A content analysis of British food advertisements aimed at children and adults

REBECCA SIXSMITH and ADRIAN FURNHAM*
Department of Psychology, University College London, London, UK
*Corresponding author. E-mail: a.furnham@ucl.ac.uk

SUMMARY
This study explored the differences between 35 child-focused and 52 adult-focused food advertisements sampled from 45 hrs of British television. More child-focused advertisements contained claims of health benefits; scientific information; were shot in ‘Leisure’ settings; with male characters; had cartoons; and were often fantasy-based. Conversely, significantly more adult-focused advertisements contained price/value information; were shot in ‘Shop’ settings; with female characters; and starring celebrities. Child-focused advertisements were mainly for convenience foods and snacks which are of considerable interest to health promotion policy makers.

Key words: television; food; advertisement; children

INTRODUCTION
Concern has been expressed over the increasing problem of childhood obesity in the worldwide (World Health Organization, 2003). The incidence of obesity in the UK among children between the ages of 2 and 10 dramatically rose from 9.9% in 1995 to 13.7% in 2003 (Mayor, 2005).

Children watch an average of 17 hrs of television every week, the majority of which is commercial (Ofcom, 2004). In line with this, expenditure devoted to targeting children via television has expanded considerably, with £32 million being spent per year on child-focused television food advertisements (Ofcom, 2004). It is estimated that British children are exposed to 18 000 advertisements per year and it has been suggested that they see more advertising than do children in other European countries (Carvel, 2000). They are, however, far from being naive, passive viewers. Many are highly fastidious, discriminatory and critical listeners, readers and viewers of advertisements aimed at them (Furnham, 2008).

Children are important and sophisticated consumers. Not only can they influence the purchasing habits of their parents (Arnos, 2006), they also have considerable spending power: British children between the ages of 7 and 15 spend on average £13 a week, with 18% of this going on confectionery, snacks and drinks (Cowburn and Boxer, 2007).

This study is on food advertising which has recently attracted considerable interest (Chapman et al., 2006; Kelly and Chapman, 2007).

A recent Australian study of the effects of television advertisements on children’s food attitudes and preferences (Dixon et al., 2007) found that cumulative exposure to television food advertising promotes more positive beliefs and attitudes towards those foods most heavily advertised—namely, fast foods, confectionery and sweet drinks. Frequent television viewers are more inclined to hold beliefs which reflect television’s dominant and recurrent messages (Gunter, 1994). However, it could be the case that children from families which model or
permit heavy viewing have particular dietary patterns. Food habits and preferences are learnt primarily at home (Furnham, 2008).

Brody et al. exposed young children to food advertisements and accompanied them, along with their parents, on a subsequent shopping trip (Brody et al., 1981). Exposure to the food advertisements was found to increase the children’s attempts to influence their parents’ purchases, particularly towards those foods for which they had seen an advertisement. Marquies et al. found that increased television viewing time resulted in more requests to parents for advertised foods (Marquies et al., 2005). Similarly, Chamberlain et al. (Chamberlain et al., 2006) demonstrated television viewing and media exposure to be associated with subsequent food and drink requests. Arnos found that, during television viewing, over 40% of children asked their parents to purchase food items which they had seen advertised (Arnos, 2006). Again, other interpretations are possible. For instance, it maybe that non-authoritative parents allow uncritical television viewing and may be unable to discipline children with ‘pester power’ (Furnham, 2008).

Effect of advertisements on food consumption
A number of studies have examined the relationship between viewing food advertisements and food choices and consumption in children. Borzekowski and Robinson showed that exposure to a food advertisement for 30 secs, when embedded within a television programme, altered food preferences in pre-school children (Borzekowski and Robinson, 2001). Those exposed to the advertisements were significantly more likely to then select the advertised food brands than a control group.

Halford et al. assessed school children’s memory for food advertisements and found ability to recall food advertisements significantly correlated with the amount of food eaten after exposure; that is, the more advertisements a child could remember, the more they subsequently ate (Halford et al., 2004). The study also found that, consumption of all foods offered increased after exposure to the advertisements. Exposure to food advertisements has been shown to stimulate and promote food consumption in children (Halford et al., 2007a, b; Buijzen et al., 2008).

However, these cross-sectional studies cannot determine whether people with different dietary habits watch different channels for different periods of time and may therefore be susceptible to particular advertisements. There are always confounding variables such as the parent and child’s social class, dietary preferences and television watching habits when examining the effects of television watching, which need to be examined before causal inferences can be made with confidence.

Content analyses of child-directed food advertisements
Lewis and Hill conducted a content analysis of 91 hrs of advertisements on British children’s television (Lewis and Hill, 1998). Food advertisements were found to be the single largest category of products advertised, accounting for 50% of total advertisements and used significantly more animation, stories, humour and the promotion of fun, happiness and mood alteration.

Chestnutt and Ashraf sought to compare the proportion of advertising of food products potentially detrimental to oral health shown during children’s and during primetime (adult) programming (Chestnutt and Ashraf, 2002). They found that, during children’s television, 73.4% of advertising time was devoted to foods potentially harmful to teeth, when compared with only 18.6% of advertising time during primetime television.

Rodd and Patel content analysed British food and drink products advertised during 41 hrs of children’s programming (Rodd and Patel, 2005). The most frequently advertised products included breakfast cereals with added sugar (26.3%), confectionery (23.7%) and non-carbonated soft drinks (18.1%). Folta et al. conducted a content analysis of advertisements shown during 31 hrs of children’s television programming in the USA (Folta et al., 2006). They found that the food and beverage advertisements depicted children engaged in physical activity and associated the advertised product with athletic ability.

Kelly et al. analysed food advertisements on Australian television concentrating on their use of persuasive promotional characters (cartoons, celebrities, sports personalities) and premium offers (competitions, giveaways, vouchers) (Kelly et al., 2008). Compared to both non-peak
children’s viewing times and adult peak viewing times, significantly more food advertisements broadcast during children’s peak viewing times contained promotional characters and premium offers.

Hastings et al. conducted a major review of the research on food promotion to children (Hastings et al., 2003). Forty-one of the 50 studies reviewed addressed the issue of the content of children’s food advertisements, focusing on the principal creative strategies used. They found that 16 of the studies reviewed examined characterisation in food advertisements aimed at children and found it to be dominated by off-screen male announcers and on-screen male characters. In all, 15 studies examined theme appeals in children’s food advertisements. Appeals identified included those based on taste, nutritional/health properties, physical appearance/texture, fantasy/adventure themes, fun/humour, price, novelty/modernity and social aspects of the product. The most popular appeals used in the promotion of food to children were based on the promise of pleasure, namely taste, humour, action-adventure and fun. Of the food products most commonly advertised to children, breakfast cereals were identified as those most likely to use nutritional/health claims as a theme appeal. The use of premium offers or competition prizes offering collectibles (e.g. toys) were found to be used in up to 25% of children’s food advertisements, particularly for breakfast cereals and fast foods. However, they found that the use of celebrity (e.g. endorsements by sports players or well-known branded characters) was present only in limited cases.

Some recent food advertisement content analytic studies have concentrated on adult products (Aronovsky and Furnham, 2008; Furnham and Li, 2008), but this study focuses on food products targeted at both adults and children. It attempted to contrast food advertisements targeting children versus adults. This study represents an addition to the existing literature on the content of television food advertisements because it is a comparison between child-focused and adult-focused television food advertisements, which has been the case with relatively few of the previous studies reviewed (most have concentrated on analysing child-focused food advertisements in isolation). It explores whether similar food is advertised quite differently to adults and children and whether different food is advertised more frequently to these two distinct sets of consumers.

METHOD

Sample of advertisements

The advertisements to be analysed were sampled from a total of 45 hrs of television programming, taken from the ITV1 London channel between Monday 3rd November and Friday 7th November 2008, inclusive. ITV is the biggest commercial television network in the UK, with ITV1 accounting for 99% of those commercial programmes which attract more than five million viewers (ITV website, 2008). Nine hours of programming was recorded during each of the five days, between the hours of 9.30 am and 6.30 pm, considered to be ‘Daytime’ programming by ITV (ITV website, 2008). In total, 87 different advertisements for food products were shown during the 45 hrs of programmes (most being repeated many times over).

Thirty five of these were advertisements for food products deemed to be aimed specifically at children (‘Children’ advertisements). The remaining 52 were not deemed specifically to target children as the primary consumer, i.e. were those advertisements for food products aimed at all others (‘Non-Children’ advertisements). A full list of the advertisements coded is available from either author.

Coding of content categories

In order to compare the advertisements aimed at children (the ‘Children’ advertisements) and the remaining advertisements (the ‘Non-Children’ advertisements), each of these was coded for 14 content categories constituting a number of aspects of the advertisements to be compared. Content categories were as follows.

1. **Health benefits.** Were there any claims of a benefit to health or nutritional value associated with the advertised food product?

2. **Disclaimers.** Were any disclaimers relating to advice or warning about (excessive) consumption of the product (of the type ‘Enjoy as part of a balanced diet and active lifestyle’—usually written in small print at the bottom of the screen) included?
3. **Scientific information.** Was any scientific, factual or technical information included? For example, the way the product’s ingredients work (‘slow energy releasing’ ingredients), or a visual depiction of the product ‘taking effect’ in the body.

4. **Price.** Was any information about the price/value of the product, or any promotions/competitions relating to the product, given?

5. **Reality versus fantasy.** Was the advertisement based (primarily) in reality or fantasy (e.g. impossible, computer-generated events, even if the central figure was real)?

6. **Use of cartoons.** Did any part of the advertisement contain cartoon characters?

7. **Presence of celebrities.** Did the advertisement use any celebrities or well-known personalities to sell the product?

8. **Setting.** The setting or location of the advertisement. Three principle settings were distinguished (Furnham and Bitar, 1993): ‘Shop’ (set in the place of purchase, such as a supermarket), ‘Leisure’ (figures in the advertisement are shown in an outdoor setting, being active, taking exercise or playing sports) and ‘Home’ (a domestic or familial setting, such as in a kitchen or at a dinner table). As some advertisements included more than one of these settings, each advertisement was first coded for whether any part of it featured each of these settings in turn.

9. **Food type.** Advertisements were compared in terms of whether the food products advertised were: (a) healthy or unhealthy (this was mainly based on the fat, sugar and salt content of the food, and was essentially a subjective judgement); (b) ‘Fast Food’ (e.g. crisps, pizzas, burgers, chocolates, sweets) or non-fast food; (c) fruit and vegetables; (d) confectionaries/snacks or main meals (beverages not included).

10. **Voice (I).** Those advertisements in which a voice-over was present were coded according to whether the voice-over was that of a female or that of a male.

11. **Central figure (I).** Those advertisements in which a central figure was identifiable were coded according to whether the figure was female or male.

The following three content categories were limited to the ‘Children’s advertisements’.

12. **Parent–child interactions.** Limiting the sample to the ‘Children’ advertisements alone, the presence or absence of parent–child interactions (or whether a parent figured significantly in the advertisement) was compared according to the different food types.

13. **Voice (II).** As with the parent–child interactions, gender comparisons were made between the voice-overs in each of the three food type sub-comparison categories previously mentioned.

14. **Central figure (II).** Comparisons were made for each of the three food type sub-comparison categories, according to the gender of the central figures in the advertisements.

RESULTS

Coding reliability

In order to assess the reliability of the coding variables, a second independent coder was used to code 10 ‘Children’ and 10 ‘Non-Children’ advertisements. There was 100% agreement on the following six content categories: disclaimers, presence of celebrities, setting, fast food versus non-fast food, confectionaries/snacks versus main meals, and voice. Ninety-five percent agreement was achieved for the remaining eight content categories (health benefits, scientific information, price, reality versus fantasy, use of cartoons, healthy versus unhealthy, fruit and vegetables, and central figure). The overall mean agreement rate was 96.79%.

Main analysis

Chi-square tests were conducted to ascertain whether there were any significant differences between the ‘Children’ and ‘Non-Children’ advertisements, with respect to the content categories established. Results, and initial implications of these results, were as follows (Table 1).

1. **Health benefits.** A significant chi-square was found for health benefits: $\chi^2 (1) = 4.36, p < 0.05$. A larger proportion of the ‘Children’ advertisements included claims of health benefits associated with the advertised food products (37.1%) than did the ‘Non-Children’ advertisements (17.3%).

2. **Disclaimers.** There was no significant difference between the proportion of ‘Children’ advertisements which included health-related disclaimers (20.0%) and the proportion of ‘Non-Children’ advertisements which included disclaimers (19.2%): $\chi^2 (1) = 0.01, p = 0.93$ (ns).
3. **Scientific information.** A significant chi-square was found for scientific information: $\chi^2 (1) = 4.16, p < 0.05$, which indicated that a larger proportion of the ‘Children’ advertisements contained scientific information (20.0%) than did the ‘Non-Children’ advertisements (5.8%).

4. **Price.** Results indicated that a significantly larger proportion of the ‘Non-Children’ advertisements (26.9%) contained information concerning price, value or promotions/competitions related to the advertised product than did the ‘Children’ advertisements (8.6%): $\chi^2 (1) = 4.48, p < 0.05$.

5. **Reality versus fantasy.** Results showed that the partition of the ‘Children’ advertisements into either reality-based (51.4%) or fantasy-based (48.6%) advertisements was significantly different from the partition of the ‘Non-Children’ advertisements (reality, 84.6%; fantasy, 15.4%); indicating that a significantly larger proportion of the ‘Children’ advertisements were fantasy-based than were the ‘Non-Children’ advertisements: $\chi^2 (1) = 11.25, p < 0.00$.

6. **Use of cartoons.** A significantly larger proportion of the ‘Children’ advertisements (28.6%) were in cartoon form (or in the least contained cartoons) than were the ‘Non-Children’ advertisements (1.9%): $\chi^2 (1) = 13.45, p < 0.00$.

7. **Presence of celebrities.** A significantly larger proportion of the ‘Non-Children’ advertisements (28.8%) contained celebrities than did the ‘Children’ advertisements (8.6%): $\chi^2 (1) = 5.24, p < 0.05$.

8. **Setting.** The primary analysis for this content category compared the partitions of the ‘Children’ and ‘Non-Children’ advertisements into ‘Shop’ versus ‘Leisure’ versus ‘Home’. The ‘Children’ advertisements comprised 4.2% ‘Shop’, 41.7% ‘Leisure’ and 54.2% ‘Home’ settings; whereas the ‘Non-Children’ advertisements comprised 20.7% ‘Shop’, 6.9% ‘Leisure’ and 72.4% ‘Home’. Results showed that these partitions were significantly different: $\chi^2 (2) = 10.41, p < 0.05$. The secondary analyses for this content category compared the ‘Children’ and ‘Non-Children’ advertisements in terms of the presence or absence of each of these three settings in turn. Results showed that a significantly larger proportion of the ‘Non-Children’ advertisements (19.2%) contained a ‘Shop’ setting than did the ‘Children’ advertisements (2.9%): $\chi^2 (1) = 5.08, p < 0.05$. On the other hand, results showed that a significantly larger proportion of the ‘Children’ advertisements (37.1%) contained a ‘Leisure’ setting than did the ‘Non-Children’ advertisements (5.8%): $\chi^2 (1) = 13.72, p < 0.00$. Finally, results were no significant for the ‘Home’ setting, indicating that the proportions of ‘Children’ and

Table 1: Percentage of ‘Children’ and ‘Non-Children’ advertisements for each content category

<table>
<thead>
<tr>
<th>Content category</th>
<th>‘Children’ advertisement</th>
<th>‘Non-Children’ advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Health benefits</td>
<td>37.1</td>
<td>62.9</td>
</tr>
<tr>
<td>Disclaimers</td>
<td>20.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Scientific information</td>
<td>20.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Price</td>
<td>8.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Reality versus fantasy</td>
<td>51.4</td>
<td>48.6</td>
</tr>
<tr>
<td>Use of cartoons</td>
<td>28.6</td>
<td>71.4</td>
</tr>
<tr>
<td>Presence of celebrities</td>
<td>8.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Shop’ setting</td>
<td>2.9</td>
<td>97.1</td>
</tr>
<tr>
<td>‘Leisure’ setting</td>
<td>37.1</td>
<td>62.9</td>
</tr>
<tr>
<td>‘Home’ setting</td>
<td>37.1</td>
<td>62.9</td>
</tr>
<tr>
<td>Food type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy versus unhealthy</td>
<td>22.9</td>
<td>77.1</td>
</tr>
<tr>
<td>Fast food versus non-fast food</td>
<td>48.6</td>
<td>51.4</td>
</tr>
<tr>
<td>Fruit and vegetables</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Confectionaries/snacks versus main meals</td>
<td>58.1</td>
<td>41.9</td>
</tr>
<tr>
<td>Voice (I): female versus male</td>
<td>45.8</td>
<td>54.2</td>
</tr>
<tr>
<td>Central figure (I): female versus male</td>
<td>39.1</td>
<td>60.9</td>
</tr>
</tbody>
</table>

28 R. Sixsmith and A. Furnham
The analysis of British food advertisements

9. Food type. (a) Healthy versus unhealthy: results indicated that the partition of the ‘Children’ advertisements into healthy (22.9%) and unhealthy (77.1%) advertisements was significantly different from the partition of the ‘Non-Children’ advertisements (healthy, 44.2%; unhealthy, 55.8%); indicating that a significantly larger proportion of the ‘Children’ advertisements were for unhealthy foods than were the ‘Non-Children’ advertisements: $\chi^2 (1) = 4.17, p < 0.05$. (b) Fast food versus non-fast food: results indicated that the partition of the ‘Children’ advertisements into fast food (48.6%) and non-fast food (51.4%) advertisements was significantly different to the partition of the ‘Non-Children’ advertisements (fast food, 26.9%; non-fast food, 73.1%); indicating that a significantly larger proportion of the ‘Children’ advertisements were for fast foods than were the ‘Non-Children’ advertisements: $\chi^2 (1) = 4.28, p < 0.05$. (c) Fruit and vegetables: a significantly larger proportion of the ‘Non-Children’ advertisements (11.5%) contained fruit and vegetables than did the ‘Children’ advertisements (0%): $\chi^2 (1) = 4.34, p < 0.05$. (d) Confectionaries/snacks versus main meals: the partition of the ‘Children’ advertisements into snacks (58.1%) and main meals (41.9%) was significantly different from the partition of the ‘Non-Children’ advertisements (snacks, 31.4%; main meals, 68.6%); indicating that a larger proportion of the ‘Children’ advertisements were for snacks than were the ‘Non-Children’ advertisements (in other words, a larger proportion of the ‘Children’ advertisements were for main meals than were the ‘Children’ advertisements): $\chi^2 (1) = 5.66, p < 0.05$.

10. Voice (I). There was no significant difference between the proportions of female and male voice-overs in the ‘Children’ (45.8 and 54.2%, respectively) and ‘Non-Children’ (56.8 and 43.2%) advertisements: $\chi^2 (1) = 0.75, p = 0.39$ (ns).

11. Central figure (I). There was a significant difference between the proportions of female and male central figures in the ‘Children’ (39.1 and 60.9%, respectively) and ‘Non-Children’ (66.7 and 33.3%) advertisements; indicating that a larger proportion of the ‘Children’ central figures were male than were the ‘Non-Children’ central figures (in other words, a larger proportion of the ‘Non-Children’ central figures were female than were the ‘Children’ central figures): $\chi^2 (1) = 4.16, p < 0.05$.

Analysis of Children’s Advertisements.

12. Parent-child interactions (‘Children’ advertisements only). As shown in Table 2, there were significantly more parent–child interactions in the unhealthy food advertisements (39.3%) than there were in the healthy food advertisements (8.3%): $\chi^2 (1) = 3.83, p < 0.05$. There were also significantly more parent–child interactions in the fast food advertisements (42.1%) than there were in the non-fast food advertisements (8.3%): $\chi^2 (1) = 4.07, p < 0.05$. Finally, there were significantly more parent-child interactions in the main meal advertisements (61.5%) than there were in the snack food advertisements (26.3%): $\chi^2 (1) = 3.97, p < 0.05$. (It may be interesting to note here that the vast majority of these parent–child interactions involved a mother figure. The only exceptions were two advertisements in which the father alone was present, and three other advertisements in which both a mother and a father figure was present.).

<table>
<thead>
<tr>
<th>Parent–Child Interactions</th>
<th>Healthy</th>
<th>Unhealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>8.3</td>
<td>39.3</td>
</tr>
<tr>
<td>Absent</td>
<td>91.7</td>
<td>60.7</td>
</tr>
<tr>
<td>Fast food</td>
<td>42.1</td>
<td>8.3</td>
</tr>
<tr>
<td>Non-fast food</td>
<td>57.9</td>
<td>91.7</td>
</tr>
<tr>
<td>Present</td>
<td>26.3</td>
<td>61.5</td>
</tr>
<tr>
<td>Absent</td>
<td>73.7</td>
<td>38.5</td>
</tr>
</tbody>
</table>

Note Table 3 for the next category.

13. Voice (II) (‘Children’ advertisements only). (a) Healthy versus unhealthy advertisements: a significant difference was found between the proportion of female and male voice-overs in the healthy advertisements (female, 77.8%; male, 22.2%) and the unhealthy advertisements (female, 36.8%; male, 63.2%): $\chi^2 (1) = 4.09, p < 0.05$. This indicated that a significantly larger proportion of the healthy advertisement voice-overs were female than were the unhealthy advertisement voice-over advertisements.
overs (of which there was a higher proportion of male voice-overs than in the healthy advertisements). (b) Fast food versus non-fast food advertisements: there was a significant difference between the voice-over proportions in the fast food advertisements (female, 27.3%; male, 72.7%) and the non-fast food advertisements (female, 69.2%; male, 30.8%); revealing that there was a significantly larger proportion of female voice-overs in the non-fast food advertisements than there was in the fast food advertisements (of which there was a higher proportion of male voice-overs than in the non-fast food advertisements): \(\chi^2 (1) = 4.20, p < 0.05 \). (c) Confectionaries/snacks versus main meal advertisements: no significant difference was found between the proportion of female and male voice-overs in the main meal advertisements (female, 50%; male, 50%) and the confectionaries/snacks advertisements (female, 45.5%; male, 54.5%): \(\chi^2 (1) = 0.04, p = 0.85 \) (ns).

Further analyses showed that a significantly larger proportion of the ‘Children’ advertisements were for unhealthy foods (77.1%) than for healthy foods (22.9%): \(\chi^2 (1) = 10.31, p < 0.001 \). Also, within the ‘Children’ advertisements, a significantly larger proportion of the voice-overs for the healthy advertisements were female (77.8%) than were male (22.2%): \(\chi^2 (1) = 5.56, p < 0.05 \).

DISCUSSION

Significantly more of the ‘Children’ food advertisements contained claims of health benefits relating to the advertised product; contained scientific information; were fantasy-based; used cartoons; used a ‘Leisure’ setting; advertised ‘unhealthy’, ‘fast’ and snack foods; and contained a male central figure, than did the ‘Non-Children’ advertisements. On the other hand, significantly more of the ‘Non-Children’ advertisements contained information regarding price, value or promotions/competitions related to the advertised product; contained celebrities; used a ‘Shop’ setting; advertised fruit and vegetables and main meals; and contained a female central figure, than did the ‘Children’ advertisements.

Looking specifically at the ‘Children’ advertisements, significantly more parent–child interactions were present in the ‘unhealthy’, ‘fast’ and main meal food advertisements than in the ‘healthy’, ‘non fast’ and snack food advertisements, respectively. The ‘unhealthy’ and ‘fast’

Table 3: Percentage of ‘Children’ advertisement voices according to food type

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>Unhealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>77.8</td>
<td>36.8</td>
</tr>
<tr>
<td>Male</td>
<td>22.2</td>
<td>63.2</td>
</tr>
<tr>
<td>Fast food</td>
<td>27.3</td>
<td>69.2</td>
</tr>
<tr>
<td>Male</td>
<td>72.7</td>
<td>30.8</td>
</tr>
<tr>
<td>Confectionaries/snacks</td>
<td>50</td>
<td>46.2</td>
</tr>
<tr>
<td>Male</td>
<td>50</td>
<td>53.8</td>
</tr>
</tbody>
</table>

Table 4: Percentage of ‘Children’ advertisement central figures according to food type

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>Unhealthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>44.4</td>
<td>38.5</td>
</tr>
<tr>
<td>Male</td>
<td>55.6</td>
<td>61.5</td>
</tr>
<tr>
<td>Fast food</td>
<td>37.5</td>
<td>42.9</td>
</tr>
<tr>
<td>Male</td>
<td>62.5</td>
<td>57.1</td>
</tr>
<tr>
<td>Confectionaries/snacks</td>
<td>45.5</td>
<td>44.4</td>
</tr>
<tr>
<td>Male</td>
<td>54.5</td>
<td>55.6</td>
</tr>
</tbody>
</table>

Clinical figure (II) (‘Children’ advertisements only). (a) Healthy versus unhealthy advertisements: no significant difference was found between the proportion of female and male central figures in the healthy advertisements (female, 44.4%; male, 55.6%) and the unhealthy advertisements (female, 38.5%; male, 61.5%): \(\chi^2 (1) = 0.08, p = 0.78 \) (ns). (b) Fast food versus non-fast food advertisements: no significant difference was found between the proportion of female and male central figures in the fast food advertisements (female, 37.5%; male, 62.5%) and the non-fast food advertisements (female, 42.9%; male, 57.1%): \(\chi^2 (1) = 0.06, p = 0.81 \) (ns). (c) Confectionaries/snacks versus main meal advertisements: no significant difference was found between the proportion of female and male central figures in the snack advertisements (female, 45.5%; male, 54.5%) and the main meal advertisements (female, 44.4%; male, 55.6%): \(\chi^2 (1) = 0.00, p = 0.96 \) (ns).
food advertisements used significantly more male voice-overs than did the ‘healthy’ and ‘non fast’ food advertisements (which used significantly more female voices). No significant difference, in terms of the use of male or female central figures, was found between the ‘healthy’ and ‘unhealthy’ advertisements, between the ‘fast’ and ‘non fast’ food advertisements, or between the snack and main meal advertisements.

The present study’s finding that the use of a ‘Leisure’ setting is a significant marketing tool of the ‘Children’ advertisements is in line with Folta et al.’s (Folta et al., 2006) conclusion that food and beverage advertisements depicted children engaged in physical activity and associated the advertised product with athletic ability significantly more than did other advertisements. The finding that the ‘Children’ advertisements contained significantly more cartoons than did the ‘Non-Children’ advertisements supports Kelly et al. (Kelly et al., 2008) findings that, compared to adult-focused food advertisements, significantly more child-focused food advertisements contained promotional characters. On the other hand, the present study’s finding that promotions/competitions related to the advertised product were significantly more common in the ‘Non-Children’ advertisements is not in line with Kelly et al. (Kelly et al., 2008) finding that significantly more child-focused food advertisements contained premium offers. Whilst this difference in findings cannot be attributed to changes in the content of food advertisements over time, it may well be due to variations in content restrictions across countries (Kelly et al. (2008) study having been conducted in Australia). It may also be due to the current study not differentiating between promotional/competition or price and value claims which was not possible (Hastings et al., 2003) conclusion that food advertisements aimed at children were dominated by on-screen male characters is paralleled by the present study’s finding that significantly more of the ‘Children’ advertisements contained a male central figure than did the ‘Non-Children’ advertisements. The present study found important theme appeals in children’s food advertisements to be, among others, those based on nutritional/health properties and those based on fantasy/adventure themes. The present study’s show that the use of celebrity was present in children’s food advertisements only in limited cases; that, compared to child-focused food advertisements, adult advertisements used more theme appeals of price; and that the diet advertised to children was lacking in fresh fruit and vegetables.

The finding that significantly more of the ‘Non-Children’ advertisements used a ‘Shop’ setting than did the ‘Children’ advertisements may be linked to the finding that ‘Non-Children’ advertisements were significantly more likely to include price and value claims than were ‘Children’ advertisements. However, unfortunately in this study, the price and value claims and promotions and competition claims were all coded in the same category.

Surprisingly, more of the ‘Children’ advertisements contained scientific (factual or technical) information and information relating to potential health benefits and nutritional value of the products than did the ‘Non-Children’ advertisements. This finding may be an indication of advertisers’ increasing openness about the content (in terms of salt, sugar or fat for instance) and effects of their child-directed food products. Equally, the finding that significantly more of the ‘Children’ advertisements used a ‘Leisure’ setting (one in which central figures are shown in an outdoor setting, being active, taking exercise or playing sports) than did the ‘Non-Children’ advertisements may also be a positive aspect of these child-focused advertisements, as this may encourage the young viewers to engage in such activities. One other possibility for this finding is that advertisers may be trying to equip children with knowledge and ‘arguments’ concerning health benefits of their products to help persuade their parents to buy them.

The findings, however, that significantly more of the ‘Children’ advertisements were for ‘unhealthy’, ‘fast’ and snack foods than were the ‘Non-Children’ advertisements; that these advertisements were not counter-balanced by an equal number of ‘healthy’ and ‘non fast’ food advertisements; and that fruit and vegetables were clearly lacking in the diet advertised to children is clearly a less encouraging finding. The issue is how best to influence children to adopt healthier eating patterns: through targeting parents and children educationally or through attempts at legislation through the control/banning of particular advertisements. This remains a highly politically charged area (Furnham, 2008).

One limitation of this study was that it presented a view of the content and marketing
techniques used to advertise foods on television at one specific point in time (i.e. Christmas 2008). Moreover, the relatively small sample size limits the generalizability of the findings. Nevertheless, it describes clearly useful and robust coding categories as well as some surprising results. There are also valid criticisms of the content categories. Certainly, the omission of the category promotions/competitions may have provided added insight to this research.

REFERENCES

