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Abstract 

 
Following the miniaturization of integrated circuitry and other computer hardware over the past 

several decades, DNA sequencing is following a similar path. Leading this trend is the Oxford 

Nanopore sequencing platform, which currently offers the hand-held MinION instrument and even 

smaller instruments on the horizon. This technology has been used in several important applications, 

including the analysis of genomes of major pathogens in remote stations around the world. However, 

despite the simplicity of the sequencer, an equally simple and portable analysis platform is not yet 

available. 

iGenomics is the first comprehensive mobile genome analysis application, with capabilities to 

align reads, call variants, and visualize the results entirely on an iOS device. Implemented in 

Objective-C using the FM-index, banded dynamic programming, and other high-performance 

bioinformatics techniques, iGenomics is optimized to run in a mobile environment. We benchmark 

iGenomics using a variety of real and simulated Nanopore sequencing datasets of viral and bacterial 

genomes and show that iGenomics has performance comparable to the popular 

BWA-MEM/Samtools/IGV suite, without needing a laptop or server cluster. iGenomics is available 

open-source (​https://github.com/stuckinaboot/iGenomics​) and for free on Apple’s App Store 

(​https://apple.co/2HCplzr​). 

Background 

 

DNA sequencing technology has made tremendous progress over the past 30 years ​(Goodwin, 

McPherson, and McCombie 2016)​. The earliest automated approaches, beginning with the 

capillary-based Sanger sequencing devices in the 1980s, were large bench-top instruments requiring 

extensive sequencing facilities to prepare and sequence the DNA. In the 2000s, high throughput 

second-generation sequencing instruments advanced the field with more compact and simpler 

designs. However, these advances have been limited in their reach, because they are not readily 

accessible by most individual laboratories and citizen scientists. Most substantially, the most widely 

used alignment and analysis tools are not targeting citizen scientists and require expert knowledge on 

using the command line to install several software packages, run the tools, and understand a variety 

of file formats. 

Within the past few years, Oxford Nanopore Technologies (ONT, Oxford, UK) has introduced a 

small inexpensive hand-held sequencing instrument that has made it possible to perform genomics 

experiments with minimal facilities and in essentially any environment. Because of its small size, 
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Nanopore sequencing has been used in several environments that would be unthinkable for 

alternative instruments as diverse as monitoring the Ebola outbreaks in remote areas of Africa ​(Quick 

et al. 2016)​, monitoring Zika outbreaks in South America ​(Giovanetti et al. 2020)​, exploring reptile 

specimens in the rainforest ​(Pomerantz et al. 2018)​, and even on the International Space Station 

(Castro-Wallace et al. 2017)​. Nanopore sequencing has also played an important role in monitoring 

the transmission of SARS-COVID-19 around the world ​(Viehweger et al. 2019; Oude Munnink et al. 

2020; Thielen et al. 2020)​. Nanopore sequencing technology works by measuring the change in ionic 

current as a DNA molecule is passed through a nanopore ​(Goodwin, McPherson, and McCombie 

2016)​. The DNA molecules are typically a few hundred to tens of thousands of nucleotides long and 

the longest reported read has exceeded 2 million nucleotides ​(Payne et al. 2019)​. Once sequenced, the 

raw signal data are base-called into nucleotide strings called reads ​(Wick, Judd, and Holt 2019)​, 
which are typically stored in fastq format and saved for further processing, especially read alignment 

and variant analysis.  

Several algorithms are available for this analysis. Modern aligners, such as Bowtie ​(Langmead et 

al. 2009)​ or BWA-MEM ​(Li 2013)​, often use the Burrows-Wheeler Transform (BWT) ​(Burrows and 

Wheeler 1994)​ and the closely related FM-index ​(Ferragina and Manzini 2000)​ as their core indexing 

data structure. These new approaches are suited to large data sets because of their compact space 

requirements and fast alignment times. After alignment, variant calling platforms, such as Samtools 

(Li et al. 2009)​ or GATK ​(McKenna et al. 2010)​, systematically scan the alignments to find well 

supported variants in the sample using a statistical model to distinguish homozygous from 

heterozygous variants and rule out spurious sequencing errors. After this automated variant 

identification, priority variants are also often manually inspected using IGV ​(Robinson et al. 2011) 

and other genome browsers to review the evidence for the variant calls and further rule out false 

positives. 

The standard approach for analyzing reads is to align the reads to a reference genome on high-end 

laptops, servers, or even supercomputers. While this is possible for those with access to these 

technologies, these requirements may be out of reach for many researchers and citizen scientists. 

Instead, iGenomics just requires the sequenced reads, which can be loaded from the phone itself, the 

internet, or else where, and can allow anyone to perform sequence analysis and mutation 

identification. As with other mobile applications (web browsing, email, social media, etc), iGenomics 

can be used in a variety of settings that would be awkward to perform with a larger laptop, and many 

users will also prefer the more intuitive user interface. Furthermore, there are many important 

scenarios where analyzing these data without high-end computing hardware is desirable, especially in 

remote environments. Interestingly, current iOS devices, including both iPads and iPhones, have 

significant computing resources, with clock speeds and onboard RAM approaching that of high-end 

laptop computers. That said, no standalone genomics analysis software is currently available for iOS 

devices. 

Addressing this critical gap, we have developed iGenomics, an iOS application that allows anyone 

to easily align and analyze DNA sequences in a mobile environment. iGenomics utilizes the same high 

performance algorithms for read alignment and variant calling as mainstream software, although 

iGenomics marks the first time these algorithms have been implemented in a mobile iOS 

environment. Additionally, using the advanced user interface features available in iOS, iGenomics 

allows for interactive visualization and inspection of the read alignments and variant calls, and 

contains additional features for reviewing critical mutations of interest. For example, iGenomics 

comes bundled with a listing of critical mutations in the influenza A virus that indicate which 

antivirals are most likely to be ineffective ​(Hussain et al. 2017)​. 
Due to the lower amount of processing power in mobile devices compared to high-end desktop 

computers or servers, iGenomics is limited in the size of the genome that can be processed. However, 

the implementations in iGenomics have been rigorously tested through direct comparisons with the 

BWA-MEM/Samtools framework for alignment and variant calling for viral and microbial genomes. 
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All alignment and analysis algorithms employed by iGenomics have been tested on both real and 

simulated datasets to ensure consistent speed, accuracy, and reliability of both alignments and variant 

calls. Consequently, iGenomics is leading the shift of DNA analysis software and sequencing tools 

towards mobile devices and marks a great leap forward towards widespread DNA analysis by 

non-bioinformatician students, researchers and citizen scientists. Furthermore, iGenomics is 

available open-source to facilitate mobile genomics technology research and, in turn, accelerate the 

speed at which this technology is developed. 

Results 

Interactive Sequence Analysis on your Smartphone 

 
iGenomics brings a high level of interaction to DNA sequence analysis (​Figure 1​). Common 

touchscreen gestures allow for users to browse the alignment data in an easy-to-use and intuitive 

manner. This allows for the app to be used with almost no learning curve. 

The first step of analysis is selecting the reads and a reference genome for analysis in either fasta 

or fastq format. iGenomics provides multiple options for inputting both reads and reference files: 

selecting from a variety of default files for common bacterial genomes, using Dropbox to choose a file, 

or loading a fasta or fastq file straight into iGenomics from another app such as Google Drive, Files, or 

Airdrop. Then, from a single view, the user can choose the reads file, the reference file, and, 

optionally, a tab-delimited file annotating known important mutations. For example, iGenomics 

comes with a preloaded known mutations file that indicates certain mutations in the influenza 

genome, which, if present, cause resistance to certain antivirals ​(Hussain et al. 2017)​. This single view 

design is meant to be simplistic and requires minimal user effort. After choosing the files to align, the 

user can either select the “Analyze” button to align reads to the reference genome using the default 

parameters or can choose to configure certain parameters before aligning. The parameters available 

include the maximum error rate for alignments and to enable trimming for fastq files.  

After aligning completes, the user is brought to the analysis pane. The main view, known as the 

alignments display, is an IGV-like rendering of how the reads are aligned to a reference genome, with 

the ability to scroll left, right, up, and down through all of the aligned reads. Aligned bases that differ 

from the reference base are highlighted in a different color, as are consensus calls. A long-touch on a 

read presents additional details about the read, including the read name, the edit distance of the 

alignment, the gapped read and gapped substring of the reference genome the read aligned to, and 

whether the forward read or the reverse complement aligned. The user can also use the pinch-gesture 

to zoom out, revealing a high-level overview of the individual alignments as well as a coverage profile 

of the number of reads that aligned at each position. Mutations are still highlighted after zooming out, 

allowing the user to see where all of the mutations occur in one view. 

Another view within the analysis pane is the coverage profile, which displays the count of each 

base that aligned at each position. Positions where the reference base does not match the base of the 

reads are highlighted so that the user can see that this position contains a mutation (heterozygous 

mutation are highlighted with a different color). To scroll through the coverage profile, the user 

simply has to swipe left or right. If a user would like to view more detailed information about a given 

position, he/she simply holds down any of the boxes in that position and an informative view 

elaborating upon the position's contents will pop up. By using the pinch gesture to zoom-out, the user 

reveals a graph of the number of reads that aligned at each position, resembling that of the 

zoomed-out alignments display but with a full-screen graph.  

The Summary window, accessible from within the analysis pane, has four pages and provides 

some useful tools for a high-level overview of the data. The first page provides buttons to view the 

alignments display, coverage profile, coverage histogram, and list of all found mutations. The 

coverage histogram graphs the frequency of each level of coverage, specifically the frequency of a 
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particular number of reads aligned to a position, and is overlaid by a Poisson curve for context. Within 

the list of all found mutations, the user can scroll through all mutations, and then select one to inspect 

that position in the analysis pane. The second page gives an overview of the alignments, including the 

percent of reads matched, the total number of reads input, the number of mutations, and the names 

of the reads and reference files. This page also provides the user with the capability to search for 

positions in the reference genome by position or by a query string, which uses BWT exact match for 

rapid searching. The third page contains a large picker view that allows the user to intuitively move 

between sequences/segments in the reference genome. The last page contains a list of known 

mutations if the user selected a known mutations file during the file input stage. This list contains 

mutation position, mutation details (such as resistance to antivirals), and a color-coded indicator 

denoting if a mutation was found at that position and if that mutation indicates a known mutation. 

 

Simulated read runtime analysis 

 

In order to observe the efficiency and accuracy of iGenomics running on an iPhone 8, we first tested 

several simulated data sets. The reference genomes we used were:  

(1) phiX174, a widely used control sequence for Illumina sequencing (Genbank:NC_001422.1, 

5386 bp); 

(2) a Zika virus genome (isolate Zika virus/H.sapiens-tc/KHM/2010/FSS13025, 10807 bp);  

(3) a H3N2 influenza genome (A/California/7/2004(H3N2), 13382 bp);  

(4) a H1N1 influenza genome (A/New York/205/2001(H1N1), 13568 bp); and  

(5) an Ebola genome (isolate Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3686.1, 18957 

bp).  

 

From these reference genomes, we then simulated reads using DWGSIM 

(​https://github.com/nh13/DWGSIM​) according to the following conditions: the average coverage is 

100x, the genetic mutation rate was set to 0.5% and the read characteristics would mirror reads 

produced by real-world sequencers. Accordingly, reads of length 100bp and sequence error rate of 

1.0% were simulated to mirror reads generated by Illumina sequencers and reads of length 1,000bp 

and sequence error rate of 10.0% were simulated to mirror reads generated by Oxford Nanopore 

sequencers. Sequencing errors were introduced at random to mimic the errors produced by 

sequencers. For comparison purposes, we also measured the runtime when aligning and identifying 

variations using a BWA-MEM ​(Li 2013)​ using “-x ont2d” and Samtools pipeline for the same datasets. 

Notably, iGenomics uses an FM-index and banded dynamic programming implementation similar to 

BWA-MEM allowing the analysis to focus on major differences in hardware. 

When comparing the runtime of iGenomics against datasets with different genome lengths, we 

observe a nearly linear relationship between genome length and alignment runtime (​Figure 2​). This 

is explained by a powerful feature of the BWT in which the time for an alignment of a single read is 

essentially independent of genome size. Consequently, since the simulations use a consistent amount 

of coverage per genome, the linear increase in runtime is explained by the linear increase in the 

number of reads to align. It is also worth noting that the iGenomics trend-lines closely follow the 

pattern of those of BWA-MEM+Samtools. This both adds credibility to iGenomics as a sequence 

alignment and analysis tool and to the field of portable genomics, as all of these important viruses can 

be analyzed in under 5 seconds on a mobile device.  

To further explore the performance of iGenomics, we also compared the BWA+SAMtools pipeline 

described above with that of Minimap2 ​(Li 2018)​ + SAMtools, using exact same steps in SAMtools 

after the SAM file was generated by the respective alignment tool. For the simulated H1N1 reads with 

read length 100bp, sequence error rate of 0.01 (1%) and mutation rate of 0.1 (10%), we found that the 

indexing and alignment time was insignificant compared to the amount of time spent on variant 
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calling: the alignment time for BWA was 0.899s (22.42% of the total runtime), 0.440s for Minimap2 

(12.39% of the total runtime), and 3.11s for identifying variants by converting the SAM file to BAM 

(0.24 s), sorting the BAM file (0.24 s), identifying candidate variants in BCF format (2.62 s), and 

computing the final variant calls (0.01 s). Thus, while Minimap2 is noticeably faster than BWA, the 

majority of time is spent on variant calling. 

 

Simulated read accuracy analysis 

 
We next evaluated the accuracy of iGenomics using reads simulated from the H1N1 Influenza genome 

(same sample as above). In each trial, we simulated an average of 100x coverage for all combinations 

of the following sets of parameters: sequence error rates of 0.01, 0.1, and 0.2, mutation rates of 0.001, 

0.01, and 0.1, and read lengths of 100bp, 250bp, and 1,000bp. Note that an error rate of 0.2 

represents a 20% error rate, and exceeds the current average error rate for Nanopore sequencing 

(Wick, Judd, and Holt 2019)​. The range of the simulation parameters is designed to test iGenomics 

across a variety of different possible sets of reads that iGenomics could be used with. After simulating 

the read sets, each simulated sample was independently aligned to an H1N1 reference genome using 

iGenomics. For each sample, we recorded the runtime and the reported list of mutations found. In 

order to check the validity of the mutations found by iGenomics, the reported mutations were 

compared to the DWGSIM-generated list of simulated mutations. We then compare the variants 

reported by iGenomics to DWGSIM, allowing for up to 5bp differences to account for ambiguity that 

can occur, especially indels within locally repetitive sequencing. Key metrics that were evaluated 

relative to DWGSIM were precision, recall, and F-Score (the harmonic mean of precision and recall). 

The results of the comparisons between iGenomics’ reported mutations and DWGSIM’s list of 

mutations confirm iGenomics accuracy. Most datasets show a high-degree of accuracy (F1) well over 

90% (​Figure 3​). The few experiments with lower precision or recall occur with the most difficult 

scenarios of the highest sequencing error rate and the lowest mutation rate. For comparison, the same 

results were also computed with input from a BWA-MEM/Samtools pipeline. Interestingly, 

iGenomics tends to exhibit a higher degree of recall, precision, and overall accuracy (​Supplemental 

Figure 1​). 

Another important consideration for iGenomics is the runtime required. The runtime of 

iGenomics for each of these simulated data-sets was below 3 seconds (​Figure 2​). Furthermore, 

iGenomics aligned reads and identified mutations in these simulated datasets about 4x to 5x faster 

than the BWA-MEM/Samtools pipeline (​Figure 4​). For context, the BWA-MEM/Samtools runtime 

for these data sets was computed on an early 2015 MacBook Pro with a 2.9GHz Intel Core i5 running 

OS X El Capitan while the iGenomics runtime was computed on a 2017 iPhone 8 with a 2.39 GHz A11 

Bionic Chip running iOS 12.3.1. All timing results presented in this paper use these hardware 

configurations, although we tested iGenomics on several iPhone and iPad models to ensure usability 

across screen sizes and system resources. 

 

Viral Genome Analysis 

 
iGenomics was next tested on several clinical and environmental viral samples sequenced using the 

Oxford Nanopore MinION in order to demonstrate both the functionality and accuracy of iGenomics 

relative to standard tools such as BWA-MEM and Samtools. The purpose of these tests is to show the 

overall utility of iGenomics as a mobile counterpart to desktop aligners and analysis software typically 

used by researchers and as a novel sequence analysis platform. 

These tests focused on public MinION data from Ebola (sample 

https://raw.githubusercontent.com/nickloman/ebov/master/data/fastq/004674.2D.fastq​ from 

(Quick et al. 2016)​), and Zika (sample ​http://s3.climb.ac.uk/nanopore/primal_KX369547_R9.tgz 
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from ​(Faria et al. 2016)​), as well as MinION and MiSeq data from a clinical H3N2 sample we 

previously collected (A/New York/A39/2015 (H3N2)) ​(Ding et al. 2019)​ (​Methods​). The Ebola trial 

focused on comparing iGenomics found mutations to those found by Samtools using the isolate Ebola 

virus/H.sapiens-wt/SLE/2014/Makona-G3686.1 as the reference (GenBank: KM034562.1). For Zika, 

the test was based on using a ground-truth set of mutations derived by comparing the consensus 

genome with nucmer ​(Kurtz et al. 2004)​ to the isolate Zika virus/H.sapiens-tc/KHM/2010/FSS13025 

(GenBank: KU955593.1) as the reference. The H3N2 test was designed to demonstrate iGenomics 

consistency across data produced by different sequencers by comparing the results of the Nanopore 

and MiSeq data when aligning to the isolate (A/California/7/2004(H3N2)) genome.  

In all of the cases examined, iGenomics had a faster runtime than the desktop alignment pipeline 

of BWA-MEM/Samtools (​Table 1​). This is likely due to a difference in how iGenomics and the 

desktop software store the alignments in memory. Since iGenomics is targeted to be a focused mobile 

analysis platform for small genomes, iGenomics needs to run very rapidly. Instead of separately 

reporting each alignment and writing the alignments to disk, then separately sorting the alignments, 

and then scanning for variations, as BWA-MEM/Samtools does, iGenomics records the full gapped 

alignments and coverage profile matrix in RAM so that the subsequent mutation identification can 

avoid repeating computations. Furthermore, iGenomics keeps this data in RAM until the user exits 

the analysis screen to allow for exploring the various visualizations and performing interactive 

analysis with negligible lag time. This presents a standard time vs RAM tradeoff present in many 

software applications, and here we have elected for fast processing to ensure the application is as 

responsive as possible. 

 

Influenza typing 

 

Influenza disease is caused by RNA viruses from the family Orthomyxoviridae ​(Krammer et al. 2018)​. 
There are three distinct viral types, A, B, and C that can infect humans. Influenza types A and B cause 

the annual epidemics, while influenza C is generally less severe. The influenza A genome is organized 

into eight segments, and is classified into subtypes based on genetic variants within the two proteins 

on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). There are 18 different 

hemagglutinin subtypes and 11 different neuraminidase subtypes (H1 through H18 and N1 through 

N11, respectively). Many of the major influenza pandemics have been caused by influenza type A 

infections. For example, the 1918 flu pandemic (the “Spanish flu”), was caused by a deadly Influenza A 

virus strain of subtype H1N1, and the Hong Kong Flu in 1968 was caused by the H3N2 subtype. 

Consequently, the type and subtype of an unknown influenza sample is extremely important and 

urgent to determine. 

As a final demonstration of how iGenomics can be used, we also considered an influenza 

identification task where influenza sequencing data are aligned to several strains of flu at the same 

time in an attempt to determine the type and subtype. For this, we developed an influenza 

“pan-genome reference sequence” containing representatives for three different Influenza genomes 

related to antigenic strains that were circulating from 2009 to 2016: H1N1pdm09 

(A/California/04/2009), H3N2 (A/Brisbane/10/2007; A/Perth/16/2009; A/Texas/50/2012; 

A/Victoria/361/2011; and A/NewYork/03/2015), and Influenza B (B/New York/1352/2012). For this 

analysis, segments that are shared across influenza A subtypes were only reported once. For the 

pan-genome, we also include a catalog of mutations in these genomes that have specific variants 

known to reduce the efficacy of antiviral treatments. The identity of the A segment is identified by 

evaluating which of the potential segment types has the largest number of alignments. In the context 

of iGenomics, the pan-genome approach is preferable to aligning the reads against multiple Influenza 

genomes in isolation because it is much simpler and allows for typing and variant identification at the 

same time. Worth noting, the pan-genome approach does not sacrifice accuracy or performance, as 
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shown below. 

In order to test alignments against the pan-genome, we ran iGenomics using simulated MinION 

(1,000bp, sequence error rate 10.0%) and Illumina (100bp, sequence error rate 1.0%) reads from 

pH1N1 and H3N2 with mutations rates 0, 0.001, and 0.005. After alignment, we evaluated if the 

reads were correctly aligned to the type and subtype that they originated from. If the alignment 

matches the segment of origin, we consider that alignment “passing”. The segment identification rate 

is the number of passing alignments divided by the total number of alignments. The results of this 

experiment show that we have a greater than 93% identification rate, meaning that in most cases this 

simple process can accurately and quickly determine the type and subtype of the flu genome entirely 

on a mobile device (​Table 2​). 

 

Discussion 

 
DNA sequencing has advanced tremendously over the past three decades; a process that once 

required hundreds of millions of dollars can now be done on handheld devices costing only $1,000 

(Shendure et al. 2017)​. However, it is important to consider that sequenced DNA reads themselves 

provide little information without software to align and analyze them. For high-end servers and 

laptops, this software already exists; for mobile devices, iGenomics is the first comprehensive solution 

for researchers and citizen scientists to easily analyze sequence data. 

iGenomics can be used in virtually any location because of the inherent portability of mobile 

devices like the iPad and iPhone. iGenomics implements the same advanced bioinformatics 

algorithms that are used for rapid alignment and analysis for other platforms. Consequently, the true 

novelty of this application is not in the algorithms used, but rather how they have been implemented 

in a mobile environment. The entire workflow for iGenomics is designed to be very simple and 

intuitive. A user effortlessly picks a reads file to analyze and, once selected, the alignment, variant 

calling, and visualization are completed within seconds. This is accomplished without any internet 

connectivity through an optimized implementation in Objective-C.  

iGenomics is designed for quickly computing detailed genetic information about specific 

mutations within different viral or bacterial genomes. An important use case of iGenomics could be a 

researcher with limited computational resources sequencing cDNA of a coronavirus sample, loading 

and aligning the cDNA reads with iGenomics, and getting a first analysis of the coronavirus mutations 

within a few seconds. To support this capability, we have developed a tutorial with the MinION reads 

(SRX7615629) and consensus genome (MN938384.1) from patient HKU-SZ-002a, as well as the 

consensus genome from a bat SARS-like coronavirus isolate (MG772934.1/) previously used for 

comparisons ​(Chan et al. 2020)​ (​http://schatz-lab.org/iGenomics/​). Following the tutorial, these data 

can easily be downloaded on one’s iOS device and imported directly into iGenomics to be analyzed. 

Another promising capability of iGenomics is its ability to load reference genomes and reads from 

outside sources, perform alignment and variant calling, and export the results all without any internet 

access. For example, by using Airdrop to both import and export data from iGenomics, a researcher 

can analyze DNA in remote locations without any internet connectivity. As the MinION uses a USB 

connection that is not available on an iPhone or iPad, users will first need to collect the raw 

sequencing data on their laptop or server as well as use these platforms to base call the signal data 

into nucleotide sequences. However, once sequencers are available that can read DNA directly into 

iOS devices, iGenomics will work out of the box to allow for importing of this sequenced data, 

eliminating the requirement for a laptop in the end-to-end analysis pipeline. 

Future developments for iGenomics are far reaching as DNA sequencing instruments continue to 

evolve to the point where they could be directly attached or integrated with mobile devices. In fact, 

Oxford Nanopore has announced that they hope to have a new sequencer, named the “SmidgION”, 

that connects directly to iOS devices available for researchers in the near future 

(​https://nanoporetech.com/products/smidgion​). At that point, using mobile sequencing technology 
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with iGenomics, DNA can truly be sequenced, aligned, and analyzed anywhere and absolute mobility 

of the genomics field will be achieved. As the processing power and memory contained within mobile 

devices improves, so will the overall performance of iGenomics in handling even larger and more 

complex samples.  

 

Methods 

 
The implementation of iGenomics follows the state-of-the-art algorithms and data structures used in 

standard bioinformatics applications. However, the visualization of the read alignments and 

mutations is unique to iGenomics and was created with the intention of allowing the user to have 

powerful analysis capabilities while still maintaining a simplistic mobile-friendly interface. 

1. Indexing the genome with the Burrows-Wheeler Transform (BWT) 

 
The Burrows-Wheeler Transform (BWT) is constructed by lexicographically sorting the cyclic 

permutations of the input genome appended by a end-of-string character. By convention, we use a 

dollar sign (‘$’) as the end-of-string character, which has a lexicographical value less than any letter in 

the English alphabet and ensures the end of the original sequence can be found. For example, the 

cyclic permutations of the string “CAT” with the end-of-string character “$” are: “CAT$”, “AT$C”, 

“T$CA”, and “$CAT”, which can be sorted as “$CAT”, “AT$C”, CAT$” and “T$CA”. This sorted list 

creates what is known as the Burrows-Wheeler Matrix (BWM). Then, to compute the BWT from the 

sorted permutations, the last character of each row in the matrix is extracted in order and appended 

to a string ​(Figure 5)​. 
To first lexicographically sort the cyclic permutations, a quick and efficient sorting algorithm must 

be used so that this function is fully optimized. iGenomics uses a version of QuickSort, a 

divide-and-conquer sorting algorithm, because on average it takes O(n log n) time for n objects to be 

sorted. Although there are now some more efficient BWT construction algorithms ​(Belazzougui et al. 

2020)​, given iGenomics is targeted towards relatively small genomes (<100,000bp), the amount of 

time for BWT sorting is negligible compared to the time to align the reads. Finally, to obtain the BWT 

from the sorted array, the final character of each row in the matrix is copied into a string with the first 

character copied having the first position, the second character copied having the second position, 

and so forth. 

 

2. Read alignment 

 
iGenomics uses a seed-and-extend process for read alignment in which first relatively short exact 

matches, known as seeds, are found using the BWT, after which they are then extended into 

end-to-end alignments using dynamic programming. The seed size is based upon the maximum edit 

distance (a user-specified parameter) allowed for a read that successfully aligns to be considered a 

match. The maximum edit distance is inputted as a decimal value edit rate, and multiplying that value 

by the length of the given read will give the maximum possible edit distance we allow when aligning 

that read. During the aligning process, each read is split into the edit distance plus one segment of 

equal length. This relies on the widely used technique that if the string matches with at most X edits, 

then at least 1/(X+1) of the segments must still match without error ​(Baeza-Yates and Perleberg 

1996)​. For example, if the user allows only 1 edit, the algorithm divides the read into left and right 

halves (1/(1+1)) knowing that the correct alignment will include an exact match of one of those 

segments. 

Exact matching means finding all of the places in the reference genome where a given query 

matches exactly, character-for-character across its entire length (Langmead, 2012). To do this 

effectively, the trait of the BWT known as the Last-First Property is used as the basis for an exact 
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matching algorithm. The Last-First property states that the occurrence of any character in the last 

column of the BWM, which is the BWT, corresponds to the same occurrence of that character in the 

first column of the BWM. Using the first column of the BWM and the BWT to create an FM-index, the 

algorithm navigates the rows of the index which contain exact matches and then converts these 

positions from the BWT to positions in the reference genome ​(Figure 6)​. 
After the seeds are found, iGenomics computes the end-to-end edit distance allowing for 

substitutions as well as insertions and deletions ​(Smith and Waterman 1981)​ ​(Figure 7)​. To make 

this as efficient as possible, iGenomics uses a banded computation. This method works by only 

computing a subset of the dynamic programming matrix, a band of the edit distance table, with the 

band having a standard width of (the maximum edit distance * 2 + 1). To determine where to begin 

the band computation, iGenomics attempts to exact match a 20bp substring of the read.  A substring 

length of 20bp was chosen as we found that represented the optimal tradeoff in terms of performance 

and reliability of identifying alignments. If the exact match is successful, the banded distance will be 

computed relative to the matched position of the substring. If the exact match is unsuccessful, an 

exact match with the 20bp substring of the read starting at the second character will be attempted. 

This process continues with the substrings continuously moving one character over until either the 

read successfully aligns or none of the exact matched 20bp substrings yields a successful alignment. 

 

3. Coverage profile and variant identification 

 
The coverage profile concisely summarizes how the reads are aligned to the genome (​Figure 8​). The 

internal data structure for the profile is a coverage profile matrix, which spans the genome and at each 

position contains a row for the number of: matched base-pairs, A, C, G, T, and (non-base-pair) 

deletion characters. The matched positions of each read are tallied and the characters of the read are 

added, so that the positions of the matrix that the read overlaps are marked within the matrix. Once 

the coverage profile matrix is completely generated, variants can be identified, a graphical 

representation of the profile can be formed, and the number of alignments can easily be seen. 

Variants are identified by scanning the array of matched characters, and at each position if the 

matched character differs from the reference character, a mutation, or variant, would be reported ​(Li 

et al. 2009)​. The major challenge of this analysis is distinguishing sequencing errors from real 

mutations, and differentiating between homozygous and heterozygous mutations. In a diploid 

genome, homozygous mutations are mutations that occur on both copies of a chromosome whereas 

heterozygous mutations occur on one copy of a chromosome but not both. iGenomics recognizes 

heterozygous mutations as positions in the genome where there is a nearly equal coverage of more 

than one base existing in the set of aligned reads according to a user-specified relative minimum 

heterozygosity threshold. Thus, if two or more bases at a position have relative coverages greater than 

that threshold, the mutation present at that position is considered to be heterozygous. In haploid 

species, such as the viral and bacterial pathogens described above, this threshold is used to find 

variants that occur within a minimum allele frequency within the population. 

Immediately after alignment has completed, each position within the reference genome is assigned 

a value indicating whether the reads at that position matched either exactly, heterozygously, 

homozygously, heterozygously where there is a known mutation, or homozygously where there is a 

known mutation. This allows iGenomics to highlight all mutations with their associated 

heterozygosity and importance. Known mutations are loaded through a user-inputted text file. This 

file contains each known (important) mutation’s reference base, mutated base, position, segment (or 

chromosome) the mutation is expected to occur in, and a free-text description of what this mutation 

indicates. The known mutations functionality enables iGenomics to be specifically targeted for the 

analysis and treatment of different genomes, such as known mutations associated with Influenza 

antiviral resistance. 
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4. Visualizations and interactive analysis 

 
The main challenge with the Graphical User Interface (GUI) was to create one that was both useful 

and unique when compared to other desktop DNA analysis software. The key to achieving these goals 

was to take advantage of the distinctive features of the iOS environment. Ultimately, a custom 

graphics engine was built to handle the constant redrawing of the analysis interface and, visually, this 

engine sits on top of Apple’s CoreGraphics library. In addition to the analysis interface, a utility 

interface was developed, which contains features for rapidly analyzing and quickly navigating the 

alignments. 

The solution to developing this interactive analysis screen was to employ many touch-related 

functions that are natural to anyone who has ever used a touch screen mobile device (​Supplemental 

Figures 2-8​). Scrolling requires a simple finger drag while viewing a large-scale version of the 

coverage profile merely requires performing a pinch gesture on the screen. The information 

pertaining to mutations can be viewed at any position by tapping on one of the reference genomes or 

found genome boxes at that position. Even this action takes advantage of the mobile iOS environment 

because a popover view is used to display the information at the tapped position. At the bottom of the 

screen, there is a variable scrubbing speed slider so that the user can move across the genome quickly 

or at a slower rate by dragging up while moving the slider. 

Simple functions such as searching for a specific query or position are also included in the analysis 

view. To minimize clutter on the screen, when a user searches for a certain string, he/she is instantly 

taken to the next occurrence of that string, as opposed to displaying a large list of positions to the 

user. One of the most notable of these functions is the ability to change the minimum relative 

heterozygosity value (known as mutation coverage within iGenomics) on the fly through a slider. Once 

the user has concluded analyzing on the mobile device, he/she has the option to export mutations and 

analysis data via a variety of means: email, Dropbox, Airdrop, or sharing via installed apps (such as 

Google Drive). The mutations are outputted in a VCF (Variant Call Format) file format so that they are 

compatible with traditional desktop analysis software. 

 

5. Flu Isolate Sequencing 

 

Sample collection and amplification. ​Clinical specimens of nasopharyngeal swabs were 

collected from patients in New York City in the 2014-2015 flu season as previously described ​(Ding et 

al. 2019)​. The specimen used in this study was designated as A/New York/A39/2015 (H3N2) and is 

available in the SRA as sample ID SAMN08454624.​ ​Briefly, the RNA was eluted in 30 µl of 

RNase-free water and 3 µl was used as a template for the amplification of the entire influenza A or B 

genome using previously described Multi-segment RT-PCR (M-RTPCR) method ​(Zhou et al. 2009)​. 
The presence of the cDNA copies of the genomic segments were examined by running 3 µl of the 

M-RTPCR amplicons on a 0.8% agarose electrophoresis gel. The influenza genomic amplicons were 

purified using a 1x Agencourt AMPure XP purification step and assessed by Qubit analysis to quantify 

the mass of the double-stranded cDNA present. 

Nanopore MinION sequencing. ​The library preparation and sequencing procedures were 

performed following manufacturer’s instructions for the Nanopore Sequencing using the 

SQK-MAP006 kit.  Purified DNA was used for end repair and dA-tailing, followed by 1x AMPure XP 

beads purification. The resultant DNA was quantitated by Qubit analysis and the molarity was further 

determined by using Agilent 2200 TapeStation system with a Genomic DNA ScreenTape. Next, 0.2 

pmoles of the DNA was used in adaptor ligation, and the reaction was purified using MyOne 

C1-beads. The final DNA was eluted in 25 µl Elution Buffer and is called Pre-sequencing Mix. For the 
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SQK-MAP006 sequencing kit, 12 µl Pre-sequencing Mix was combined with 75 μl 2x Running Buffer, 

59 μl nuclease-free water, and 4 μl Fuel Mix and then loaded into the FLO-MAP003 flow cell. A 

re-loading was also performed.  The sequencing was run on the MIN-MAP001 MinION sequencing 

device, which was control by the MinKNOW software using the MAP_48Hr_Sequencing_Run.py 

script provided by Oxford Nanopore or using the 

MAP_140to5xVoltage_Tuned_plus_Yield_Sequencing_Run.py script provided by John Tyson. Raw 

data was uploaded to the cloud-based Metrichor platform and basecalling was performed using the 

application of 2D Basecalling for SQK-MAP005 Rev 1.62 or 2D Basecalling for SQK-MAP006 Rev 

1.62.  

Illumina MiSeq sequencing. ​The sample was prepared for sequencing on the Illumina MiSeq 

platform according to the manufacturer's protocol (15039740 v01) as previously described ​(Ding et al. 

2019)​. Sequencing data was then generated by a 2x300bp run using an Illumina MiSeq 600 Cycle v3 

reagent kit. 

 

Availability of supporting source code and requirements 

 
Project name: iGenomics 
Project home page: ​https://github.com/stuckinaboot/iGenomics 
Operating system(s): iOS 
Programming language: Objective-C 
License: MIT License 
Other Requirements: Precompiled binary is ​for free on Apple’s App Store (​https://apple.co/2HCplzr​). 
RRID: iGenomics, RRID:SCR_019142 
 
Data Availability 

 

All sequencing data (genuine and simulated) along with a tutorial on iGenomics are available online: 

http://schatz-lab.org/iGenomics/​. We have also archived all of these data along with the code for 

reproducing the results from this paper in the GigaScience Database ​(Palatnick et al. 2020)​. 
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Figure Captions 

 

Figure 1​. iGenomics iPhone screenshots ​(top-left)​ Alignments display; ​(top-right) ​Alignment 

display zoomed-out; ​(middle-left) ​Coverage profile; ​(middle-right)​ Coverage profile zoomed-out, 

(bottom)​ Known mutations display. In the known mutations display, green indicates the mutation is 

not present, dark red indicates the listed mutation is present and the mutation is homozygous, and 

pink indicates the listed mutation is present and the mutation is heterozygous. In both the alignments 

display and coverage profile, there is an indicator in the top right of the form [X, Y] that represents 

the minimum coverage X across all positions and maximum coverage Y across all positions.  

 

Figure 2​. Runtimes for simulated reads from five reference genomes. The data sets consisted of 

reads averaging 100x coverage and a reference file. Each data set was tested, defined as aligning then 

variant calling, using iGenomics running on an iPhone and a BWA/Samtools pipeline running on a 

laptop. The technical specifications of the iPhone and laptop used for testing are described in the 

Results section. Each trend line indicates the runtime for each data set using the denoted alignment 

and analysis software- iG for iGenomics and bwa for the BWA/Samtools pipeline. The dotted lines 

indicate the specific measurements recorded.  

 

Figure 3​.​ ​Mutation identification accuracy for simulated H1N1 flu datasets of varying mutation rates 

and error rates for iGenomics (left) and the BWA-MEM/Samtools (right) pipeline. The top, middle, 

and bottom plots show recall, precision, and F-score, respectively. 

 

Figure 4.​ iGenomics runtime vs. BWA/Samtools pipeline runtime for simulated datasets of constant 

mutation rates and sequence error rates of H1N1 for varying read lengths.  

 

Figure 5.​ Diagram of how the Burrows-Wheeler Transform is created. (left) All cyclic permutations 

of the text “GATTACA”. (right) The Burrows-Wheeler Matrix of the text consisting of the sorted cyclic 

permutations of the text. 

 

Figure 6​. A diagram showing the exact match algorithm by repeated application of the Last-First 

property using the characters of the query string. 

 

Figure 7​. A diagram showing how edit distance is computed for two strings. Each cell of the matrix 

represents the minimum of three possible values: 1) the left cell plus one (representing the cost of 

adding a gap on the left string); 2) the upper cell plus one (representing the cost of adding a gap on 

the top string; and 3) the upper left cell plus zero, if the top string equals the left string, or one, if the 

characters do not match to account for the cost of another substitution. 

 

Figure 8​. A table showing how the coverage profile is represented within iGenomics, summarizing 

how the reads align to the reference genome (an example of reads aligned to a reference genome is 

shown in Figure 1). As can be seen in the 6th column, there is a mutation where the base C was found 

when the reference was base G. 
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Table Captions 

 

Table 1.​ Comparison between iGenomics and BWA-MEM/Samtools pipeline for real reference 

genomes and reads obtained from MinION (Nanopore) and MiSeq sequencers. 

 
Table 2​. Table indicating alignment details for simulated datasets aligned using iGenomics to a 

pan-genome composed of multiple Influenza genomes. The pH1N1 reads were simulated from the 

H1N1pdm09 (A/California/04/2009) genome and the H3N2 reads were simulated from the H3N2 

(A/NewYork/03/2015) genome. 
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Table 1

iGenomics* BWA+SAMtools

Alignment Rate 99.24% 100.00%

Runtime 24.71s 428.96s
Precision, Recall, Accuracy 

(when compared to SAM 

61.54%, 66.67%, 

64.00%
N/A

Precision, Recall, Accuracy 

(when compared to 
N/A N/A

iGenomics BWA+SAMtools

Alignment Rate 99.36% 98.08%

Runtime 28.04s 180.49s
Precision, Recall, Accuracy 

(when compared to SAM 

40.24%, 93.44%, 

56.25%
N/A

Precision, Recall, Accuracy 

(when compared to SAM 

74.82%, 87.12%, 

80.50%

99.45%, 49.86%, 

66.42%
⁺This method of variant calling is considered to be the ground-truth.

MinION Ebola Data

*Unreported heterozygosity is present in the mutations called.

⁺This method of variant calling is considered to be the ground-truth. BWA+SAMtools has an N/A (Not Applicable) in these 

MinION H3N2 Data

Table 1 Click here to access/download;Table;Table 1.xlsx
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iGenomics* BWA+SAMtools

81.46% 94.11%

13.11s 189.19s
86.79%, 79.77%, 

83.13%
N/A

86.16%, 88.96%, 

87.54%

83.24%, 93.51%, 

88.07%

iGenomics BWA+SAMtools

98.18% 98.58%

4.78s 27.59s

N/A N/A
99.73%, 99.73%, 

99.73%
N/A

⁺This method of variant calling is considered to be the ground-truth.

MinION Zika Data

*Unreported heterozygosity is present in the mutations called.

⁺This method of variant calling is considered to be the ground-truth. BWA+SAMtools has an N/A (Not Applicable) in these 

MiSeq H3N2 Data



*Unreported heterozygosity is present in the mutations called.



*Unreported heterozygosity is present in the mutations called.



*Unreported heterozygosity is present in the mutations called.



Table 2

pH1N1 H3N2

Alignment Rate 100.00% 100.00%

Runtime < 4.25s < 4.17s

Segment Identification Rate⁺ > 99.11% > 95.04%

MinION Simulated Data

⁺Segment identification rate is the number of alignments that aligned to the correct reference 

Table 2 Click here to access/download;Table;Table 2.xlsx
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pH1N1 H3N2

100.00% > 99.84%

< 1.60s < 1.63s

> 99.84% > 93.02%

Illumina Simulated Data

⁺Segment identification rate is the number of alignments that aligned to the correct reference 
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