
Spectral element modeling of seismic wave
propagation in visco-elastoplastic media including

excess-pore pressure development

Elif Oral1,2, Céline Gélis1, Luis Fabián Bonilla2 and Elise Delavaud1

1Institut Radioprotection Sûreté Nucléaire, Fontenay-aux-Roses, France
2Université Paris Est - IFSTTAR, Marne-la-Vallé, France

Abstract

Numerical modeling of seismic wave propagation, considering soil nonlinearity, has become
a major topic in seismic hazard studies when strong shaking is involved under particular soil
conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is
another important parameter to take into account when successive phases of contractive and
dilatant soil behavior are expected. Here, we model one-dimensional (1D) seismic wave prop-
agation in linear and nonlinear media using the spectral element numerical method. The study
uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1D-3C
model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at
the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlin-
earity involving pore-pressure effects. The ground motion is numerically modeled for different
assumptions on soil rheology and input motion (1C vs 3C), using the recorded borehole signals
as input motion. The computed acceleration-time histories show low frequency amplification
and strong high frequency damping due to the development of pore pressure in one of the soil
layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial
loading compared to the classical 1C analysis, and significant differences in surface displace-
ments are observed between the 1C and 3C approaches. This study contributes to identify and
understand the dominant phenomena occurring in superficial layers, depending on local soil
properties and input motions, conditions relevant for site-specific studies.

Keywords: Seismic wave propagation, soil nonlinearity, cyclic mobility, viscoelasticity,
spectral element method.

1 Introduction

In the last decades, local site conditions have emerged as one of the main components that
govern the seismic ground motion. Numerous studies have shown that the ground response at
a specific site is strongly controlled by the local soil properties, like the impedance contrast
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between the bedrock and overlying layers (e.g. Kramer, 1996), constitutive material model
and incident motion complexity (e.g. Gélis and Bonilla, 2012; 2014), and site geometry (e.g.
Graves, 1993; Moczo et al., 1996 1996; Olsen and Archuleta, 1996).

Laboratory experiments performing cyclic loading on soil samples have shown shear modu-
lus degradation and increasing damping for increasing shear deformation (e.g. Seed and Idriss,
1969; Vucetic and Dobry, 1991; Darendeli, 2001). This means reduction of the wave speed and
increase of the energy dissipation of the propagation media, respectively. In addition, results
from laboratory tests, involving pore-pressure measurements on cohesionless saturated soils,
exhibit contractive and dilatant behavior; phenomena related to flow liquefaction and cyclic
mobility (Ishihara, 1996).

Furthermore, many observations from past earthquakes, for example, the 1994 Northridge,
1995 Hyogo-Ken Nanbu (Kobe), 1999 Chi Chi, 2000 Tottori, 2011 Tohoku and 2015 Gorkha
(Nepal) earthquakes show that nonlinear soil response is pervasive during strong motion (Aguirre
and Irikura, 1997; Field et al., 1997; Roumelioti and Beresnev, 2003; Kokusho, 2004; Pavlenko
and Irikura, 2003; Bonilla et al., 2011, Rajaure et al., 2016). In particular, in the presence of
cohesionless saturated material having predominant dilatant behavior, observed accelerograms
present high-frequency spiky waveforms leading to large acceleration pulses (Iai et al., 1995;
Bonilla et al., 2005; Bonilla et al., 2011; Laurendeau et al., 2016).

Numerical modeling is an efficient tool to highlight the influence of different parameters
governing site effects. Traditionally, nonlinear soil behavior has been approximated by the
equivalent linear method (Schnabel et al., 1972). This method has widely been used because
only the shear modulus and damping curves as a function of shear strain are needed and low
computational effort is required (Bardet et al., 2000; Kausel and Assimaki, 2002). However, for
strong input motion, the equivalent linear method is found to overestimate the material strength
(Joyner and Chen, 1975; Yoshida and Iai, 1998; Hartzell et al., 2004; Stewart et al., 2008; Kak-
lamanos et al., 2015). Conversely, nonlinear soil constitutive models, based on the stress-strain
history of cyclic behavior, have successfully been applied to one-dimensional (1D) wave prop-
agation (Lee and Finn, 1978; Pyke, 2000; Hashash and Park, 2001; Bonilla et al., 2005). There
are also extensions to 3D nonlinear models (i.e. Mroz, 1967; Dafalias and Popov, 1977; Prevost,
1977; Wang, 1990). Yet, many of these multi-dimensional models are based on numerous pa-
rameters, making their use sometimes prohibitive. The Masing-Prandtl-Ishlinskii-Iwan (MPII)
model of Iwan (1967) (as adopted in Joyner and Chen, 1975; Joyner, 1975; Gandomzadeh,
2011; Santisi d’Avila et al., 2012; and Pham, 2013) is an interesting alternative to model mate-
rial nonlinearity. Modeling is done by a set of nested yield surfaces consisting of simple elastic
springs and Coulomb friction elements. It requires only the shear modulus reduction as a func-
tion of shear strain, which is readily obtained from laboratory data or from the literature for a
wide range of soil classes (Vucetic and Dobry, 1991; EPRI, 1993; Ishibashi and Zhang, 1993;
Darendeli, 2001).

Another important aspect is the choice of the numerical method to solve the wave equation.
It influences the computational efficiency of numerical modeling in terms of precision of the
solution and computational cost. One of the most commonly used methods to solve the seismic
wave equation is the finite differences method (FDM), which has been extensively developed by
many researchers (Madariaga, 1976; Virieux, 1986; Levander, 1988; Graves, 1996; Saenger et
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al., 2000; Moczo et al., 2002). Soil nonlinearity has been modeled in several studies of 1D/2D
seismic wave propagation using FDM with no pore pressure effects, also known as total stress
analysis (i.e. Joyner 1975; Joyner and Chen, 1975; Gélis and Bonilla, 2012, 2014). Yet, FDM
has also proven to be robust when pore pressure is taken into account. This kind of analyses
are known as effective stress analysis and they are the only ones capable of modeling observed
accelerograms strongly affected by dilatant/contractive soil behavior (i.e. Pyke, 2000; Bonilla
et al. 2005). Although its implementation is relatively straightforward, FDM can present some
limitations in modeling non-planar topographies or complex interfaces inside the medium.

A different approach, which facilitates the adaptation of mesh to complex geometries in
3D, is the finite element method (FEM) (Lysmer and Drake, 1972; Marfurt, 1984; Bielak et
al., 2005). It has been used in many studies where nonlinear soil assumption is made for 1D
- one-component (1C) and 1D - three-component (3C) seismic wave propagation (e.g. Iai et
al., 1995; Hashash and Park, 2001; Borja et al., 2002; Gandomzadeh, 2011; Santisi d’Avila et
al. 2012, 2011; Pham, 2013). However, one limitation of FEM is that the global mass matrix
needs to be inverted at each time step, which results in longer computation times. Such heavy
computations could be avoided by lumping the mass matrix to turn it into a diagonal matrix.
Yet, such a procedure may introduce numerical dispersion (Hinton et al. 1976, Mullen and
Belytschko, 1982, De Basabe and Sen, 2007). Combining different methods such as FDM and
FEM has also been proposed (e.g. Moczo and Kristek, 2005; De Martin et al., 2007; Ducellier
and Aochi, 2012).

As a promising alternative technique, the discontinuous Galerkin finite element method
(DGM), based on exchange of numerical fluxes between adjacent elements, provides high order
direct solution (Käser and Dumbser, 2006; Delcourte et al., 2009; Etienne et al., 2010; Peyrusse
et al., 2014). Recently, DGM has been used in 1D wave propagation modeling in nonlinear
media (e.g. Mercerat and Glinsky, 2015; Mercerat et al., 2016 and Régnier et al., 2016).

Another high-order finite element method is the spectral element method (SEM). It has
been used in Geophysics for many years for seismic wave propagation modeling (Faccioli et
al., 1997; Komatitsch and Vilotte, 1998; Seriani, 1998; Ampuero, 2002; Festa and Vilotte,
2005; Madariaga et al., 1976; Mercerat et al., 2006; Delavaud, 2007; Smerzini et al., 2011). It
provides easiness of mesh adaptation to complex geometries with higher precision than finite
differences and low-order finite element methods. Numerical algorithms of the spectral element
method considering 1D and multi-dimensional plasticity theory have been used in engineering
models (Leroy, 2011). Some recent studies using SEM for seismic wave propagation also take
into account nonlinear soil behavior (i.e. Stupazzini and Zambelli, 2005; di Prisco et al., 2007;
Stupazzini et al., 2009, He et al., 2016). Moreover, SEM was used in studies of seismic wave
propagation in nonlinear crustal fault zones (Lyakhovsky et al., 2009; Xu et al., 2012; Gabriel
et al., 2013; Xu et al., 2015 and Thomas et al., 2017).

In this work, we develop a numerical tool to study soil nonlinearity respecting geomechani-
cal characteristics of the medium and considering the excess-pore pressure development effects
on soil behavior. We exploit the numerical advantages of SEM regarding precision and mesh
adaptability to various medium properties. This advantage provides relatively cheaper compu-
tational times compared to other numerical methods having higher number of elements reaching
the same accuracy (De Martin, 2010). As for the nonlinear soil constitutive model, we use MPII
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model of Iwan (1967). In this approach, the total material damping is modeled through a com-
bination of viscoelasticity and hysteretic behavior as suggested by Assimaki et al. (2011) and
Gélis and Bonilla (2012, 2014). For the purpose of modeling pore-pressure effects, we follow
the formulation of Iai et al. (1990), which relates pore-pressure changes to the cumulative shear
work (total shearing) produced during wave propagation. This empirical relation needs several
parameters that can be obtained in the laboratory data or earthquake inversion analyses (Iai et
al., 1990; Iai et al., 1995; Bonilla et al., 2005; Roten et al., 2013; 2014).

In this paper, we first present the 1D-3C SEM code development. We then show the verifi-
cation using the nonlinear and viscoelastic rheologies for 1C shear wave propagation by repro-
ducing the computations performed in the PRENOLIN project (Mercerat et al., 2016; Régnier
et al., 2016) and in previous studies (Peyrusse et al., 2014; Martino et al., 2015). Secondly,
we study the impact of taking into account the multi-component wave propagation on the de-
velopment of soil nonlinearity compared to the traditional 1C analysis. Lastly, we model the
acceleration-time histories of the 1987 Superstition Hills earthquake recorded at the Wildlife
Refuge Liquefaction Array (WRLA). A sensitivity analysis is performed to assess the influence
of soil rheology and the number of components propagating in the 1D medium (1C vs 3C) for
the same site.

2 Numerical Scheme and Constitutive Models

In this section, the spectral element method is briefly presented. Then, the constitutive models
are given for viscoelasticity and nonlinearity of the medium.

The spectral element approximation is based on the decomposition of the domain into over-
lapping elements Ωe (segments in 1D, quadrangles in 2D and hexahedra in 3D). In each element
Ωe, Gauss-Lebatto-Legendre (GLL) integration points are defined. Lagrange polynomials are
then chosen to define an orthogonal basis, which enables the SEM to have a spectral conver-
gence, making it a very precise numerical method (Festa and Vilotte, 2005; Delavaud, 2007).
In our case, the equation of wave propagation follows the velocity-stress formulation. The time
discretization follows the leap-frog scheme. The time step has to verify the Courant-Friedrichs-
Lewy (CFL) condition to ensure the stability of this time-marching solver. We use 0.3 as the
controlling value of CFL for all the applications in this paper. Here the definition of the control-
ling value is adopted from Delavaud (2007), in which the computed CFL number is based on
minimum spacing between GLL nodes in the spectral element. The element size d is chosen by
respecting the formula d ≤ λminN/ppw, where λmin is the shortest wavelength propagating in
the medium, N is the polynomial degree and ppw is the number of grid points per wavelength,
to avoid artificial wave dispersion (Seriani and Priolo, 1991). In the aforementioned study, the
authors show that the use of ppw = 5 is needed for a wave propagation without numerical dis-
persion, while finite difference and low-order finite element methods require values between 15
and 30.

The 1D-3C nonlinear SEM code has built-in different soil rheologies such as linear, vis-
coelastic and visco-elastoplastic behavior. In a viscoelastic medium, attenuation is quantified
by using the quality factorQ (Aki and Richards, 2002; Moczo and Kristek, 2005). The convolu-
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tion relating stress and strain in the frequency domain in viscoelasticity theory is converted into
a differential form by means of additional memory variables to model the viscoelastic attenu-
ation, corresponding to a Generalized Maxwell Body (Day and Minster, 1984; Emmerich and
Korn, 1987; Day and Bradley, 2001). In this study, we choose the approach proposed by Liu
and Archuleta (2006) that approximates a constant Q between 0.01 and 50 Hz by eight mecha-
nisms of pre-calculated memory variables. In the 1D-3C SEM code, the memory variables and
the viscous modulus corresponding to Qp and Qs values at a given reference frequency fr are
utilized, respectively. We recall that the total energy dissipation in the soil is modeled as the
sum of viscoelastic attenuation and hysteretic attenuation similarly to Assimaki et al. (2011)
and Gélis and Bonilla (2012; 2014).

Soil nonlinearity follows the hyperbolic model proposed by Hardin and Drnevich (1972)
(the reader can find the details in that paper). Equation (1) shows the relation between shear
modulus G and shear strain γ for this model, where G0 is the initial shear modulus and γref is
the reference shear strain defined as the ratio between the shear strength and the initial shear
modulus.

G

G0

=
1

1 + γ/γref
(1)

The MPII model (Iwan, 1967) (described in Appendix A.1) uses these hyperbolic curves to
construct the stress-strain space in 3D. Our code follows Joyner’s formulation (1975). The ma-
trix of total-stress increment corresponding to a given matrix of strain increment is calculated
based on parameters of deviatoric stress and strain.

To model the excess-pore pressure generation under cyclic loading we follow the study of
Iai et al. (1990). In their study, the authors relate the cumulative shear work and the mean
effective stress as it has been observed in experimental data (Towhata and Ishihara, 1985). The
time evolution of the parameters in this relation is called liquefaction front. The liquefaction
front represents the envelope of stress points at equal shear work in normalized stress space
relating the applied normalized deviatoric stress r to current normalized mean effective stress
S (the normalization factor is the initial mean effective stress). In this stress plan, the soil is
characterized by two limits during cyclic loading. The first one is the transition between con-
tractive and dilatant behaviors and the second one is the rupture limit. The boundaries of these
two limits are called phase transformation and failure lines, respectively (Figure 1). The 1D-3C
SEM code couples the nonlinear MPII model with the model of Iai et al. (1990) in presence of
liquefiable soil layers. At each time step, the increment of the cumulative plastic shear work
and the current effective stress corresponding to the matrix of current total stress are computed.
The backbone curve of the soil (hyperbolic curve of Equation 1) is reconstructed according to
the current effective stress. Appendix A.2 describes all equations and parameters related to the
liquefaction front model.
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Figure 1: Schematic plot of liquefaction front model in normalized stress space. S holds for
normalized mean effective stress and r is the normalized deviatoric stress (after Iai et al., 1990).

The medium is divided into elements for the wave propagation modeling. The mesh for a
nonlinear medium is created based on the shortest wavelength. Since we do not have an adaptive
meshing in time and space, the procedure we follow is to suppose that the minimum shear wave
velocity during the simulation does not become less than one-fourth of the initial shear wave
velocity (corresponding to the reduction of shear modulus to one-sixteenth of the initial shear
modulus). We check at the end of the simulation whether the computed strains are compatible
with the a priori shear modulus reduction to see if the solution is stable (e.g. Gélis and Bonilla,
2012). If the minimum shear modulus during the simulation becomes less than one-sixteenth
of the initial shear modulus, we further refine the meshing by a factor of 2. For all the nonlin-
ear models in this study, 50 springs of MPII model are used. In Appendix B, the influence of
number of GLL nodes and Iwan springs on the precision of SEM solution in nonlinear media is
shown for one of the models used in this paper.

3 Verification of viscoelastic and nonlinear modeling

Different tests are performed to compare SEM results with other numerical methods for the
purpose of verification. First, the verification of viscoelasticity implementation is performed
followed by the one considering nonlinear rheology. The wave propagation is computed using
only one shear component in both cases.

To verify the viscoelasticity implementation, we perform 1D-3C SEM computations of a
soil profile in Rome, Italy from Martino et al. (2015) study. We then compare these results
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with those used in Martino et al. (2015). The 1D Rome model is composed of 14 soil layers
overlying bedrock (Table 1). The soil profile includes velocity inversions, for example layer
4 has a higher velocity than layer 5. The reference frequency fr is set to 1 Hz for all layers.
Such a complex model allows to track small differences between numerical methods up to high
frequencies. The free surface is modeled by a Neumann condition. Elastic rock boundary at
bottom is modeled by absorbing layers of Classical Perfectly Matched Layers (C-PML). The
input motion used is the same as in Peyrusse et al. (2014), a synthetic Gaussian wavelet low
pass filtered below 14 Hz. The velocity-time history and corresponding Fourier amplitude of
the input motion (after filtering) are shown in Figure 2. A mesh corresponding to a resolution of
20 Hz and a 4th polynomial order (5 GLL points per element) is used. The element size varies
from 2.5 to 16 m and a maximum number of two elements are used on each layer. Minimum
distance between GLL points of elements changes from 0.4375 to 2.8 m. The time step is set to
2 x 10−5 s. The source is located at a depth of 100 m. In Figure 3, acceleration-time histories
at the surface from SEM and the Haskell-Thomson (HT) methods are shown in the top panel.
Both techniques give identical results, verifying the implementation of the attenuation in the
time-domain computations. The lower panel of Figure 3 shows the transfer functions obtained
by SEM and HT. They are obtained by computing the spectral ratio (FFT) of surface with re-
spect to input motions. Since the input energy is limited to 14 Hz, the results are shown up
to this frequency limit. Given the complexity of the media, this good agreement between the
results of all the methods demonstrates the correct implementation of viscoelasticity. Appendix
C.1 addresses the goodness-of-fit of these simulations.

Table 1: Soil properties at the Rome model.

Layer Thickness [m] Vs[m/s] Vp[m/s] ρ[kg/m3] Qs Qp

1 10 220 490 1835 100 200
2 6 239 523 1876 15 30
3 16 260 1480 1967 100 200
4 13.5 417 1760 1957 50 100
5 10 212.5 1235 1865 35 70
6 2.5 417 1760 1957 50 100
7 7 713 2560 2141 50 100
8 3 545 2125 2078 35 70
9 2.5 610 2379 2078 35 70
10 3 675 2632.5 2078 35 70
11 2.5 740 2886 2078 35 70
12 3 805 3139.5 2078 5000 10000
13 2.5 870 3393 2078 5000 10000
14 2.5 935 3646.5 2078 5000 10000

Bedrock 16 1000 3900 2078 5000 10000
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Figure 2: Velocity-time history (top) and Fourier amplitude (bottom) of the input motion used
in Rome soil profile.

Figure 3: Comparison between acceleration-time histories at surface from SEM (in red) and HT
(in black) (top) and transfer functions obtained with SEM (in red) and HT (in black) (bottom).

To verify the implementation of the nonlinear soil model, we use one of the results obtained
within the PRENOLIN project (Régnier et al., 2016). This project aims at comparing 1D
numerical wave propagation codes, having 21 international participating teams to model soil
nonlinearity using canonical and real cases. One of the canonical cases of the project, the
so-called P1 model, is used in this verification test. The free surface is modeled by a Neumann
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condition. At the bottom of the model, the rigid boundary is modeled by a Dirichlet condition
with a zero velocity-field. In the P1 model, a single layer of soil is defined with a thickness
of 20 m and a velocity of 300 m/s overlying a bedrock having a shear velocity of 1000 m/s.
A fourth-order polynomial degree (5 GLL points) is chosen for this model. A simple Ricker
signal with a PGA of 0.93 m/s2 and a duration of 1 s, provided by the project, is imposed as
input motion at the bottom of the discretized domain. In order to remove potential numerical
noise with minimal loss of signal components, an acausal low-pass filtering is applied below
10 Hz by using a Butterworth filter before and after the simulation. The time step is set to 5
x 10−5 s. Elements of 5 m size are used in the model. The results obtained with SEM are
compared to the results of another participant of the project, team EY, (Mercerat and Glinsky,
2015; Régnier et al., 2016), who uses discontinuous Galerkin method (DGM) code, where the
MPII model is also implemented. Figure 4 shows the stress-strain diagram for the point located
at GL-9 m (left). Both methods show similar dynamic loading paths with negligible differences
at the extreme values. Furthermore, due to soil nonlinearity, the material behavior is no longer
elastic and experienced values of shear strain become significant even under such simple input
and site conditions.

Figure 4: Stress-strain curves computed with SEM (in red) and DGM (in black) for the P1
model simulation using elastoplastic behavior (left). Acceleration-time histories at the surface
computed with SEM (in red) and DGM (in black) (right).

Another comparison between two methods is made on the computed time histories of surface
acceleration, Figure 4 (right). SEM results show slightly higher peak acceleration amplitudes
than DGM, which could be related to possible differences between SEM and DGM numerical
modeling. Yet, the results obtained with the two methods are in good agreement in terms of
waveform and phase. Appendix C.2 quantifies the similarity of these two simulations. Other
comparisons between different numerical schemes using Iwan (1967) nonlinear model in 1D
seismic wave propagation can be found in Mercerat et al. (2016).
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4 Comparison of uniaxial and triaxial loading
In the 1D-3C SEM code, the propagation can be computed using two shear components (x,y)
and one compression component through the vertical axis (z), so that all the three components
(x, y, z) can be considered in the calculations. Under multi-axial stress state, the loading is
likely to lead to more energy dissipation and to result in a consequent plastification effect in
the soil (Santisi d’Avila et al., 2012). In this section, we compare the nonlinear soil behavior
under uniaxial and triaxial loading without modeling pore-pressure excess. For this purpose,
the previously used P1 model is used with the same input signal. The soil column is loaded
in the x-direction only, so that the propagation is done for one shear component. For the
triaxial loading, the same input signal is defined for all components (x, y, z). This configuration
is not realistic, but it is only used for demonstration purposes. Figure 5 (left) shows that
the stress-strain curve at the middle of the soil follows the prescribed backbone curve under
uniaxial loading; while the right figure shows that the soil deviates from the backbone curve
under triaxial loading. Such behavior indicates higher plastification that leads to loss of soil
strength and change in deformation values in the soil with higher damping. Consequently, at
the surface, resultant motion is stronger for uniaxial loading than triaxial loading (top panel of
Figure 6). From the initial seconds of simulation, the increase in attenuation is noticeable.

Furthermore, a slight time shift of multi-component simulation with respect to one-component
computation is observed. Such an outcome is a consequence of higher nonlinearity corre-
sponding to a lower shear modulus (lower wave speed) under triaxial loading. The transfer
functions illustrate the impact of this higher nonlinearity under triaxial loading showing larger
attenuation of maximum values (bottom panel of Figure 6). The fundamental frequency is also
slightly shifted from 3.5 Hz to 3.4 Hz.
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Figure 5: Comparison of the stress-strain curves for the P1 soil model under uniaxial (left) and
triaxial loading (right). The backbone curve is shown in black.
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Figure 6: Surface acceleration-time histories (top) and transfer functions (bottom) for uniaxial
(in black) and triaxial loading (in red).

The fact that soil becomes more plastic due to multiaxial loading even in cases where
propagation is modeled for simple input motion shows the coupling of motion components in
a 3D nonlinear constitutive soil model. In more realistic conditions of input loading, plasticity
arises mostly from double shearing because the horizontal components of the ground motion
are usually larger than the vertical one. Yet, this can be a critical issue in the vicinity of the
source where the vertical component may also be equal or larger than the horizontal ones. For
this reason, additional energy attenuation with higher nonlinearity due to multiaxial loading
should be taken into account for realistic modeling of seismic wave propagation.

5 Validation of the 1D-3C SEM code including pore-pressure
effects

5.1 The 1987 Superstition Hills Earthquake
To validate the 1D-3C approach, we use data recorded at the Wildlife Refuge Liquefaction
Array (WRLA), located on the floodplain of Alamo River in the Imperial Valley of California.
The array was deployed by the United States Geological Survey (USGS) in 1987 with surface
and downhole accelerometers (GL-7.5 m) and pore-pressure transducers at different depths. At
WRLA, the pore-pressure changes were recorded together with the seismic motion generated
by the ML 6.6 mainshock of Superstition Hills on the 24 November 1987 (Holzer et al., 1989).

We adopt the parameters of Bonilla et al. (2005) for the soil properties in our study. The
velocity profile is composed of 4 soil layers as seen in Table 2. Vs and Vp correspond to shear
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and pressure wave velocities, respectively; ρ is the density, φf is the friction angle representing
the failure line, and K0 is the coefficient of Earth at rest needed to compute the initial stress
conditions. The water table depth is set to 2 m. The site is assumed to be initially isotropically
consolidated and dilatancy parameters (φp, w1, p1, p2 and S1) are used for the third layer as
proposed by Bonilla et al. (2005).

Table 2: Soil properties at Wildlife Refuge Liquefaction Array after Bonilla et al. (2005).

Layer Description Thickness [m] Vs[m/s] Vp[m/s] ρ[kg/m3] φf [degree] K0

1 Silt 1.5 99 249 1600 28 1.0
2 Silt 1.0 99 281 1928 28 1.0
3 Silty sand 4.3 116 1019 2000 32 1.0
4 Silty sand 0.7 116 1591 2000 32 1.0

Table 3: Dilatancy parameters for the loose silty sand layer at the Wildlife Refuge Liquefaction
Array (after Bonilla et al., 2005).

φp[degree] w1 p1 p2 S1

24.0 4.0 0.4 0.9 0.01

5.2 Numerical model
Borehole wavefield at GL-7.5 m depth is used as input in the simulations. The strongest motion
is recorded on the north-south direction with an amplitude of 1.60 m/s2, while the weakest
motion is on the vertical direction with a PGA of 0.54 m/s2, Figure 7. Hereafter, north-south
component is symbolized by (NS), east-west component by (EW) and vertical component by
(UD).
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Figure 7: Acceleration-time histories recorded in the east-west (EW), north-south (NS) and
vertical (UD) directions at GL-7.5 m depth of WRLA.

The computation is done for a resolution up to 10 Hz where the minimum grid spacing is 0.5
m, each spectral element has 5 GLL points and time step ∆t = 1.0 x 10−5 s. The quality factors
for shear and pressure waves are taken as Vs/10 and Vp/10, respectively. For all the defined
integration points in the model, the reference strain γref is computed by Equation (2), so that
reference strain is not the same all over the domain but proportional to vertical confining stress.

γref =
sinφf ∗ σ′

G
(2)

where φf is the failure line angle, σ′ is the initial effective stress and G is the corrected shear
modulus used in the simulations (initial shear modulus multiplied by a coefficient of ( σ′

σ′
mid

)0.5

where σ′mid is initial effective stress at the middle of the layer) defined for each GLL point.
Shear modulus is pressure-dependent, which means that soil is more linear at depth and more
nonlinear close to surface.

5.3 Results
We compare the observed ground motion at the surface with the computed synthetics in the
three directions. Figure 8 shows the computed accelerations at the surface. After the first 13
s, the accelerograms show large dilatation pulses riding on a low-frequency carrier. Except
for the slight phase differences on the NS component and some amplitude dissimilarities, the
simulation is able to reproduce well the observed ground motion.
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Figure 8: Comparison of surface acceleration-time histories between the results of effective
stress analysis of SEM (in red) and real records (in black) for the WRLA site.

Moreover, a similar comparison is made between computed and observed velocity-time
histories, Figure 9. After 20 s, SEM solution and observation on the NS component exhibit
slight phase and amplitude differences. Appendix C.3 shows the goodness-of-fit analyses of
SEM results with respect to observed acceleration and velocity-time histories, respectively.
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Figure 9: Comparison of surface velocity-time histories between the results of effective stress
analysis of SEM (in red) and real records (in black) for the WRLA site.

The long period pulses in the horizontal components of the acceleration-time histories can
be explained by the dilatancy changes in the liquefiable silty sand layer (GL-2.5 m - GL-6.8
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m). Two points at different depths are chosen to see these changes. The first corresponds to a
depth of GL-2.9 m, where pore pressure effects were recorded; and the second is located in the
middle of the soil column. Figure 10 shows the normalized deviatoric stress (r) as a function
of the normalized current effective stress (S) for these two points (initial effective stress is used
as normalization factor). A continuous decrease in effective stress is observed. At GL-4.0 m
depth, the soil experiences dilatant behavior by reaching the phase transformation line.
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Figure 10: Stress space at GL-2.9 m (a) and GL-4.0 m (b), respectively. Solid and dashed lines
represent the failure and phase transformation boundaries.

Moreover, the stress-strain curves are plotted for the same locations in Figures 11-12. At each
depth, the decrease in effective confining stress can be remarked by slope changes of shear
strength. Differently than GL-2.9 m, dilatancy at GL-4.0 m results in stress-strain loops for
shear components having the classical banana shape, which is typical of softening and partial
regain of soil strength due to successive changes in soil dilatancy. Maximum strain reached
by the soil at this depth is close to 5 %. Strain values at depth GL-2.9 m are small due to the
large attenuation of the incoming waves. Conversely,in the vertical component at either depth,
the behavior is close to elastic conditions. Such an outcome results from the fact that the bulk
modulus is independent of soil dilatancy changes in this model. Such an assumption should be
studied in the future, yet it produces good results when modeling the vertical wave propagation
in this case.
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Figure 11: Stress-strain curves of EW-UD component (left), NS-UD component (middle) and
UD component (right) at GL-2.9 m.
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Figure 12: Stress-strain curves of EW-UD component (left), NS-UD component (middle) and
UD component (right) at GL-4.0 m.

Furthermore, we compute the change of the pore-pressure excess inside the liquefiable soil
layer. Figure 13 displays at GL-2.9 m (left) and those computed at GL-2.9 m and GL-4.0
m (right), respectively. A sudden increase in pore pressure is seen after 13 seconds at both
depths. Since the effective stress decreases more at GL-4.0 m, the pore-pressure excess reaches
higher values than GL-2.9 m. Continuous changes in contractive-dilatant behavior of the soil at
GL-4.0 m is seen in the same figure by successive oscillations in pore-pressure values. As soil
becomes contractive, pore pressure decreases, while it increases for dilatant soil behavior. Such
sudden changes in dilatancy, where stress path changes direction and effective stress increases
with dilatant behavior, are related to partial gain of strength and consequent spiky values in
surface acceleration which take place after 13 s. Oscillations related to dilatant behavior at
GL-2.9 m in SEM solution have higher amplitudes compared to the recording. Although these
differences are not significant to interpret the evolution of soil behavior under excess-pore
pressure development, the numerical solution could be improved by modification of parameters
of the liquefaction front model. Indeed, the parameters used in this study have been determined
for another constitutive model of soil nonlinearity (Iai et al., 1990; Bonilla et al., 2005). Also,
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triaxial loading condition leads the soil to higher nonlinearity, differently than the mentioned
studies that used uniaxial loading condition. Furthermore, in Holzer and Youd (2007), the
authors explained the continuous increase in pore-pressure excess and ultimate liquefaction
process with the formation of surface waves (Love and Rayleigh waves) and consequent
shearing in WRLA. Same authors stated the presence of surface waves in the input motion at
GL-7.5 m, which suggests the importance of 2D/3D effects on the incoming wavefield that
may increase the pore-pressure effects. However, the generation and lateral propagation of
these surface waves cannot be accounted for our 1D model.

Figure 13: Pore-pressure ratio at GL-2.9 m (left) (extracted from Holzer and Youd, 2007 and
modified after Pham, 2013). Computed pore-pressure ratios at GL-2.9 m (in blue) and at GL-4.0
m (in red), respectively (right).

Thus far, the influence of cyclic-mobility phenomenon in the 4.3 m thick silty sand layer is
demonstrated and the spiky wavelets at surface are explained due to the sudden changes in pore
pressure and dilatant behavior of the silty sand layer. The good agreement between observed
and calculated accelerations supports the nonlinear soil rheology used in this study. In the
next section, a sensitivity study is carried out to highlight the effect of soil rheology and input
loading (1C and 3C approaches) at WRLA.

5.3.1 Influence of material rheology on wave propagation

We investigate the influence of ignoring the excess-pore pressure development on the response
of the WRLA soil column using a visco-elastoplastic analysis. Three components of the
computed acceleration-time histories at the surface are compared between two approaches
(with/without pore-pressure effects). Figure 14 shows that signals are dominated by high-
frequency motion in both shear components. The particular waveform observed after first
13 s in these components cannot be reproduced. Conversely, only few differences are noted
between the calculated and observed vertical motions. Such an outcome arises from the fact
that the constitutive equations lead to development of strong material nonlinearity mainly in
the deviatoric plan. It is a drawback of the model since it will not be able to correctly model
volumetric changes during cyclic loading. This aspect has to be improved in the future to
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correctly predict vertical settlements.
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Figure 14: Surface acceleration-time histories for simulation without pore-pressure effects (in
blue) and observation (in black) at the WRLA.

The effect of pore-pressure excess is also shown on the response spectra. Figure 15 depicts
the 5 % response spectra of the three components of surface acceleration for effective stress
analysis (in red) and total stress analysis (in blue). A very strong peak around 3 Hz in the
visco-elastoplastic analysis without pore-pressure excess is noted in both shear directions. This
peak is significantly damped with the introduction of cyclic mobility in the third layer so that
the results become much closer to the observations. In addition, at low frequencies (< 1 Hz),
the spectrum is amplified when excess-pore pressure is taken into account, which results in
a better fit to the observation. As before, the vertical component remains unaffected by the
presence or not of pore pressure.
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Figure 15: Comparison of response spectra between real records (in black), effective stress
analysis of SEM (in red) and total stress analysis of SEM (in blue) for EW component
(left), NS component (middle) and UD component (right).

These results reveal the importance of taking into account the correct soil constitutive model
in surface-motion modeling. The response spectra of ground motion are strongly influenced
by soil rheology in the frequency band of interest for Earthquake Engineering (0.1-10 Hz).
Thus, for certain structures whose resonance frequencies fall into the low-frequency band, the
design could exceed the safety limit if the rheological characteristics of the underlying media
are not correctly taken into account. Such considerations enhance the importance of realistic
hypothesis and good knowledge of the soil behavior and properties during site-specific studies.

Furthermore, the depth profiles of maximum strain for the three components of total and
effective stress analyses are compared in Figure 16. A significant increase in strain values of
the third layer is noted on the shear components for the simulation with excess-pore pressure
development. The maximum soil strain reaches to 5 % on NS-UD component of shear strain
(γNS−UD), while it does not exceed 0.2 % without pore-pressure excess. Concomitantly, as the
strain increases in the third layer, an overall strain decrease is seen in other layers. In a highly
nonlinear liquefiable soil layer, the incoming waves could be trapped under pore-pressure
effects and such wave trapping could result in higher deformation in effective stress analysis
compared to total stress analysis.
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5.3.2 Uniaxial vs Triaxial loading

Here, we compare the response of the soil column under uniaxial and triaxial loading condi-
tions. In Section 4 we showed that the soil becomes more nonlinear due to multi-component
loading. In this section, we investigate this effect in a real model, in which pore-pressure excess
plays an important role, using the real records for the site. For this purpose, we propagate only
the NS component in uniaxial loading case. The comparison is made in the direction where the
motion is the strongest.

The results of acceleration, velocity and displacement time histories computed at the surface
are shown in Figure 17. In the first 13 seconds, the results are very similar between uniaxial and
triaxial loading. Then, waves arrive later in triaxial loading than uniaxial loading. This phase
difference indicates that the velocity of the media has further decreased under triaxial loading.
Indeed, soil behavior exhibits higher amplitudes and presents larger permanent displacements
for the 3C computations compared to traditional 1C computations.
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Furthermore, the stress-strain loops at GL-4 m show more nonlinear and dilatant behavior,
producing higher deformations during triaxial loading compared to uniaxial loading (Figure
18, left). Given the fact that soil is more nonlinear during triaxial loading, the effective stress
decreases more rapidly resulting in earlier and stronger pore pressure rise. In consequence, the
soil undergoes with more oscillations in the second half of the simulation (after 13 s) under
triaxial loading (Figure 18, right). Therefore, multi-axial interaction may become important for
a realistic analysis on seismic wave propagation studies.
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6 Conclusions
This study shows the possibility of modeling wave propagation on nonlinear media including
pore-pressure effects using SEM by coupling two different mechanisms. First, the nonlinear
soil behavior and second, the excess of pore pressure generation. These models need three
elastic parameters (pressure and shear wave velocities and density), three parameters for
viscoelastic attenuation (quality factors of P and S waves and reference frequency) and three
parameters for nonlinearity (friction angle, cohesion and coefficient of Earth at rest). When
excess-pore pressure development is taken into account, five parameters are required (φp, w1,
p1, p2 and S1), which can be obtained by laboratory tests or strong motion inversion analyses.

The analyses of the 1987 Superstition Hills earthquake (ML 6.6) data, recorded at the Wildlife
Refuge Liquefaction Array (WRLA), show:

• Spiky behavior of the recorded accelerograms is well reproduced by modeling the
dilatant soil behavior and related pore-pressure effect.

• Nonlinear computation of the ground motion with no pore-pressure effects still overesti-
mates high-frequency motion and underestimates amplification of low frequencies.

• Triaxial loading conditions result in higher soil nonlinearity, which in turn produces
a more rapid rise of the pore-pressure excess. Yet, deformations at depth in materials
susceptible to excess-pore pressure generation could be quite large. For this reason,
consideration of multi-axial interaction might sometimes be required for a realistic
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modeling of seismic wave propagation.

We have seen that this relatively simple model captures most of the physics observed in dilatant
soils. This numerical tool is efficient and useful for a better understanding of the influence of
soil-related phenomena on 1D seismic wave propagation and multi-axial loading effects. Yet,
solid-liquid phase interaction and fluid dissipation cannot be modeled. This aspect deserves
further research in the future.
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Appendix A.

The spectral element method scheme relates the strain and stress parameters for each GLL
point of grid element. To do so, we follow the MPII formulation of Iwan’s model (1967). In
this section, the equations of MPII model are first presented and the constitutive model for the
liquefaction front is then detailed.

A.1 Iwan model
We follow Joyner’s formulation (1975) of Iwan’s model (1967). Three-dimensional model of
nonlinearity is presented based on standard incremental plasticity theory of Fung (1965) by
introducing a family of yield surfaces. In his formulation, yield surfaces are expressed by the
following formula:

Fn(sij − αnij) = k2n (A.1)

where Fn is the yield function for the nth yield surface, αnij is its origin and kn is the yield
stress associated to each nth surface. The translation for each surface due to kinematic
hardening of Prager type can be written in terms of plastic strain, as shown in Equation A.2,
where Cn is a constant for the nth surface.

dαnij = Cndepnij (A.2)

depnij = Lnhn
∂Fn
∂sij

(A.3)

Fung (1965) states that an incremental loading of dsrs from a plastic state must lead to another
plastic state. Normality condition described by Equation A.3 is then used to compute hn as
follows:

hn =
1

Cn

(∂Fn/∂srs)dsrs
(∂Fn/∂skl)(∂Fn/∂skl)

(A.4)

For the case when the yield function does not exceed kn value or unloading, Ln parameter is
set to zero, while for other cases it is equal to 1.

Ln = 0 if Fn < k2n or ∂Fn

∂sij
dsij < 0

Ln = 1 if Fn = k2n or ∂Fn

∂sij
dsij ≥ 0

In case of yielding (Ln = 1), the nth surface is considered to be activated.

For a given strain increment dεij , the corresponding stress increment dσij is calculated using
the deviatoric strains deij and stresses dsij . The total deviatoric strain increment deij can be
obtained by the strain increment dεij as in Equation A.5. In this case, total stands for the sum
of the elastic and plastic strains.
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deij = dεij + dεmδij (A.5)

where dεm is the mean strain increment written as dεm = 1
3
(tr(dε)).

In the constitutive model, the total deviatoric strain increment deij is related to the deviatoric
stress increment dsij by Equation A.6.

deij = Qijrsdsrs + 1/2G0dsij (A.6)

Qijrs tensor is calculated cumulatively for each plasticity surface using the corresponding yield
function and partial derivatives as in Equation A.7.

Qijrs =
∑
n

Ln(∂Fn/∂sij)(∂Fn/∂srs)

Cn(∂Fn/∂skl)(∂Fn/∂skl)
(A.7)

By using Von Mises yielding condition, the yield function Fn and its partial derivative ∂Fn/∂sij
can be written as follows:

Fn = 1/2(snij − αnij)(snij − αnij) (A.8)

∂Fn
∂sij

= snij − αnij (A.9)

Cn and kn values are determined following the soil backbone curve. kn values correspond to
the yield stress for each spring; Cn values are then calculated by Equation A.10.

1

Cj
=
εj+1 − εj
kj+1 − kj

− 1

2G0

−
j−1∑
n=1

1/Cn (A.10)

To solve the system of equations, we follow the scheme shown in Figure A.19. At each time
step t, total stress increment dσij is calculated for total strain increment dεij . For the first
time step, we assume that no yield surface is activated and the current stress point remains
inside the first plasticity surface. Thus, it is possible to apply linear elasticity to calculate the
stress increment of the material for the given strain increment. For the next time steps, the
deviatoric strain deij is computed with Equation A.5. Then, yield function Fn and its partial
derivative ∂Fn/∂σij are calculated by Equations A.8-A.9. For the current stress state Ln is
computed to check whether the nth surface yields. Then, E matrix is created by assembling
elastic and plastic multipliers, 1/2G0 and Qijrs, with respect to Equation A.6. This matrix
relates the deviatoric stress increment to deviatoric strain increment. To solve Equation A.6, E
is inverted and multiplied by the deviatoric strain increment. We assume that the time step is
sufficiently small that the solution provides an acceptable approximation. Once, the deviatoric
stress increment dsij is obtained, total deviatoric stress sij is updated. Then, the translation of
the center for each activated yield surface αij is computed (See Equation A.11). Lastly, the
stress increment dσij can be computed according to Equation A.12.
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Figure A.19: Numerical flow for computation of total stress increment for given total strain
increment.

α
t+ 1

2
nij = s

t+ 1
2

ij −
kn(s

t+ 1
2

ij − α
t− 1

2
nij )

√
Fn

(A.11)

dσij = dsij + dσmδij (A.12)

where t + 1
2

and t − 1
2

hold for current and previous time step values. dσm is the mean
stress increment and calculated using the mean strain increment dεm and bulk modulus K as
dσm = 3Kdεm.
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A.2 Liquefaction front model
In Iai et al. (1990) model, the liquefaction front parameter S0 is determined depending on
the cumulative shear work exerted on the soil. This parameter indicates how close the soil
is to liquefaction state. In particular, for S0 = 0, liquefaction is assumed to occur. Since we
do not model the ultimate state at which liquefaction takes place, we limit its value using
the S1 parameter. Initially, S0 is set to 1 for cases where initial deviatoric stress ratio is
considerably low (τ0/P0 < 0.67sinφp). For higher values of initial deviatoric stress ratio
(τ0/P0 > 0.67sinφp), S0 is obtained solving the second order polynomial in Equation A.13.

S =

{
S0, if r ≤ r3

S2 +
√

(S0 − S2)2 + ( r−r3
sinφf

)2, else
(A.13)

where r is the normalized deviatoric stress, r3 = 0.67sinφpS0, S2 = S0− sinφpS0−r3
sinφf

, and φp is
the angle of the phase transformation line (Figure A.20).

For liquefiable soil layers, the principal stress σp from total stress matrix is computed. Then,
the current deviatoric stress is computed by Equation A.14. Plastic shear work increment is
calculated by Equation A.15 using deviatoric stress s. In this formulation cumulative plastic
shear work is directly calculated from 3D plastic strain increment (Iai, personal communication
2016).

τ =
σp(max)− σp(min)

2
(A.14)

dWs
p =

3∑
i=1

3∑
j=1

(sijdεij
p) (A.15)

During computation of plastic shear work increment, a correction is applied by dWs = dWsCor
to ensure a positive plastic shear work increment. Otherwise, the increment is considered to be
zero (Equations A.16-A.18).

Cor =

{
1, if r

cst
≤ 0.67sinφp

(sinφf )− r
cst

sinφf−0.67sinφp
, else

(A.16)

cst =

{
1, if S ≥ 0.4 + (Sb − 0.4)S0/Sb

0.4 + (Sb − 0.4)S0/Sb, else
(A.17)

Sb =

{
S0, if S0 < 0.4

0.4, else
(A.18)
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The increment of plastic shear work dWs is used to obtain the cumulative plastic shear work
Ws. This increment is added to the previous value of cumulative shear work W

t− 1
2

s such that
Ws = W

t− 1
2

s + dWs. Then, the shear work ratio w is computed as follows:

w = Ws/Wn (A.19)

Wn =
τmaxγ0

2
(A.20)

where Wn is the initial shear work and τmax is the maximum shear strength. Knowing that
γ0 = τmax

G
and G, which is the corrected shear modulus (Equation 2), Equation A.20 can be

rewritten as:

Wn =
(τmax)

2

2G
(A.21)

Using the shear work ratio w, the liquefaction front parameter S0 is updated by Equation A.22.
Therefore, the model parameters are p1, which controls the initial pore pressure raise up to
S < 0.4; p2 controls the pore-pressure evolution during dilatancy; and, w1 controls the slope of
pore-pressure excess (Figure 1).

S0 =

{
1− 0.6( w

w1
)p1 , if w ≤ w1

(0.4− S1)(
w1

w
)p2 + S1, if w > w1

(A.22)

The normalized mean effective stress S can be calculated by the liquefaction front parameter
S0 following Equation A.13. Finally, the pore-pressure excess can be written in function of
initial effective stress P0 as:

u = P0(1− S) (A.23)

To couple pore pressure effects with MPII model, we reconstruct the backbone curve by using
the updated values of the reference strain γcurrentref and shear modulus Gcurrent (Equations
A.24-A.26).

γcurrentref =

{
γref , if S0 > Sb

γref/(S0/Sb), else
(A.24)

Gcurrent = P0sinφfS + ∆ (A.25)

where ∆ corresponds to
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∆ =

{
0, if S0 > Sb

(sinφf − sinφp)(Sb − S0)(0.4/Sb)P0, else
(A.26)

The algorithm is shown in Figure A.20.

Figure A.20: Numerical flow followed for coupling of pore-pressure effects and MPII model.
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Appendix B.

The problem of assessing the accuracy and convergence of SEM when dealing with nonlinear
media deserves a further study. We attempt to partially answer this issue by showing some
convergence on the computed transfer function varying the number of GLL nodes and the
number of springs used to approximate the nonlinear soil behavior. The reference solution is
computed using 300 springs and 12 GLL nodes.

The error is computed as the difference between each test and the reference over all the
frequency band between 0.1 and 8 Hz (Equation B.1). Where, Nf is the total number of
frequency bins.

error =

∑Nf

i=1 TFsolution(i)/TFreference(i)

Nf

(B.1)

Figure B.21 displays the calculated error when using different number of GLL nodes (3, 5, 7,
9) (left) and for different number of Iwan springs (10, 20, 50, 100 and 200) (right). The test
uses the P1 soil model (detailed in Section 3). Element size is fixed to 2 m for all models.

Figure B.21: Calculated error as a function of number of GLL nodes (left); Calculated error as
a function of Iwan spring number (right) in P1 model.

The error decreases significantly by increasing the number of GLL from 3 to 5 (4 times
reduction). SEM solutions having 5 and 7 GLL nodes do not differ considerably, while using 9
GLL nodes results in further decrease. As for the number of springs, the error when using 10
springs is approximately 5 times higher than the model with 20 springs. The error is further
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reduced 7 times for the case of 50 springs (0.1 %). The use of more than 50 springs produces
even smaller error values. Based on these results, we decided that the use of 50 springs and 5
GLL nodes defined on each spectral element could provide a fairly optimum solution for this
tested example.

Appendix C.

To quantify the goodness-of-fit (GOF) between two time histories, we use the method proposed
by Kristekova et al., 2006. The method uses the continuous wavelet transform to evaluate
the misfit in a time-frequency representation of the signals. Hence, simultaneous envelope
and phase differences in time and frequency are quantified. In particular, we use the method
implementation in the Obspy package (Beyreuther et al., 2010) where GOF is computed and a
value of 10 means that the two signals are identical. In the following, we show the GOF for the
different models computed in this paper.

C.1 Goodness-of-fit for Rome computations
In Figure C.22, velocity-time histories are compared between SEM and HT methods solutions.
Figure C.23 displays the GOF computed for these simulations. Note the high GOF values in
both envelope (9.95) and phase (9.98).

Figure C.22: Comparison between velocity-time histories at surface from SEM (in red) and HT
(in black).
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Figure C.23: GOF between the reference signal (HT) and the SEM solution on the computed
velocity time histories for Rome model. It is shown the frequency envelope goodness FEG
(left), time-frequency envelope goodness TFEG (right), time envelope goodness TEG (middle
right) (top) and frequency phase goodness FPG (left), time-frequency phase goodness TFPG
(right), and time phase goodness TPG (middle right) (bottom).

C.2 Goodness-of-fit for P1 computations
Figure C.24 shows the GOF of acceleration-time histories for SEM and DGM solutions. Two
numerical methods have quite similar results, in particular, there is a very good agreement in
phase.
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Figure C.24: Same as C.23 for accelerograms computed with SEM and DGM using the P1 soil
model.

C.3 Goodness-of-fit for WRLA computations
Acceleration-time histories

Figures C.25-C.27 (EW, NS and vertical directions, respectively) display the GOF of accelera-
tion time histories between SEM solution and observations. SEM solutions are in good agree-
ment in both phase and envelope (GOF∼ 7 for all three components). The best fit is seen for the
NS direction. The fit decreases starting at 13 seconds approximately where strong excess-pore
pressure build-up is developed. These differences are higher at low frequencies (< 1 Hz). This
tendency is observed in all components.
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Figure C.25: Same as Figure C.23 for EW component in WRLA soil model.

Figure C.26: Same as Figure C.23 for NS component in WRLA soil model
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Figure C.27: Same as Figure C.23 for UD component in WRLA soil model

Velocity-time histories

Figures C.28-C.30 display the GOF for EW, NS and UD directions. The differences are more
localized, and around 0.3 Hz. Over all, the fit is satisfactory and noticeable differences in phase
are observed after 30 s of ground motion.
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Figure C.28: Same as Figure C.23 for EW component in WRLA soil model

Figure C.29: Same as Figure C.23 for NS component in WRLA soil model
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Figure C.30: Same as Figure C.23 for UD component in WRLA soil model
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