Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity

Sandrine Gulberti1,2, Jean-Claude Jacquinet3, Matthieu Chabel2, Nick Ramalanjaona3, Jacques Magdalou4, Patrick Netter2, Michael WH Coughtrie4, Mohamed Ouzzine2, and Sylvie Fournel-Gigleux1,2

1To whom correspondence should be addressed: Tel: +33-383685408; Fax: +33-383685407; e-mail: sandrine.gulberti@medecine.uhp-nancy.fr, sfg@medecine.uhp-nancy.fr

2UMR 7561 CNRS-Nancy Université-Nancy 1, Faculté de Médecine, BP 184, 54505 Vandoeuvre-lès-Nancy Cedex, France; 3UMR 6005 CNRS, Institut de Chimie Organique et Analytique, UFR Sciences, 45067 Orléans, Cedex 02, France; and 4Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK

Received on August 31, 2011; revised on November 1, 2011; accepted on November 16, 2011

Glycosaminoglycan (GAG) assembly initiates through the formation of a linkage tetrasaccharide region serving as a primer for both chondroitin sulfate (CS) and heparan sulfate (HS) chain polymerization. A possible role for sulfation of the linkage structure and of the constitutive disaccharide unit of CS chains in the regulation of CS-GAG chain synthesis has been suggested. To investigate this, we determined whether sulfate substitution of galactose (Gal) residues of the linkage region or of N-acetylgalactosamine (GalNAc) of the disaccharide unit influences activity and specificity of chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1), a key glycosyltransferase of CS biosynthesis. We synthesized a series of sulfated and unsulfated analogs of the linkage disaccharide and of the constitutive unit of CS and tested these molecules as potential acceptor substrates for the recombinant human CSGalNAcT-1. We show here that sulfation at C4 or C6 of the Gal residues markedly influences CSGalNAcT-1 initiation activity and catalytic efficiency. Kinetic analysis indicates that CSGalNAcT-1 exhibited 3.6-, 1.6-, and 2.2-fold higher enzymatic efficiency due to lower K_m values toward monosulfated trisaccharides substituted at C4 or C6 position of Gal1, and at C6 of Gal2, respectively, compared with the unsulfated oligosaccharide. This highlights the critical influence of Gal substitution on both CSGalNAcT-1 activity and specificity. No GalNAcT activity was detected toward sulfated and unsulfated analogs of the CS constitutive disaccharide (GlcA-β1,3-GalNAc), indicating that CSGalNAcT-1 was involved in initiation but not in elongation of CS chains. Our results strongly suggest that sulfation of the linkage region acts as a regulatory signal in CS chain initiation.

Keywords: chondroitin sulfate / glycosaminoglycan synthesis / glycosyltransferase / linkage region / sulfation

Introduction

Glycosaminoglycans (GAGs) are essential effector molecules distributed as side chains of proteoglycans (PGs) located on the cell surface and in the extracellular matrix of virtually every tissue. Major GAGs include chondroitin sulfate (CS)/dermatan sulfate (DS) and heparin/heparan sulfate (HS) composed of repeating disaccharide units consisting of alternating uronic acid, and N-acetylgalactosamine (GalNAc) or N-acetylglucosamine (GlcNAc) residues, respectively. Although important roles for heparin/HS in developmental processes and specific signaling pathways have been established, CS has recently attracted increasing attention due to its critical implication in a number of physiological processes, such as cell adhesion, morphogenesis, cell division, and neural network formation (Maeda 2010). Moreover, defects in CS synthesis have been shown to impact several pathological conditions such as osteoarthritis, atherosclerosis, cancer (Kalathas et al. 2009), and neuropathies (Saigoh et al. 2011). Thus, there is considerable interest in understanding the CS synthesis pathway and its regulatory mechanism. The synthesis of both CS- and HS-GAG chains is initiated by the formation of a tetrasaccharide structure attached to specific serine residues of PG core proteins (GlcA-β1,3-Gal-β1,3-Gal-β1,4-Xyl-O-) via the action of several glycosyltransferases, i.e. xylosyltransferases I/II (Götting et al. 2000), β4GalT7 (Okajima et al. 1999), β3GalT6 (Bai et al. 2001), and glucuronosyltransferase-I (GlcAT-1; Kitagawa et al. 1998). Heparin/HS is synthesized once GlcNAc is transferred to the common linkage region, whereas CS is formed when a GalNAc residue is added. Therefore, the first hexosamine transfer is critical in determining whether HS or CS is selectively assembled on the common linkage region. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) catalyzes the transfer of a GalNAc residue onto the nonreducing end of...
GlcA and has been shown to play a key role in CS chain initiation, possibly in the elongation process (Gotoh et al. 2002). However, the molecular and regulatory mechanisms underlying the selective assembly of CS chains on the common tetrasaccharide linkage region remain to be elucidated.

Previous structural studies of the GAG–protein linkage region have revealed the presence of several modifications (Sugahara et al. 1992; Sugahara and Kitagawa 2000). Sulfation on C6 of both galactose (Gal) residues (Gal1 adjacent to xylose or Gal2 adjacent to GlcA) and on C4 of Gal2 was described in CS chains (Krishna and Agrawal 2000; Kitagawa et al. 2008). Sulfation of Gal residues was also present in the linkage region of DS-PG extracted from bovine aorta (Sugahara et al. 1995). So far, sulfated Gal residues have been identified for CS and DS, but have not yet been found in the linkage region of heparin or HS chains (Izumikawa et al. 2006). On the other hand, the presence of a phosphate group located on the C2 position of xylose linked to serine residues of PG core proteins has been found in both heparin/HS and CS/DS chains (Sugahara et al. 1992; Moses et al. 1997). Although the role of these substitutions is not fully understood, it has been suggested that phosphorylation and sulfation of the linkage region may regulate maturation and processing of growing nascent GAG chains (Sugahara and Kitagawa 2000). In agreement with this hypothesis, we showed that phosphorylated xylosides are not substrate for the human β4GalT7 in contrast to their unsubstituted counterparts, reinforcing the idea that phosphorylation of xylose could represent a regulatory mechanism in GAG chain initiation (Gulberti et al. 2005). We and others also demonstrated that Gal sulfation critically influences GlcAT-1 activity, supporting the possibility that xylose phosphorylation and sulfation of the Gal residues control the biosynthetic machinery of the linkage tetrasaccharide sequence (Gulberti et al. 2005; Tone et al. 2008). Furthermore, it has been suggested that sulfation also affects enzyme activity for CS chain elongation and termination (Yamada et al. 2002).

Recent studies highlighted the key role of CSGalNAcT-1 in CS chain formation of aggrecan, the major PG of cartilage. Indeed, mice lacking the gene coding for the enzyme demonstrated that it has a major impact on endochondral ossification and aggrecan metabolism (Sato et al. 2011). Furthermore, it has been suggested that this glycosyltransferase could be a potential target for devising cartilage repair strategies in cartilage-degenerative diseases (Sakai et al. 2007). Since there is compelling in vitro and in vivo evidence for a critical role of CSGalNAcT-1 in CS chain synthesis, it is critical to gain further insights into the structure–function and regulation of this enzyme. Toward this aim, we investigated the influence (1) of sulfation of the linkage Gal residues and (2) of sulfation of the GalNAc residue of the CS constitutive disaccharide unit on activity and substrate specificity of the recombinant human CSGalNAcT-1. For this purpose, we generated a glycolibary of sulfated and unsulfated oligosaccharide analogs of the GAG–protein linkage region and of CS disaccharide units by a stereo-controlled, high-yield synthesis approach. Determination of the apparent kinetic parameters of the recombinant CSGalNAcT-1 toward these oligosaccharides showed that sulfation of Gal residues of the linkage region could markedly influence CSGalNAcT-1 activity and specificity, whereas sulfation of GalNAc did not trigger GalNAcT elongation activity. Our data indicate that modifications of the carbohydrate–protein linkage region of GAGs could enhance or reduce the transfer of the first GalNAc onto the terminal GlcA residue, thereby regulating the mechanism governing CS chain initiation.

Results

Functional characterization of CSGalNAcT-1

The recombinant human CSGalNAcT-1 was functionally expressed in HeLa cells as a membrane-bound enzyme with an apparent molecular mass of 55 kDa, in agreement with the predicted molecular mass of the protein. The recombinant enzyme was produced as a Myc-tagged protein to enable quantification of expression levels using a recombinant GST-Myc protein as standard (see Supplementary data, Figure S1). The GalNAcT activity of the recombinant enzyme was determined by high-performance liquid chromatography (HPLC) using a trisaccharide analog of the linkage region linked to a chomophoric aglycone, GlcA-β1,3-Gal-β1,3-Gal-O-methoxyphenyl (GlcA-Gal-Gal-OMP), as a acceptor substrate (Figure 1A; 1). A typical chromatogram of the HILIC–HPLC (hydrophilic interaction liquid chromatography–high-performance liquid chromatography) resolution of the acceptor substrate (peak 1) and the reaction product (peak 2) formed in the presence of a donor substrate (UDP-GalNAc, peak 3) is illustrated in Figure 2. The reaction product was identified and quantified by comparison of the retention time and absorbance with those of the chemically synthesized tetrasaccharide molecule (Figure 1B; 15), allowing us to perform kinetic analysis of the recombinant CSGalNAcT-1 (Figure 2, shown in inset). The values of the apparent kinetic parameters K_m and V_{max} of the recombinant enzyme toward GlcA-Gal-Gal-OMP were found to be 3.8 mM and 19.5 nmol·min$^{-1}$·µg$^{-1}$ CSGalNAcT-1, respectively (Table I). As expected, mock-transfected HeLa cells did not show any detectable activity (see Supplementary data, Figure S2).

To assess whether the presence of a chomophoric aglycone linked to the trisaccharide structure may affect the kinetic properties of the recombinant CSGalNAcT-1, we next determined the activity of the enzyme toward GlcA-β1,3-Gal-β1,3-Gal (GlcA-Gal-Gal) (7) using the tetrasaccharide (GalNAc-GlcA-Gal-Gal) (18) as authentic standard. For this purpose, we employed a derivatization method based on the use of 7-amino-4-methylcoumarin (AMC) as chromophore to allow detection and quantification of the reaction product as described in Materials and methods. As shown in Table I, apparent K_m and V_{max} values of the recombinant enzyme towards GlcA-Gal-Gal were in the same range to those found for the tetrasaccharide linked to the methoxyphenyl (MP) moiety, indicating that the presence of the chomophoric aglycone does not affect substrate recognition or activity of the recombinant CSGalNAcT-1.

Thus, to further define the specificity of CSGalNAcT-1, we tested various structurally defined oligosaccharides linked to MP as a potential acceptor substrate. No GalNAcT activity was detected toward Gal-Gal-OMP (8),
indicating that the presence of the terminal GlcA residue is essential for enzymatic activity (Table I). However, CSGalNAcT-1 could not transfer GalNAc on shorter glucuronides coupled to a hydrophobic aglycone, like 4-nitrophenyl- or 4-methylumbelliferyl-glucuronide (data not shown). These results indicate that a trisaccharide motif including a terminal GlcA was the minimal structure that can be used as substrate for the GalNAcT reaction.

Fig. 1. Chemical structures of acceptor substrate analogs and transfer products. (A) Chemical structures of oligosaccharide analogs to the carbohydrate–protein linkage region of GAGs and constitutive disaccharide unit of CS chains. (B) Chemical structures of the reaction products used as authentic standards for enzyme assays.
The substrate specificity of the recombinant human CSGalNAcT-1 toward the donor substrate was also investigated. No activity could be detected toward UDP-sugars (UDP-Glc, UDP-Gal, UDP-Man, UDP-GlcA) other than UDP-GalNAc, when tested as donor substrates, indicating a strict selectivity of CSGalNAcT-1 with regard to the nucleotide sugar recognition and GalNAcT activity (see Supplementary data, Figure S2).

Influence of Gal linkage sulfation on CSGalNAcT-1 activity

To analyze the influence of sulfation on Gal residues of the tetrasaccharide linkage region, we determined the activity of the recombinant CSGalNAcT-1 toward a series of sulfated analogs of GlcA-Gal-Gal-OMP substituted at either C4 or C6 position of Gal1 (adjacent to MP) and/or Gal2 (adjacent to GlcA), i.e. compounds 2–6 (Figure 1A). Interestingly, CSGalNAcT-1 was able to catalyze the transfer of GalNAc not only onto the unsulfated substrate, but also onto several monosulfated trisaccharide derivatives (Figure 3). The GalNAcT activity toward the trisaccharide analog sulfated onto C6 of Gal1 (GlcA-Gal-Gal(6S)-OMP) (2) was similar to its unsulfated counterpart (about 4 nmol·min⁻¹·µg⁻¹ CSGalNAcT-1) and up to 8 nmol·min⁻¹·µg⁻¹ CSGalNAcT-1 when Gal1 was sulfated on the C4 position (4). CSGalNAcT-1 also exhibited high activity toward the trisaccharide sulfated on the C6 position of Gal2 (GlcA-Gal(6S)-Gal-Gal-OMP) (3), whereas sulfation on the C4 position of this Gal residue (5) completely prevented GalNAcT activity (Figure 3). These results pointed out the critical influence of the position of sulfate substitution of Gal2 with regard to the substrate preference of CSGalNAcT-1. Moreover, the disulfated oligosaccharide substituted on the C6 position of each Gal of the linker region (GlcA-Gal(6S)-Gal(6S)-OMP) (6) was not a substrate for the recombinant CSGalNAcT-1, indicating that the active site of the enzyme could not accommodate sulfate substitution on both Gal residues.

To investigate the molecular basis underlying CSGalNAcT-1 activity toward the monosulfated trisaccharide derivatives, we determined the kinetic parameters of the recombinant enzyme toward these series of sulfated analogs (Table 1). Our results showed that CSGalNAcT-1 exhibited higher enzymatic efficiency toward all monosulfated oligosaccharides compared with GlcA-Gal-Gal-OMP, except in the case of the trisaccharide substituted on the C4 position of Gal2. Interestingly, the increase in catalytic efficiency of CSGalNAcT-1 toward the trisaccharide monosulfated on the different positions of Gal1 or Gal2 was mainly due to reduced "Km values. For instance, the enzyme exhibited a 2-fold lower "Km toward GlcA-Gal(6S)-Gal-OMP with a similar Vmax compared with the unsulfated counterpart. Lower "Km values were found in the case of the trisaccharides which were 4-O- and 6-O-sulfated.
6-O-sulfated on Gal1 (about 6- and 4-fold, respectively), compared with their unsulfated counterpart. With the exception of the trisaccharide sulfated on C4 of Gal2, our results indicate that the monosulfated oligosaccharides were better substrates compared with their unsulfated counterparts, due to a better apparent affinity of CSGalNAcT-1 toward these modified substrates. These results suggested that monosulfation of Gal1 linkage residue or Gal2 substitution at C6 position stimulates CS chain initiation activity catalyzed by the recombinant human CSGalNAcT-1. Taken together, these data clearly indicate that sulfation can markedly influence CSGalNAcT-1 activity and substrate recognition, strongly suggesting that specific sulfation of Gal residues can positively or negatively modulate the GalNAc transfer onto the linker region.

CSGalNAcT-1 is involved in CS initiation, but not in elongation

Two kinds of GalNAc-GlcA linkages are known in CS: one in the polymer structure (3GalNAc-β1,4-GlcA-β1)n, and the other between the CS chain and the linkage tetrasaccharide. Our results clearly indicated that the human recombinant CSGalNAcT-1 exhibits high activity toward the trisaccharide linkage oligosaccharide GlcA-Gal-Gal or its analog GlcA-Gal-Gal-OMP. Our next aim was to determine whether this enzyme is involved in CS chain elongation and the influence of sulfation on this process. To this objective, we synthesized a series of analogs of the CS constitutive disaccharide unit (GlcA-β1,3-GalNAc-β1-O-naphthyl, GlcA-GalNAc-ONP; Figure 1A; 9–11). The GalNAcT activity of the recombinant enzyme was tested toward these molecules by HILIC–HPLC, as described in Materials and methods. Values are expressed in nmol·min⁻¹·µg⁻¹ CSGalNAcT-1. Mean ± SE of three independent experiments carried out in duplicate are shown. *P < 0.05 versus activity towards GlcA-Gal-Gal-OMP.

![Fig. 3. GalNAcT activity of the recombinant CSGalNAcT-1 toward sulfated and unsulfated analogs of GlcA-Gal-Gal-OMP. The activity of CSGalNAcT-1 was evaluated toward sulfated and unsulfated analogs (1 mM) substituted on Gal1 at the C4 or C6 position, on Gal2 at the C4 or C6 position or on Gal1 and Gal2 at the C6 position, in the presence of 2 mM UDP-GalNAc as described in Materials and methods. Values are expressed in nmol·min⁻¹·µg⁻¹ CSGalNAcT-1. Mean ± SE of three independent experiments carried out in duplicate are shown. *P < 0.05 versus activity towards GlcA-Gal-Gal-OMP.](image1)

Impact of sulfation on CSGalNAcT-1 activity and specificity

![Fig. 4. CSGalNAcT activity of the recombinant CSGalNAcT-1 toward sulfated and unsulfated analogs of the disaccharide unit of CS chains. (A) Activity of CSGalNAcT-1 was evaluated toward sulfated and unsulfated analogs of GlcA-GalNAc-ONP (1 mM) substituted on GalNAc at the C4 or C6 position as described in Materials and methods using cell homogenates transfected from HeLa cells transfected with empty vector, HeLa cell homogenates expressing human recombinant CSGalNAcT-1 or chondrosarcoma cell homogenates. (B) Activity of CSGalNAcT-1 was evaluated toward analogs of the disaccharide unit of CS chains GlcA-GalNAc (1 mM) in the presence of UDP-GalNAc (2 mM), as described in Materials and methods. Values are expressed in nmol·min⁻¹·µg⁻¹ total protein. Results represent the mean ± SE from three independent experiments performed in duplicate.](image2)
These findings support the idea that 4-O- or 6-O-sulfation of the GalNAc residues of the disaccharide unit did not promote CSGalNAcT-1 activity toward these disaccharide analogs. However, since no activity could be detected toward the sulfated derivatives in chondrosarcoma cells, this led us to synthesize and test a second series of disaccharide analogs lacking the NP aglycone (Figure 4B). GalNAcT activity was evaluated by HPLC after nonreductive amination of the anomeric carbon of GalNAc by AMC, as described in Materials and methods, and as described in the Functional characterization of CSGalNAcT-1 section for the trisaccharide analogs. Cell homogenates prepared from SW1353 chondrosarcoma cells were tested for CS elongation activity as control in the same conditions. Results illustrated in Figure 4B showed that, as reported for the NP-linked analogs, GlcA-β1,3-GalNAc (GlcA-GalNAc) (12), GlcA-GalNAc(6S) (13), and GlcA-GalNAc(4S) (14) were not substrates of the recombinant CSGalNAcT-1. On the other hand, high activity was detected toward both sulfated and unsulfated analogs in chondrosarcoma cells, indicating that the NP aglycone may impair GalNAcT activity toward the sulfated CS disaccharides in these cells. Furthermore, chondrosarcoma cell extracts were active when mixed with HeLa cell homogenates, ruling out the possibility that the presence of inhibitors, competing substrates, etc. in HeLa cell extracts may be responsible for the lack of activity of the recombinant enzyme toward the disaccharide unit (data not shown). Altogether, these results confirmed that CSGalNAcT-1 was not able to transfer GalNAc onto CS disaccharide fragments supporting the idea that this enzyme is involved in initiation but not elongation of CS chains. Moreover, 4-O- or 6-O-sulfation of the GalNAc residues of the disaccharide unit did not trigger GalNAcT activity of the recombinant enzyme toward the disaccharide analogs.

Discussion

Attempting to elucidate signal elements that regulate GAG initiation and elongation is a major issue in understanding the mechanisms underlying this complex process. Recent studies have focused on the influence of sulfation of the PG polysaccharide chain in this process. Indeed, in addition to its importance in fine-tuning CS chain structures governing their diverse biological functions, several lines of evidence point to a regulatory role of sulfation in the process of CS chain assembly and sorting. In this study, we investigated for the first time the impact of sulfation of the carbohydrate–protein linkage region of GAGs and of the CS constitutive disaccharide unit on the activity and kinetic parameters of CSGalNAcT-1, a key glycosyltransferase of the CS biosynthetic machinery. This goal was achieved by the design and synthesis of a glycolibrary containing a series of sulfated and unsulfated oligosaccharide analogs that have been tested as potential acceptor substrates of the recombinant human CSGalNAcT-1 expressed in HeLa cells. We and others demonstrated that this strategy represents an effective way to probe the specificity of several glycosyltransferases involved in linkage GAG synthesis including β4GalT7 and GlcAT-1 (Gulberti et al. 2005; Fondeur-Gelinotte et al. 2007; Tone et al. 2008; Talhaoui et al. 2010). A major finding of this study was that several analogs monosulfated on the Gal residues of the linkage region were better substrates compared with their unsulfated counterparts mainly due to lower K_m values, suggesting that sulfation of Gal residues in the linker tetrasaccharide could stimulate CS chain initiation.

To further clarify the molecular mechanisms governing CS chain biosynthesis, it was essential to refine our understanding of the catalytic specificities of CSGalNAcT-1. We first analyzed the activity of this glycosyltransferase toward UDP-sugar donor substrates. Our results showed that the recombinant human CSGalNAcT-1 exhibits a strict specificity toward UDP-GalNAc. This finding was fully consistent with previous reports, indicating that this enzyme functions as a CS-synthase and shows no glucuronosyltransferase activity (Gotoh et al. 2002; Uyama et al. 2002). It is interesting to note that CSGalNAcT-1 exhibited no galactosyltransferase activity, although it possesses a conserved β4GalT motif. The β1,4-galactosyltransferases, β4GalT1-7, contain a W/FGWGXEDEDD sequence, whereas CSGalNAcT-1 contains a KGWWGEDVH motif. It was interesting to determine whether amino acid changes within this motif account for differences in donor substrate specificity. We recently showed that the conserved Trp224 plays a central role in the organization of the human β4GalT7 donor and acceptor substrate binding site but not in donor substrate specificity (Talhaoui et al. 2010). On the other hand, Ramakrishnan and Qasba (2002) reported that Tyr289 in bovine β4GalT1 is essential for donor binding. Elimination of a hydrogen bond by mutating this residue to Leu, Ile, or Asn enhances GalNAcT in place of galactosyltransferase activity. Phylogenetic analysis and multiple sequence alignment of the CSGalNAcT family members indicate that in CSGalNAcT-1, the amino acid at the same position is an Ile residue (Oriol et al., unpublished data). Studies are underway to determine whether this sequence plays a role in governing donor substrate specificity.

On the other hand, two kinds of GalNAc-GlcA linkages are known in CS chains: one in its polymer structure (3GalNAc-β1,4GlcA-β1)n, and the other between the CS polymer and the linkage tetrasaccharide (3GalNAc-β1,4-GlcA-β1,3-Gal-β1,3-Gal-β1,4-Xyl-β1). Since the discovery of the CSGalNAcT-1 initiation activity in the medium of a human melanoma cell line using α-thrombomodulin containing a linkage region as acceptor substrate (Nadanaka et al. 1999), the role of CSGalNAcT-1 in the assembly of CS chains has not been clearly established yet. Initial cloning and activity studies suggested that CSGalNAcT-1 may be involved both in initiation and polymerization of CS chains (Gotoh et al. 2002; Uyama et al. 2002). In an in vitro assay system, using syndecan-4/fibroblast growth factor chimera protein as a substrate, Sato et al. (2003) demonstrated that this enzyme exerts effective initiation activity. Recent studies in chondrogenic cells and in a gene knock-out mouse model mice support the idea that CSGalNAcT-1 plays a critical role in the regulation of CS biosynthesis (Sakai et al. 2007; Sato et al. 2011).

To clarify this issue, we investigated in detail the substrate specificity of the recombinant human CSGalNAcT-1, taking advantage of the chemical synthesis of structurally defined analogs of the linkage region and of the CS constitutive disaccharide units. Since CS-synthases are thought to function as
multiple domain glycosyltransferases carrying both initiation (CSGalNAcT-I) and elongation (CSGalNAcT-II) activities or as enzyme complexes (Yada, Gotoh, et al. 2003; Yada, Sato, et al. 2003), we chose to express the full-length human CSGalNAcT-1 in HeLa cells. Our results showed that the human recombinant CSGalNAcT-1 exhibits marked activity toward the trisaccharide GlcA-Gal-Gal, an analog of the linkage region. The recombinant enzyme also showed high GalNAcT activity toward the trisaccharide derivative linked to a hydrophobic aglycone GlcA-Gal-Gal-OMP with a K_m value in the same range (3.4 and 3.8 mM, respectively), indicating that the presence of a hydrophobic aglycone does not affect the enzyme activity and affinity. This observation was similar to previous findings indicating that synthetic xylosides and digalactosides linked to a hydrophobic moiety act as substrates for βGalT7 and GlcAT-1, respectively (Gulberti et al. 2005). In contrast, a digalactoside derivative lacking a terminal GlcA (Gal-Gal-OMP) was not a substrate for CSGalNAcT-1, indicating that the presence of the uronic acid as a terminal acceptor saccharide residue was essential for GalNAc transfer. Furthermore, we observed that small glucuronides such as 4-nitrophenyl-GlcA or GlcA-Gal-Gal-Xyl-O-Ser-Gly, analog of the glycopeptide primer of PGs, were not substrates for CSGalNAcT-1. These results corroborate previous findings showing no detectable activity of a truncated form of CSGalNAcT-1 toward GlcA-Gal-Gal-Xyl-O-Ser (Uyama et al. 2002). Taken together, the specificity analysis carried out in this study reinforces the idea that CSGalNAcT-1 plays a major role in CS chain initiation and demonstrates that the minimal structure recognized by CSGalNAcT-1 is a GlcA-Gal-Gal trisaccharide motif. Whether the structure of the PG core protein influences CSGalNAcT-1 activity deserves further exploration.

To investigate the potential role of CSGalNAcT-1 in chondroitin polymer formation, we chemically synthesized the GlcA-GalNAc disaccharide and its analog linked to a hydrophobic aglycone (NP), as potential acceptor substrates for the recombinant enzyme. Our results showed no detectable activity toward the disaccharide units for CSGalNAcT-1, indicating that the presence of the uronic acid as a terminal acceptor saccharide residue was essential for GalNAc transfer. Furthermore, we observed that small glucuronides such as 4-nitrophenyl-GlcA or GlcA-Gal-Gal-Xyl-O-Ser-Gly, analog of the glycopeptide primer of PGs, were not substrates for CSGalNAcT-1. These results corroborate previous findings showing no detectable activity of a truncated form of CSGalNAcT-1 toward GlcA-Gal-Gal-Xyl-O-Ser (Uyama et al. 2002). Taken together, the specificity analysis carried out in this study reinforces the idea that CSGalNAcT-1 plays a major role in CS chain initiation and demonstrates that the minimal structure recognized by CSGalNAcT-1 is a GlcA-Gal-Gal trisaccharide motif. Whether the structure of the PG core protein influences CSGalNAcT-1 activity deserves further exploration.

To investigate the potential role of CSGalNAcT-1 in chondroitin polymer formation, we chemically synthesized the GlcA-GalNAc disaccharide and its analog linked to a hydrophobic aglycone (NP), as potential acceptor substrates for the recombinant enzyme. Our results showed no detectable activity toward the disaccharide units for CSGalNAcT-1, indicating that the presence of the uronic acid as a terminal acceptor saccharide residue was essential for GalNAc transfer. Furthermore, we observed that small glucuronides such as 4-nitrophenyl-GlcA or GlcA-Gal-Gal-Xyl-O-Ser-Gly, analog of the glycopeptide primer of PGs, were not substrates for CSGalNAcT-1. These results corroborate previous findings showing no detectable activity of a truncated form of CSGalNAcT-1 toward GlcA-Gal-Gal-Xyl-O-Ser (Uyama et al. 2002). Taken together, the specificity analysis carried out in this study reinforces the idea that CSGalNAcT-1 plays a major role in CS chain initiation and demonstrates that the minimal structure recognized by CSGalNAcT-1 is a GlcA-Gal-Gal trisaccharide motif. Whether the structure of the PG core protein influences CSGalNAcT-1 activity deserves further exploration.

To investigate the potential role of CSGalNAcT-1 in chondroitin polymer formation, we chemically synthesized the GlcA-GalNAc disaccharide and its analog linked to a hydrophobic aglycone (NP), as potential acceptor substrates for the recombinant enzyme. Our results showed no detectable activity toward the disaccharide units for CSGalNAcT-1, indicating that the presence of the uronic acid as a terminal acceptor saccharide residue was essential for GalNAc transfer. Furthermore, we observed that small glucuronides such as 4-nitrophenyl-GlcA or GlcA-Gal-Gal-Xyl-O-Ser-Gly, analog of the glycopeptide primer of PGs, were not substrates for CSGalNAcT-1. These results corroborate previous findings showing no detectable activity of a truncated form of CSGalNAcT-1 toward GlcA-Gal-Gal-Xyl-O-Ser (Uyama et al. 2002). Taken together, the specificity analysis carried out in this study reinforces the idea that CSGalNAcT-1 plays a major role in CS chain initiation and demonstrates that the minimal structure recognized by CSGalNAcT-1 is a GlcA-Gal-Gal trisaccharide motif. Whether the structure of the PG core protein influences CSGalNAcT-1 activity deserves further exploration.

To investigate the potential role of CSGalNAcT-1 in chondroitin polymer formation, we chemically synthesized the GlcA-GalNAc disaccharide and its analog linked to a hydrophobic aglycone (NP), as potential acceptor substrates for the recombinant enzyme. Our results showed no detectable activity toward the disaccharide units for CSGalNAcT-1, indicating that the presence of the uronic acid as a terminal acceptor saccharide residue was essential for GalNAc transfer. Furthermore, we observed that small glucuronides such as 4-nitrophenyl-GlcA or GlcA-Gal-Gal-Xyl-O-Ser-Gly, analog of the glycopeptide primer of PGs, were not substrates for CSGalNAcT-1. These results corroborate previous findings showing no detectable activity of a truncated form of CSGalNAcT-1 toward GlcA-Gal-Gal-Xyl-O-Ser (Uyama et al. 2002). Taken together, the specificity analysis carried out in this study reinforces the idea that CSGalNAcT-1 plays a major role in CS chain initiation and demonstrates that the minimal structure recognized by CSGalNAcT-1 is a GlcA-Gal-Gal trisaccharide motif. Whether the structure of the PG core protein influences CSGalNAcT-1 activity deserves further exploration.

To investigate the potential role of CSGalNAcT-1 in chondroitin polymer formation, we chemically synthesized the GlcA-GalNAc disaccharide and its analog linked to a hydrophobic aglycone (NP), as potential acceptor substrates for the recombinant enzyme. Our results showed no detectable activity toward the disaccharide units for CSGalNAcT-1, indicating that the presence of the uronic acid as a terminal acceptor saccharide residue was essential for GalNAc transfer. Furthermore, we observed that small glucuronides such as 4-nitrophenyl-GlcA or GlcA-Gal-Gal-Xyl-O-Ser-Gly, analog of the glycopeptide primer of PGs, were not substrates for CSGalNAcT-1. These results corroborate previous findings showing no detectable activity of a truncated form of CSGalNAcT-1 toward GlcA-Gal-Gal-Xyl-O-Ser (Uyama et al. 2002). Taken together, the specificity analysis carried out in this study reinforces the idea that CSGalNAcT-1 plays a major role in CS chain initiation and demonstrates that the minimal structure recognized by CSGalNAcT-1 is a GlcA-Gal-Gal trisaccharide motif. Whether the structure of the PG core protein influences CSGalNAcT-1 activity deserves further exploration.

In conclusion, this work demonstrated that sulfation of the Gal residues of the tetrasaccharide linkage region of GAGs could regulate human recombinant CSGalNAcT-1 activity. These findings together with previous reports support the concept that modifications (i.e. Gal sulfation and/or xylose phosphorylation) of the carbohydrate–protein linkage region of GAGs play an important role in CS biosynthesis and could act as a regulatory signal in the assembly of CS chains, facilitating or possibly arresting CS initiation according to the substitution position. From these data, we have gained an improved understanding of the substrate recognition of glycosyltransferases involved in GAG biosynthesis, especially CSGalNAcT-1, a key enzyme of CS chain initiation. On the basis of these studies, it would be possible to design molecules targeting glycosyltransferases to impact positively or negatively on GAG assembly and sorting. These compounds could represent promising approaches in the development of novel strategies toward GAG-based therapeutics.

Materials and methods

Chemical synthesis of oligosaccharide acceptors and reaction products

The preparation of different sets of various sulfoforms of oligosaccharide derivatives from the linkage region of GAG and CS disaccharide units was achieved as follows. The first series of
compounds was prepared as 4-methoxyphenyl-O-glycosides (MP-O-glycosides) in which the MP group was used for UV detection of the potential substrates and their reaction products. The trisaccharide acceptor GlcA-Gal-Gal-OMP (Figure 1A; 1) and its various sulfoforms (2–6) were obtained by a stereo-controlled chemical synthesis, as previously reported (Thollas and Jacquetin 2004). The reducing trisaccharide GlcA-Gal-Gal (Figure 1A; 7) was prepared by catalytic hydrogenation of the benzyl glycoside analog of 1. The disaccharide Gal-Gal-OMP (8) was prepared from the common starting material 4-methoxyphenyl-4,6-O-benzylidene-β-D-galactopyranoside, as reported by Jacquetin (2004).

The CS disaccharide derivatives were isolated after a controlled acid hydrolysis of polymeric bovine CS and produced as 2-naphthyl-O-glycosides (NP-O-glycosides) in which the NP group was chosen for UV detection. GlcA-GalNAc-OMP (9) and its various sulfoforms (10 and 11) were produced by a stereo-controlled and highly divergent approach starting from a single precursor obtained by semisynthesis from the natural CS polymer, as previously reported (Jacquetin et al. 2009). Their corresponding reducing congeners (12–14) were prepared by catalytic hydrogenation of 9–11, respectively.

The reaction products corresponding to the tetrasccharide GalNAc-GlcA-Gal-Gal-OMP (Figure 1B; 15) and its sulfoforms (16 and 17) were prepared by chemical synthesis using a similar strategy to that previously reported for the trisaccharide derivatives 1–6. These compounds were used as authentic standards in HPLC analysis for the identification and quantification of the reaction products following enzymatic transfer of GalNAc on the trisaccharide acceptors. The reducing tetrasccharide 18 was obtained by catalytic hydrogenation of the benzyl glycoside analog of 15.

Cloning and expression of human CSGalNAcT-1

The wild-type human CSGalNAcT-1 cDNA sequence (GenBank accession number NM_018371) was cloned by polymerase chain reaction (PCR) amplification from a placent a cDNA library (Clontech, Palo Alto, CA) using a sense primer 5′-AGATGATGGTGCGCCGGGGCTG-3′ and an antisense primer 5′-GTCTAGTTTTTTTCTATTGTCTTCTG-3′ corresponding to the 5′-end and 3′-end of the coding region of the human CSGalNAcT-1 (Uyama et al. 2002). The PCR fragment was subcloned into the pCR2.1-TOPO® vector (TOPO® TA Cloning Kit; Life Technologies, Van Allen Way Carlsbad, CA) and sequenced on both strands. The cDNA sequence was 100% identical to that previously described (Uyama et al. 2002). The full-length CSGalNAcT-1 cDNA sequence was modified by PCR to include an Nhel site and a Kozak consensus sequence at the 5′-end, and a HindIII site and a sequence encoding a Myc tag (EKQKIEDEL) at the 3′-end using the appropriate oligonucleotides. The modified cDNA was then subcloned into the Nhel–HindIII sites of the eukaryotic expression vector pcDNA3.1(+) to produce pcDNA-CSGalNAcT-1.

HeLa cells purchased from American Type Culture Collection (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Gibco-Invitrogen, Cergy-Pontoise, France), 2 mM glutamine (Gibco-Invitrogen), and 100 U/mL penicillin and 100 µg/mL streptomycin (Gibco-Invitrogen). The plasmid pcDNA-CSGalNAcT-1 was transfected into the cells grown at 80% confluency using ExGen-500 transfection reagent (Euromedex, Souffliewersheim, France), according to the recommendations of the manufacturer. Cells were harvested 48 h after transfection, by scraping in phosphate-buffered saline (PBS) and centrifuged for 5 min at 3000 × g at 4°C. Cell pellets were resuspended in saccharose-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (0.25 M saccharose, 5 mM HEPES, pH 7.4) and sonicated twice for 5 s on ice prior to further analysis.

Protein expression analysis

Protein concentration of cell homogenates was evaluated by the method of Bradford (1976) before analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions (Laemmli 1970). Protein samples from HeLa cells transfected with wild-type pcDNA-CSGalNAcT-1 or cells transfected with the empty vector were separated on 10% (w/v) polyacrylamide gel and electrottransferred to Immobilon-P® membrane (Millipore, Billerica, MA). The membrane was probed using monoclonal anti-Myc antibodies (Sigma, Saint-Louis, MO) and revealed with alkaline phosphatase-conjugated anti-mouse secondary antibodies (Sigma), as previously described (Fondeur-Gelinotte et al. 2007). The amount of recombinant wild-type human CSGalNAcT-1 expressed in HeLa cells was evaluated by scanning densitometry using a calibration curve established with 5–12 ng of recombinant GST-Myc protein (Pierce-Thermoscientific, Courtaboeuf, France) run on the same gel. Scanning densitometry was performed using Scion 1.63 Image Software.

CSGalNAcT-1 activity assay

The assay for activity of the recombinant human CSGalNAcT-1 is based on the transfer of GalNAc residue from the donor UDP-GalNAc to various acceptor substrates synthesized as described in the Chemical synthesis of oligosaccharide acceptors section. Individual stock solutions of oligosaccharides were prepared in water and stored at −20°C before use. For each substrate, assay conditions were optimized in terms of incubation time, protein amount, Mn2+ concentration, incubation buffer, and pH (data not shown). The standard reaction mixture contained 100 mM sodium cacodylate buffer (pH 7.0), 10 mM MnCl2, 10–50 µg HeLa cell homogenates expressing recombinant human CSGalNAcT-1, 2 mM donor substrate (UDP-GalNAc), and 0.1, 1, or 10 mM acceptor substrate in a total volume of 50 µL at 37°C for 60 min. Control assays in which acceptor substrate or donor substrate was omitted, as well as control using cells transfected with empty vector (not shown) were systematically carried out for each set of experiments and analyzed under the same conditions. Quantification of the reaction products was performed with calibration curves obtained by using increasing concentrations of authentic standards resolved under same conditions. Enzymatic activities were expressed as nmol·min−1·µg−1 CSGalNAcT-1 and are the mean ± standard error (SE) of three independent experiments in duplicate.
For analysis of CSGalNAcT-1 activity toward sulfated or unsulfated GlcA-Gal-Gal-OMP trisaccharides or unsulfated Gal-Gal-OMP disaccharide analog, the reaction was stopped by the addition of 50 µL (v/v) of acetonitrile (ACN). The samples were centrifuged for 10 min at 10,000 x g and an aliquot of the supernatant (40 µL) was analyzed by a combination of HILIC and HPLC analyses on a 2695 Alliance module equipped with a 486 UV detector (Waters, Milford, MA), as follows: the oligosaccharides coupled to the MP group were separated on a DIOL analytical column (4.6 x 250 mm, 6 µm; Interchim, Montlucon, France) and detected at a wavelength of 285 nm. A linear gradient of 15–20% solvent B/solvent A at a flow rate of 1 mL/min (solvent A, 95% (v/v) ACN; solvent B: 0.02% (v/v) trifluoroacetic acid).

For determination of CSGalNAcT-1 activity toward GlcA-Gal-Gal trisaccharide, the samples were analyzed by reversed-phase HPLC after a reductive amination reaction using AMC, using a protocol adapted from Yodoshi et al. (2008). Briefly, 10 µL of the labeling mixture (consisting of 5 µmol AMC in 125 µL of methanol, 17.5 mg of sodium cyanoborohydride (NaCNBH3), and 20 µL of acetic acid) was added to the reaction mixture and incubated 2 h at 80°C. The labeling reaction was stopped by cooling in ice and liquid extraction of the uncoupled fluorophore by 1 mL of chloroform. The AMC-labeled oligosaccharides were separated according to the number of residues on a reversed-phase C18 analytical column (X-Bridge, 4.6 x 150 mm, 5 µm; Waters, Milford, MA) at a detection wavelength of 365 nm. A linear gradient (10–50% over 20 min) of solvent C/solvent B was used to separate the AMC-labeled oligosaccharides at a constant flow rate of 1 mL/min (solvent C: 95% (v/v) methanol).

For analysis of CSGalNAcT-1 activity toward analogs of CS fragments GlcA-GalNAc-ONP, the reaction was stopped by the addition of 50 µL (v/v) of ACN. The samples were centrifuged for 10 min at 10,000 x g before HPLC analysis of the supernatant. The oligosaccharides were analyzed on a reversed-phase C18 analytical column (X-Bridge, 4.6 x 150 mm, 5 µm; Waters, Milford, MA) at a detection wavelength of 275 nm and eluted over a 30 min linear gradient of 5–50% solvent C/solvent B at a constant flow rate of 1 mL/min.

For analysis of CSGalNAcT-1 activity toward CS disaccharides GlcA-GalNAc, the samples were analyzed by reversed-phase HPLC after a reductive amination reaction using AMC, using a procedure similar to that previously reported for the GlcA-Gal-Gal trisaccharide analog. The AMC-labeled oligosaccharides were separated according to the number of residues on a reversed-phase X-Bridge C18 analytical column at a detection wavelength of 365 nm. A linear gradient of solvent C/solvent B (5–50% in 30 min) was used to separate the AMC-labeled oligosaccharides at a constant flow rate of 1 mL/min.

CSGalNAcT activity assay using SW1353 chondrosarcoma cell homogenates

SW1353 chondrosarcoma cell line (purchased from ATCC) was cultured in DMEM/nutrient mixture F12 (DMEM/F12; Gibco-Invitrogen) supplemented with 10% (v/v) fetal bovine serum, 2 mM glutamine, and 100 U/mL penicillin and 100 µg/mL streptomycin. After cell harvest by scraping in PBS, cell homogenates were prepared in saccharose-HEPES buffer by sonication, as described in the Cloning and expression of human CSGalNAcT-1 section for HeLa cells. CSGalNAcT activity toward unsulfated or sulfated analogs of disaccharide CS units GlcA-GalNAc-ONP and GlcA-GalNAc was determined in a reaction mixture containing 100 mM sodium cacodylate buffer (pH 7.0), 10 mM MnCl2, 100 µg cell homogenates, 2 mM donor substrate (UDP-GalNAc), and 1 or 5 mM acceptor substrate in a total volume of 50 µL at 37°C for 60–120 min. Control assays in which acceptor or donor substrate was omitted were systematically prepared and run in the same analytical conditions. The samples were analyzed by reverse-phase HPLC as described above for HeLa cell homogenates expressing recombinant human CSGalNAcT-1.

Determination of kinetic constants

For the evaluation of kinetic parameters from initial velocity data, increasing concentrations of acceptor oligosaccharides (0–10 mM) were used in the presence of a constant concentration of UDP-GalNAc (2 mM). Apparent kinetic parameters (Km, Vmax, and Vmax/Km) were determined using the nonlinear least-squares regression analysis of the data fitted to the Michaelis–Menten equation v = Vmax × [S]/Km + [S], where v is the initial velocity, [S] the substrate concentration, Vmax the maximal velocity, Km the Michaelis–Menten constant, and Vmax/Km corresponds to a measure of catalytic efficiency, using the curve-fitting program SigmaPlot 9.0 (Systat Software, Inc., San Jose, CA). Each data point represents the mean ± SE of three independent experiments, with assays performed in triplicate.

Supplementary data

Supplementary data for this article is available online at http://glycob.oxfordjournals.org/.

Funding

This work was supported by Agence Nationale pour la Recherche (ANR) GAG-Network, grant ANR-08-PCVI-0023-01, INSERM University of Dundee International Collaboration Contract (C2I), Nancy-Dundee European Associated Laboratory (EAL, Sulfo- and GlycosylTransferase enzymes, SFGEN), the Royal Society International Joint Grant, and the Région Lorraine.

Conflict of interest

None declared.

Abbreviations

ACN, acetonitrile; AMC, 7-amino-4-methylcoumarin; ATCC, American Type Culture Collection; CS, chondroitin sulfate; CSGalNAcT-1, chondroitin sulfotransferase-1; DMEM, Dulbecco’s modified Eagle’s medium;
DS, dermatan sulfate; GAG, glycosaminoglycan; Gal, galactose; GalNAc, N-acetylgalactosamine; Glc, glucose; GlcA, glucuronic acid; GlcAT-1, glucuronosyltransferase-1; GlcNAc, glucosamine; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HS, heparan sulfate; MP, methoxypolyenyl; NP, naphthyl; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; PG, proteoglycan; SE, standard error.

References

