Supplementary Material

Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing

Ylva Mende¹,²,³, Miriam Jakubik¹,²,³, Markus Riessland¹,²,³, Frank Schoenen¹, Kristina Roßbach¹,²,³, André Kleinridders²,⁴, Christoph Köhler⁵, Thorsten Buch² and Brunhilde Wirth¹,²,³*

¹Institute of Human Genetics, ²Institute for Genetics, ³Center for Molecular Medicine Cologne (CMMC), ⁴Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and ⁵Department of Anatomy, University of Cologne, 50931 Cologne, Germany

Figure S1:

The complete deletion of Sfrs10 was confirmed by an independent PCR with Primers D-fw/B-rev which specifically amplify only the floxed allele of 950 bp. Equal DNA amounts for all samples were confirmed by a control PCR for apolipoprotein B (ApoB). Fragment sizes are indicated H = HTNC treated, M = mock treated, m = marker, NC = negative control, FLC = floxed control, FLWTC = floxed/wt control, WTC = wt control. Marker depicts fragments in steps of 100 bp to the upper 1 kb fragment.
Figure S2

*SmnA7* was amplified in various tissues of wt animals using specific primers as shown by RT-PCR. m = marker, b = total brain, spc = spinal cord, cbr = cerebrum, cbl = cerebellum. Fragment size is indicated.