datasets aligned using iGenomics to a 

pan-genome composed of multiple Influenza genomes. The pH1N1 reads were simulated from the 

H1N1pdm09 (A/California/04/2009) genome and the H3N2 reads were simulated from the H3N2 

(A/NewYork/03/2015) genome. 

 

Discussion 

 
DNA sequencing has advanced tremendously over the past three decades; a process that once 

required large million dollar instruments can now be done on handheld devices costing only $1,000. 

However, it is important to consider that sequenced DNA reads themselves provide little information 

without software to align and analyze them. For high-end servers and laptops, this software already 

exists; for mobile devices, iGenomics is the first comprehensive solution for researchers and citizen 

scientists to easily analyze sequence data using a device that they already own. 

Unlike traditional DNA mapping software, iGenomics can be used in virtually any location because 

of the inherent portability of mobile devices like the iPad and iPhone. iGenomics implements the 

same advanced bioinformatics algorithms that are used for rapid alignment and analysis for other 

platforms. Consequently, the true novelty of this application is not in the algorithms used, but rather 

how they have been implemented in a mobile environment. The entire workflow for iGenomics is 

designed to be very simple and intuitive. A user effortlessly picks a reads file to analyze and, once 

selected, the alignment, variant calling, and visualization are completed within seconds. This is 
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accomplished without any internet connectivity through an optimized implementation in Objective-C. 

Interestingly, while Objective-C is sometimes an afterthought for computationally intensive apps, 

iGenomics leverages the language’s capabilities to generate both a unique user experience and fast 

analysis times.  

iGenomics is designed for quickly computing detailed genetic information about specific 

mutations within different viral or bacterial genomes. An important use case of iGenomics could be a 

researcher with limited computational resources sequencing cDNA of a coronavirus sample, loading 

and aligning the cDNA reads with iGenomics, and getting a first analysis of the coronavirus mutations 

within a few seconds. To support this capability, we have developed a tutorial with the MinION reads 

(SRX7615629) and consensus genome (MN938384.1) from patient HKU-SZ-002a, as well as the 

consensus genome from a bat SARS-like coronavirus isolate (MG772934.1/) previously used for 

comparisons (Chan et al. 2020) (http://schatz-lab.org/iGenomics/). Following the tutorial, these data 

can easily be downloaded on one’s iOS device and imported directly into iGenomics to be analyzed. 

Another promising capability of iGenomics is its ability to load reference genomes and reads from 

outside sources, perform alignment and variant calling, and export the results all without any internet 

access. For example, by using Airdrop to both import and export data from iGenomics, a researcher 

can analyze DNA in remote locations without any internet connectivity.  

Future developments for iGenomics are far reaching as DNA sequencing instruments continue to 

evolve to the point where they could be directly attached or integrated with mobile devices. In fact, 

Oxford Nanopore has announced that they hope to have a new sequencer, named the “SmidgION”, 

that connects directly to iOS devices available for researchers within the next year. At that point, using 

mobile sequencing technology with iGenomics, DNA can truly be sequenced, aligned, and analyzed 

anywhere and absolute mobility of the genomics field will be achieved. As the processing power and 

memory contained within mobile devices improves, so will the overall performance of iGenomics in 

handling even larger and more complex samples.  

 

Methods 

 
The implementation of iGenomics follows the state-of-the-art algorithms and data structures used in 

standard bioinformatics applications. However, the visualization of the read alignments and 

mutations is unique to iGenomics and was created with the intention of allowing the user to have 

powerful analysis capabilities while still maintaining a simplistic mobile-friendly interface. 

1. Indexing the genome with the Burrows-Wheeler Transform (BWT) 

 
The Burrows-Wheeler Transform (BWT) is constructed by lexicographically sorting the cyclic 

permutations of the input genome appended by a end-of-string character. By convention, we use a 

dollar sign (‘$’) as the end-of-string character, which has a lexicographical value less than any letter in 

the English alphabet and ensures the end of the original sequence can be found. This sorted list 

creates what is known as the Burrows-Wheeler Matrix (BWM). Then, to extract the BWT from the 

sorted permutations, the last character of each row in the matrix is extracted in order and appended 

to a string. 

To first lexicographically sort the cyclic permutations, a quick and efficient sorting algorithm must 

be used so that this function is fully optimized. iGenomics uses a version of QuickSort, a 

divide-and-conquer sorting algorithm, because on average it takes O(n log n) time for n objects to be 

sorted. Finally, to obtain the BWT from the sorted array, the final character of each row in the matrix 

is copied into a string with the first character copied having the first position, the second character 

copied having the second position, and so forth. 
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Figure 7: Diagram of how the Burrows-Wheeler Transform is created. (left) All cyclic permutations 

of the text “GATTACA”. (right) The Burrows-Wheeler Matrix of the text consisting of the sorted cyclic 

permutations of the text. 

 

2. Read alignment 

 
iGenomics uses a seed-and-extend process for read alignment in which first relatively short exact 

matches, known as seeds, are found using the BWT, after which they are then extended into 

end-to-end alignments using dynamic programming. The seed size is based upon the maximum edit 

distance (a user-specified parameter) allowed for a read that successfully aligns to be considered a 

match. The maximum edit distance is inputted as a decimal value edit rate, and multiplying that value 

by the length of the given read will give the maximum possible edit distance we allow when aligning 

that read. During the aligning process, each read is split into the edit distance plus one segment of 

equal length. This relies on the widely used technique that if the string matches with at most X edits, 

then at least 1/(X+1) of the segments must still match without error (Baeza-Yates and Perleberg 

1996). For example, if the user allows only 1 edit, the algorithm divides the read into left and right 

halves (1/(1+1)) knowing that the correct alignment will include an exact match of one of those 

segments. 

Exact matching means finding all of the places in the reference genome where a given query 

matches exactly, character-for-character across its entire length (Langmead, 2012). To do this 

effectively, the trait of the BWT known as the Last-First Property is used as the basis for an exact 

matching algorithm. The Last-First property states that the occurrence of any character in the last 

column of the BWM, which is the BWT, corresponds to the same occurrence of that character in the 

first column of the BWM. Using the first column of the BWM and the BWT to create an FM-index, the 

algorithm navigates the rows of the index which contain exact matches and then converts these 

positions from the BWT to positions in the reference genome. 
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Figure 8: A diagram showing the exact match algorithm by repeated application of the Last-First 

property using the characters of the query string. 

 

After the seeds are found, iGenomics computes the end-to-end edit distance allowing for 

substitutions as well as insertions and deletions (Smith and Waterman 1981). To make this as efficient 

as possible, iGenomics uses a banded computation. This method works by only computing a subset of 

the dynamic programming matrix, a band of the edit distance table, with the band having a standard 

width of (the maximum edit distance * 2 + 1). To determine where to begin the band computation, 

iGenomics attempts to exact match a 20bp substring of the read. If the exact match is successful, the 

banded distance will be computed relative to the matched position of the substring. If the exact match 

is unsuccessful, an exact match with the 20bp substring of the read starting at the second character 

will be attempted. This process continues with the substrings continuously moving one character over 

until either the read successfully aligns or none of the exact matched 20bp substrings yields a 

successful alignment. 

 

 

Figure 9: A diagram showing how edit distance is computed for two strings. Each cell of the matrix 

represents the minimum of three possible values: 1) the left cell plus one (representing the cost of 

adding a gap on the left string); 2) the upper cell plus one (representing the cost of adding a gap on 

the top string; and 3) the upper left cell plus zero, if the top string equals the left string, or one, if the 

characters do not match to account for the cost of another substitution. 
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3. Coverage profile and variant identification 

 
The coverage profile concisely summarizes how the reads are aligned to the genome. The internal data 

structure for the profile is a coverage profile matrix, which spans the genome and at each position 

contains a row for the number of: matched base-pairs, A, C, G, T, and (non-base-pair) deletion 

characters. The matched positions of each read are tallied and the characters of the read are added, so 

that the positions of the matrix that the read overlaps are marked within the matrix. Once the 

coverage profile matrix is completely generated, variants can be identified, a graphical representation 

of the profile can be formed, and the number of alignments can easily be seen. 

 

 

Figure 10: A table showing how the coverage profile is represented within iGenomics, summarizing 

how the reads align to the reference genome (an example of reads aligned to a reference genome is 

shown in Figure 1). 

 

Variants are identified by scanning the array of matched characters, and at each position if the 

matched character differs from the reference character, a mutation, or variant, would be reported (Li 

et al. 2009). The major challenge of this analysis is distinguishing sequencing errors from real 

mutations, and differentiating between homozygous and heterozygous mutations. In a diploid 

genome, homozygous mutations are mutations that occur on both copies of a chromosome whereas 

heterozygous mutations occur on one copy of a chromosome but not both. iGenomics recognizes 

heterozygous mutations as positions in the genome where there is a nearly equal coverage of more 

than one base existing in the set of aligned reads according to a user-specified relative minimum 

heterozygosity threshold. Thus, if two or more bases at a position have relative coverages greater than 

that threshold, the mutation present at that position is considered to be heterozygous. In haploid 

species, such as the viral and bacterial pathogens described above, this threshold is used to find 

variants that occur within a minimum allele frequency within the population. 

Immediately after alignment has completed, each position within the reference genome is assigned 

a value indicating whether the reads at that position matched either exactly, heterozygously, 

homozygously, heterozygously where there is a known mutation, or homozygously where there is a 

known mutation. This allows iGenomics to highlight all mutations with their associated 

heterozygosity and importance. Known mutations are loaded through a user-inputted text file. This 

file contains each known (important) mutation’s reference base, mutated base, position, segment (or 

chromosome) the mutation is expected to occur in, and a free-text description of what this mutation 

indicates. The known mutations functionality enables iGenomics to be specifically targeted for the 

analysis and treatment of different genomes, such as known mutations associated with Influenza 

antiviral resistance. 
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4. Visualizations and interactive analysis 

 
The main challenge with the GUI was to create one that was both useful and unique when compared 

to other desktop DNA analysis software. The key to achieving these goals was to take advantage of the 

distinctive features of the iOS environment. Ultimately, a custom graphics engine was built to handle 

the constant redrawing of the analysis interface and, visually, this engine sits on top of Apple’s 

CoreGraphics library. In addition to the analysis interface, a utility interface was developed, which 

contains features for rapidly analyzing and quickly navigating the alignments. 

The solution to developing this unique interactive analysis screen was to employ many 

touch-related functions that are natural to anyone who has ever used a touch screen mobile device. 

Scrolling requires a simple finger drag while viewing a large-scale version of the coverage profile 

merely requires performing a pinch gesture on the screen. The information pertaining to mutations 

can be viewed at any position by tapping on one of the reference genomes or found genome boxes at 

that position. Even this action takes advantage of the mobile iOS environment because a popover view 

is used to display the information at the tapped position. At the bottom of the screen, there is a 

variable scrubbing speed slider so that the user can move across the genome quickly or at a slower 

rate by dragging up while moving the slider. 

Simple functions such as searching for a specific query or position are also included in the analysis 

view. To minimize clutter on the screen, when a user searches for a certain string, he/she is instantly 

taken to the next occurrence of that string, as opposed to displaying a large list of positions to the 

user. One of the most notable of these functions is the ability to change the minimum relative 

heterozygosity value (known as mutation coverage within iGenomics) on the fly through a slider. Once 

the user has concluded analyzing on the mobile device, he/she has the option to export mutations and 

analysis data via a variety of means: email, Dropbox, Airdrop, or sharing via installed apps (such as 

Google Drive). The mutations are outputted in a VCF (Variant Call Format) file format so that they are 

compatible with traditional desktop analysis software. 

Flu Isolate Sequencing 

 

Sample collection and amplification  

Clinical specimens of nasopharyngeal swabs were collected from patients in New York City in the 

2014-2015 flu season as previously described (Ding et al. 2019). The specimen used in this study was 

designated as A/New York/A39/2015 (H3N2) and is available in the SRA as sample ID 

SAMN08454624. Briefly, the RNA was eluted in 30 µl of RNase-free water and 3 µl was used as a 

template for the amplification of the entire influenza A or B genome using previously described 

Multi-segment RT-PCR (M-RTPCR) method (Zhou et al. 2009). The presence of the cDNA copies of 

the genomic segments were examined by running 3 µl of the M-RTPCR amplicons on a 0.8% agarose 

electrophoresis gel. The influenza genomic amplicons were purified using a 1x Agencourt AMPure XP 

purification step and assessed by Qubit analysis to quantify the mass of the double-stranded cDNA 

present. 

 

Nanopore MinION sequencing 

The library preparation and sequencing procedures were performed following manufacturer’s 

instructions for the Nanopore Sequencing using the SQK-MAP006 kit.  Purified DNA was used for 

end repair and dA-tailing, followed by 1x AMPure XP beads purification. The resultant DNA was 

quantitated by Qubit analysis and the molarity was further determined by using Agilent 2200 

TapeStation system with a Genomic DNA ScreenTape. Next, 0.2 pmoles of the DNA was used in 

adaptor ligation, and the reaction was purified using MyOne C1-beads. The final DNA was eluted in 

25 µl Elution Buffer and is called Pre-sequencing Mix. For the SQK-MAP006 sequencing kit, 12 µl 

Pre-sequencing Mix was combined with 75 μl 2x Running Buffer, 59 μl nuclease-free water, and 4 μl 
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Fuel Mix and then loaded into the FLO-MAP003 flow cell. A re-loading was also performed.  The 

sequencing was run on the MIN-MAP001 MinION sequencing device, which was control by the 

MinKNOW software using the MAP_48Hr_Sequencing_Run.py script provided by Oxford Nanopore 

or using the MAP_140to5xVoltage_Tuned_plus_Yield_Sequencing_Run.py script provided by John 

Tyson. Raw data was uploaded to the cloud-based Metrichor platform and basecalling was performed 

using the application of 2D Basecalling for SQK-MAP005 Rev 1.62 or 2D Basecalling for 

SQK-MAP006 Rev 1.62.  

 

Illumina MiSeq sequencing 

The sample was prepared for sequencing on the Illumina MiSeq platform according to the 

manufacturer's protocol (15039740 v01) as previously described (Ding et al. 2019). Sequencing data 

was then generated by a 2x300bp run using an Illumina MiSeq 600 Cycle v3 reagent kit. 

 

Data Availability 

 

All sequencing data (genuine and simulated) along with a tutorial on iGenomics are available online: 

http://schatz-lab.org/iGenomics/.  
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Supplemental Figures 

 
 
 
 
 
 
 
 

 

Supplemental Figure S1. Mutation identification accuracy for simulated H1N1 flu datasets of 

varying mutation rates and read length for iGenomics (left) and the BWA-MEM/Samtools (right) 

pipeline. The results were computed in the same manner as described in Results section 3 (Simulated 

accuracy analysis): the simulated reads consisted of H1N1 read sets simulated with an average 

coverage value of 100 and for all combinations of the following sets of parameters: sequence error 

rates of 0.01, 0.1, and 0.2, mutation rates of 0.001, 0.01, and 0.1, and read lengths of 100bp, 250bp, 

and 1,000bp.  
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Supplemental Figure S2. iGenomics iPhone screenshots: (left) launch screen, (middle) file 

selection page, (right) individual file selector. By pressing the ‘Start’ button on the launch screen, the 

user is brought to the file selection page. Pressing ‘Select File’ on the file selection page will allow the 

user to use the individual file selector to choose a default file (pre-packaged with iGenomics) or local 

file (saved to iGenomics from an external app) or to use Dropbox’s UI to choose a file from the user’s 

Dropbox account. Additionally, the user can select ‘Analyze’, which will immediately begin to align the 

input reads to the reference using the most recently used parameters, or ‘Configure’, which will 

present the parameter selection page. 
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Supplemental Figure S3. iGenomics iPhone screenshots: (left) parameter selection page with 

trimming disabled, (middle) parameter selection page with trimming enabled, (right) computing 

page. From the file selection page in Supplemental Figure S2, if the user chooses ‘Analyze’, the right 

computing page will be shown and if the user chooses ‘Configure’, the parameter selection page will be 

shown with the last used parameters. Pressing ‘Start Aligning’ from the parameter selection page will 

begin aligning the reads using the configured parameters. On the computing page, the percentage 

indicates the total percent of reads aligned and the time remaining indicates the estimated time 

remaining before the alignment and variant identification process completes. 
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Supplemental Figure S4. iGenomics iPhone screenshots: (top) view selection page, (middle) 

alignment details page, (bottom) segment selection page. The view selection page allows the user to 

view the alignments display and coverage profile (shown in Figure 2) as well as the coverage 

histogram and found mutations list (shown in Supplemental Figure S5). The alignment details page 

displays information about the alignments, including the reads and reference file names, percent of 

reads that matched, and the number of mutations, and allows the user to search the reference genome 

and adjust the minimum relative heterozygosity value (known as mutation coverage within 

iGenomics). The segment selection page lets the user intuitively choose a particular segment in the 

reference genome to view alignment information for. These three pages, in addition to a fourth page 

(the important mutations display shown in Figure 1), can be navigated with just a swipe. 
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Supplemental Figure S5. iGenomics iPhone screenshots: (top) coverage histogram, (bottom) 

found mutations list. The coverage histogram displays a plot of the frequencies of each coverage value 

with a poisson curve for context. In these screenshots, we used simulated H1N1 reads of length 100bp 

with an average coverage value of 100. The found mutations list displays the number of mutations 

identified in each segment and information about each of those mutations. By tapping the circle `i` 

icon, the user can navigate directly to the mutation in the coverage profile or alignments view 

(whichever was most recently used). Adjusting the mutation coverage slider in Supplemental Figure 

S4 will affect the mutations that are displayed in this list. 
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Supplemental Figure S6. iGenomics iPhone screenshots: (top) position information popover, 

(bottom) read alignment popover. The position information popover for a given position displays 

coverage details, heterozygosity, and, if present, insertion mutations. This popover can be invoked by 

double-tapping anywhere in the column for a position from within the alignments display or coverage 

profile. The read alignment popover shows specifically how a particular read aligned to the reference 

genome, and can be brought up from the alignments display by long pressing an aligned read. 
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Supplemental Figure S7. iGenomics iPad screenshots: (top-left) alignments display, (top-right) 

coverage profile, (bottom-left) partially zoomed-out coverage profile, (bottom-right) fully zoomed-out 

coverage profile. The iPad application for iGenomics strongly resembles that of the iPhone application 

for all views except the analysis ones. In the analysis view, alignment details are always visible at the 

top of pane and the alignments display/coverage profile is displayed below the details. As with the 

iPhone version of iGenomics, the user can switch between the alignments display and coverage profile 

and can zoom out of either to see the relative coverage at varying levels of granularity. 
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Supplemental Figure S8. iGenomics iPad screenshots: (top) analysis utilities, (bottom) found 

mutations list. Tapping three line icon in the top left of the analysis view will bring up the analysis 

utilities, which contains the same capabilities as the iPhone version of iGenomics but presents views 

in iPad-native popovers rather than new fullscreen pages. Tapping on any of these utilities, such as 

the “Mutation List”, will present the results in a popover. 
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March 10, 2020 

Dear Dr. Edmunds, 

We would like to submit our manuscript entitled “iGenomics: Comprehensive DNA Sequence 

Analysis on your Smartphone” to be considered for publication in GigaScience. 

Following the miniaturization of integrated circuitry and other computer hardware over the past 

several decades, DNA sequencing is following a similar path. Leading this trend is the Oxford 

Nanopore sequencing platform, which currently offers the hand-held MinION instrument and 

even smaller instruments on the near horizon including the SmidgION. This technology has 

been used in several important applications, including the analysis of genomes of major 

pathogens in remote stations around the world. However, despite the simplicity of the 

sequencer, an equally simple and portable analysis platform is not yet available. 

To address these issues, we developed iGenomics, the first comprehensive mobile genome 

analysis application, with capabilities to align reads, call variants, and visualize the results 

entirely on an iOS device. Implemented in Objective-C using the FM-index, banded dynamic 

programming, and other high-performance bioinformatics techniques, iGenomics is optimized 

to run in a mobile environment. We benchmark iGenomics using a variety of real and simulated 

Nanopore sequencing datasets and show that iGenomics has performance comparable to the 

popular BWA-MEM/Samtools/IGV suite, without needing a laptop or server. 

By being both portable and performant, iGenomics makes the alignment and analysis process 

intuitive and easy enough that even non-scientists can use the app and understand its 

visualizations. The main contributions of the manuscript are: 

1. iGenomics is the first mobile application for the comprehensive alignment and analysis 

of genomic data. The app performs the analysis entirely on the iOS device. Data can be 

imported into the app via Dropbox, AirDrop, or any iOS application capable of sharing 

files (Safari, Google Drive, Mail to name a few). Notably, iGenomics can be used with no 

internet access, as demonstrated by its ability to both import and export data using 

AirDrop. The inherent mobility of iGenomics enables researchers to align and analyze 

DNA from virtually anywhere. 

2. We demonstrate iGenomics alignment, variant calling, and runtime performance relative 

to a BWA + SAMtools pipeline running on a Mac laptop to show how iGenomics 

performs comparably to the pipeline in its alignment and variant calling capabilities and 

tends to outperform the pipeline with regards to runtime. These tests were performed 

with simulated Influenza data and non-simulated data from Influenza, Zika, and Ebola 
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viruses. The ability of iGenomics to achieve results similar to those of standard desktop 

softwares without sacrificing speed portrays its potential as an analysis tool in the field.  

3. Lastly, we built iGenomics specifically to allow for rapid virus analysis. iGenomics comes 

preloaded with an Influenza pan-genome that allows one to identify the type of an 

unknown sample of the flu. iGenomics also supports the usage of a “known mutations” 

file that can be used to annotate important mutations. For example, iGenomics comes 

bundled with a listing of critical mutations in the influenza A virus that indicate which 

antivirals are most likely to be ineffective. Another important use case of iGenomics 

could be a researcher with limited computational resources sequencing cDNA of a 

coronavirus sample, loading and aligning the cDNA reads with iGenomics, and 

performing a first analysis of the coronavirus mutations within a few seconds. To support 

this capability, we include a tutorial demonstrating how to use iGenomics to align and 

analyze MinION reads (SRX7615629) and consensus genome (MN938384.1) from 

SARS-CoV-2 infected patient HKU-SZ-002a, as well as the consensus genome from a bat 

SARS-like coronavirus isolate (MG772934.1) previously used for comparison.  

We are not aware of any applications other than iGenomics that are complete solutions for the 

alignment and analysis of DNA in a mobile environment. The ability to analyze DNA in a fully 

mobile environment will be transformative for the field of genomics. Furthermore, because 

iGenomics is both easy to use and powerful will make it possible for researchers, students, and 

citizen scientists alike to analyze DNA. As such iGenomics will empower thousands and 

thousands of people that do not have any training in bioinformatics to perform detailed 

genomics analysis for the first time.  

We posted a preprint of this work to the bioRxiv on February 3rd, and generated significant 

attention, including highlights from the company Oxford Nanopore and extensive excitement on 

twitter: https://www.biorxiv.org/content/10.1101/2020.02.11.944132v1. You also mentioned 

that you would be interested to review the paper. 

Based on our knowledge of the current research in this and related fields, we believe that the 

following scientists could knowledgeably review this paper: 

- Chris Mason, Associate Professor, Weill Cornell Medicine 

- Nick Loman, Professor, University of Birmingham 

- C. Titus Brown, Associate Professor, UC Davis 

 

Thank you for your consideration, 

   

Michael C. Schatz, Ph.D. (on behalf of all of the authors) 
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