Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes

Almira Kurbegovic1,†, Olivier Côté1,†, Martin Couillard1, Christopher J. Ward2, Peter C. Harris2 and Marie Trudel1,*

1Molecular Genetics and Development, Faculte de Medecine, Institut de Recherches Cliniques de Montreal, Universite de Montreal, Montreal, QC, Canada and 2Mayo Clinic, Rochester, MN, USA

Received October 7, 2009; Revised and Accepted December 28, 2009

While high levels of Pkd1 expression are detected in tissues of patients with autosomal dominant polycystic kidney disease (ADPKD), it is unclear whether enhanced expression could be a pathogenetic mechanism for this systemic disorder. Three transgenic mouse lines were generated from a Pkd1-BAC modified by introducing a silent tag via homologous recombination to target a sustained wild-type genomic Pkd1 expression within the native tissue and temporal regulation. These mice specifically overexpressed the Pkd1 transgene in extrarenal and renal tissues from ~2- to 15-fold over Pkd1 endogenous levels in a copy-dependent manner. All transgenic mice reproducibly developed tubular and glomerular cysts leading to renal insufficiency. Interestingly, Pkd1TAG mice also exhibited renal fibrosis and calcium deposits in papilla reminiscent of nephrolithiasis as frequently observed in ADPKD. Similar to human ADPKD, these mice consistently displayed hepatic fibrosis and ~15% intrahepatic cysts of the bile ducts affecting females preferentially. Moreover, a significant proportion of mice developed cardiac anomalies with severe left-ventricular hypertrophy, marked aortic arch distention and/or valvular stenosis and calcification that had profound functional impact. Of significance, Pkd1TAG mice displayed occasional cerebral lesions with evidence of ruptured and unruptured cerebral aneurysms. This Pkd1TAG mouse model demonstrates that overexpression of wild-type Pkd1 can trigger the typical adult renal and extrarenal phenotypes resembling human ADPKD.

INTRODUCTION

Human autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic diseases with an incidence of 1:400 to 1:1000 individuals. It is a multi-systemic disorder characterized by numerous bilateral renal epithelial cysts affecting all segments of the nephron. Eventually, progression of these multiple cysts in kidneys leads to renal insufficiency and end-stage renal disease by late mid-age. Extrarenal clinical manifestations are also common with hepatic cysts being the most frequent, and predominately so, in women. Non-cystic features include cardiac and valvular anomalies and, less frequently, intracranial aneurysms (1).

The majority of patients (85–90%) with ADPKD have a mutation in the PKD1 gene. The gene spans 54 kb and encodes a very large protein of 4302 amino acids, polycystin-1. Polycystin-1 is a transmembrane protein that has a large N-terminal extracellular domain with a unique combination of motifs and was reported to undergo partial autocleavage at the G-protein coupled receptor proteolytic site (GPS) (2). Polycystin-1 has been implicated in signal transduction, in mechanosensation, and in cell–cell and matrix interactions. Human PKD1 and polycystin-1 expression have been analyzed in normal and ADPKD tissues. PKD1 and polycystin-1 are normally expressed in a wide range of adult tissues including epithelial and non-epithelial cell types (3–8). Interestingly, PKD1 expression is developmentally regulated, particularly in the kidneys. Polycystin-1 has highest levels in fetal life and is readily detected in glomerular and
tubular epithelial cells (reviewed in 9 and reference therein). In normal adult kidneys, the RNA transcript and protein levels of polycystin-1 are decreased to lower levels, most notably in the collecting and distal tubules. In contrast, PKD1 expression levels were increased (~2-fold) in ADPKD kidneys (3,10) and consistently, the majority of renal epithelial cysts displayed persistent or enhanced levels of polycystin-1 (4).

Although ADPKD is a dominant disease, the stochastic nature of the renal cysts in ADPKD suggests that the mutational mechanism for PKD1 could result from a two-hit phenomenon or a loss of heterozygosity. This mechanism is supported by detection of PKD1 clonal somatic mutations in cells from a significant proportion of cysts (11–13). Moreover, loss of heterozygosity could account for the widely varying phenotype commonly observed in individual families. This mechanism would however be at variance with the persistent or enhanced expression of PKD1 seen in the majority of human renal cysts, unless a mechanism of gain-of-function/overexpression may also be operant.

The mouse Pkd1 gene has very close similarities to the human PKD1 and may provide important insights into PKD1 function(s). During normal development, murine Pkd1 is expressed at high levels from the morula stage and detected in all neural crest cell derivatives including adult brain, aortic arch, cartilage, and mesenchymal condensation (14,15). Homozygous mutant mice targeted for Pkd1 deletion have been reported to develop renal and pancreatic cysts (16–21). These attempts to generate mouse models, unfortunately, did not produce viable animals. Nevertheless, the occurrence of renal cysts in these homozygous Pkd1 mutant mice would be consistent with the hypothesis of a two-hit mutational mechanism in humans that involves a germline mutation and somatic inactivation of the normal allele. This mechanism is also supported by conditional ablation of Pkd1 in mice few days after birth (22) but not upon later ablation since cysts developed only focally (23,24). However, evidence of a mechanism of haploinsufficiency or gene dosage reduction for cystogenesis was provided in mice homozygous for a Pkd1 hypomorphic allele or heterozygous for a Pkd1 deleted allele (25,26). Moreover, Pkd1 gain-of-function may also be an additional mechanism for ADPKD pathogenesis as determined by the renal-targeted Pkd1 in SBPkd1TAG mice with renal cystogenesis (27). These findings would support a gene-dosage-dependent mechanism for ADPKD where mutations of loss of heterozygosity, haploinsufficiency or overexpression could trigger a renal phenotype and thereby provide an explanation for the high penetrance found for a range of different mutations in this disease.

To interrogate increased Pkd1 dosage as an ADPKD pathogenetic mechanism, Pkd1 in the native genomic context purified from a murine BAC was targeted in transgenic mice. We generated three transgenic lines that contained complete copies of the Pkd1 transgene based also on the internal genomic overlapping structure analysis.

RESULTS

Production of Pkd1TAG-BAC by homologous recombination

To investigate the role of Pkd1 overexpression/gain-of-function in renal and extrarenal tissues, we have used a genomic clone containing the entire Pkd1 gene in a BAC vector 129/Sv library that we previously isolated (27). This BAC contains a ~121 kb insert with ~37 kb of upstream and ~39 kb of downstream sequences of the Pkd1 gene including the entire adjacent Tsc2 gene. This Pkd1-BAC was modified by two successive homologous recombination events. First, the Pkd1 gene was tagged in exon 10 by substituting a nucleotide (G to A) to create a novel EcoRI site at position 2355 on the cDNA map. This silent point mutation was produced to readily distinguish the Pkd1 gene and transcript of the BAC from that of endogenous origin. Second, we have deleted the Tsc2 gene (~34.5 kb) of the Pkd1-BAC to prevent introducing the Tsc2 gene exogenously and to reduce the BAC size (Supplementary Material, Fig. S1). This new Pkd1TAG-BAC was digested with MluI, a unique site located at ~24.8 kb upstream of the Pkd1 translation initiation site, and NotI site in the BAC polymer linker sequences to remove the prokaryotic BAC vector sequences (Supplementary Material, Fig. S1 and Fig. 1). This ~75 kb MluI–NotI fragment was isolated, purified and quantified for oocytes microinjection (28).

Production and analysis of Pkd1TAG transgenic mice

Three transgenic founders carrying several copies (2 to 15) of the Pkd1TAG transgene as determined by Southern analysis, served to derive three transgenic lines. Characterization of the transgene chromosomal integrity in these lines was performed with 5’, internal, and 3’ probes (a to g) used for BAC analysis in Supplementary Material, Figure S1. Transgene 5’ flanking sequence was monitored for presence of a specific polymorphism from the 129/Sv genetic background by a band at 100 bp compared with the 113 bp and/or 133 bp typical of the inbred C57BL/6J and CBA/J strains used to produce these transgenic mice (Fig. 1). To verify the transgene 3’ end, a probe consisting of the Pkd1 gene exon 45–46 was used to detect the endogenous 7.0 kb Pkd1 band as well as the transgene 5.0 kb (Fig. 1). The Pkd1TAG mice contained complete copies of the Pkd1 transgene based also on the internal genomic overlapping structure analysis.

Pkd1 expression in adult Pkd1TAG transgenic mice

Analysis of Pkd1TAG transgene and Pkd1 endogenous gene expression was carried out in several tissues. To first quantify the transcript levels from the transgene comparatively to the endogenous gene, Northern blots were performed on kidneys of each transgenic line (Fig. 2A). The transgene transcript size was identical to the endogenous transcript of 14.2 kb. All Pkd1TAG transgenic mice showed systematically increased...
transcript Pkd1 levels in kidneys relative to controls. In fact, Pkd1TAG transgene renal expression increased with the number of Pkd1TAG copies (2, 6, 15) in each line compared with controls (n = 2): line 6 (n = 4), 18 (n = 3), 26 (n = 3) displayed ~1.9 ± 0.8, 6.0 ± 0.9 and 17.9 ± 1.9-fold increase, respectively.

Quantification of transgene expression levels was carried out by real-time PCR in the three transgenic lines at adult age, by using primers in the exon 1 and 2 of Pkd1 (Fig. 2B). The Pkd1TAG expression in transgenic mice was compared with S16 ribosomal protein gene product as internal standard. Analysis of Pkd1 renal expression showed similar fold increase for transgenic kidneys as those obtained by northern blot. Since endogenous Pkd1 expression levels are modulated in various tissues, we quantified Pkd1TAG expression levels to determine whether the transgene followed the endogenous gene expression pattern. Transgene expression by real-time PCR consistently and specifically showed highest expression in the brain of all transgenic lines relative to other organs (Fig. 2B). The heart, lung and brain displayed higher Pkd1 levels than in the kidneys, whereas the other organs including spleen, liver and pancreas levels were lower. Interestingly, the three transgenic lines demonstrated, within all tissues analyzed, a comparable increase in transgene to endogenous expression, indicating that the Pkd1TAG transgene contained all the appropriate regulatory elements for tissue expression.

To monitor whether gene expression correlated with the phenotype in Pkd1TAG developed much more rapidly than in the Pkd1TAG6 mice. Consistently, Pkd1TAG26 kidneys at 2 months had tubular and glomerular cysts that became very severe by 3 months of age, whereas Pkd1TAG6 displayed glomerular and tubular dilatation at 7 months of age that progressed to cysts at 9 months and were severely cystic by 12–16 months of age. Cystic and even non-cystic tubules frequently displayed epithelial hyperplasia and hypertrophy and occasional presence of polyps with variable severity between mice. Hemorrhagic cysts consistent with some hematuria, proteinaceous casts in tubular cysts as well as interstitial fibrosis were commonly observed (Fig. 3C–F). Cysts originated from segment markers of the proximal, distal and collecting segments of the nephron with highest and similar proportion in proximal and collecting tubules (n = 6, 7–16 months) at 5.7% and 26 kidneys (n = 6, 2–8 months) at 9.6% that was markedly elevated by ~4.8- and 8-fold, respectively, compared with controls (n = 5; 1.2%). Further, partial and total sclerosis of glomeruli was detected in all three transgenic lines. To define more precisely the origin of the renal cysts, we used specific nephron segment markers of the proximal, distal and collecting tubules. As shown in Figure 3E and F, cysts originated from all segments of the nephron with highest and similar proportion in proximal and collecting tubes (~30–35%). A significant proportion of cysts (~20%) were unstained, some of which with presence of mesangial tuft could be identified of

Renal anomalies in Pkd1TAG mice
Pkd1TAG transgenic adult kidneys of all three lines were generally pale and exhibited bilateral cysts studding the cortical surface. Histologically, transgenic mice developed multiple microscopic and macroscopic cysts affecting cortex and medulla as well as glomerular cysts (Fig. 3A–H). Anomalies were detected at 1 month of age for Pkd1TAG6 and 26 mice as mild tubular dilatation and scattered tubular microcysts with epithelial hyperplasia, respectively, suggesting abnormal features early on as observed in ADPKD patients. The renal phenotype in Pkd1TAG26 developed much more rapidly than in the Pkd1TAG6 mice. Consistently, Pkd1TAG26 kidneys at 2 months had tubular and glomerular cysts that became very severe by 3 months of age, whereas Pkd1TAG6 displayed glomerular and tubular dilatation at 7 months of age that progressed to cysts at 9 months and were severely cystic by 12−16 months of age. Cystic and even non-cystic tubules frequently displayed epithelial hyperplasia and hypertrophy and occasional presence of polyps with variable severity between mice. Hemorrhagic cysts consistent with some hematuria, proteinaceous casts in tubular cysts as well as interstitial fibrosis were commonly observed (Fig. 3B). To evaluate levels of fibrosis, we quantified the density of Sirius red staining in Pkd1TAG6 (n = 6, 7–16 months) at 5.7% and 26 kidneys (n = 6, 2–8 months) at 9.6% that was markedly elevated by ~4.8- and 8-fold, respectively, compared with controls (n = 5; 1.2%). Further, partial and total sclerosis of glomeruli was detected in all three transgenic lines. To define more precisely the origin of the renal cysts, we used specific nephron segment markers of the proximal, distal and collecting tubules. As shown in Figure 3E and F, cysts originated from all segments of the nephron with highest and similar proportion in proximal and collecting tubes (~30–35%). A significant proportion of cysts (~20%) were unstained, some of which with presence of mesangial tuft could be identified of
glomerular origin, whereas others could be from undifferentiated tubular epithelial cells. Analysis of Pkd1\textsubscript{TAG}26 mice assessed by northern blotting using Pkd1 probe ‘f’ (exon 36–45) and Gapdh (1.2 kb). One representative kidney sample from each transgenic line 6, 18 and 26 is compared with endogenous Pkd1 transcript of control (C) genetic background and age-matched mice. Quantification of renal transcripts from transgenic Pkd1\textsubscript{TAG} mouse lines were increased compared with endogenous Pkd1 transcript as indicated below the blot (control refers to 1). (B) Quantitative real-time PCR of Pkd1 expression from renal and extrarenal tissues was carried out using primers in exons 1 and 2. Transgenic mice (n = 3; *n = 2) from each of the three different lines and non-transgenic age-matched control mice (4–12 mo) were analyzed in triplicata for Pkd1 and S16 that served as an internal control. Quantification of renal expression in these transgenic mice ranged from 1.3- to 15.5-fold relative to endogenous levels of control mice arbitrarily set at 1. Extrarenal tissue expression levels were established in function of Pkd1 levels in control kidneys. Number in parentheses refers to the ratio of transgene expression levels to the organ control. Similar gene expression ratio or fold-increase was detected for each transgenic line across the tissues analyzed. (C) Renal and extrarenal polycystin-1 protein expression analysis in Pkd1\textsubscript{TAG}26 mice (6 mo) by western blot using the N-terminal Pc-1 7e12 antibody. In Pkd1\textsubscript{TAG} organs, Pc-1 expression was intact and at higher expression levels than controls (6 mo). Of the organs tested, highest Pc-1 signal was detected in lungs, heart and kidney. Quantities of protein loaded (40 or 80 µg prot) are indicated below the blot. C, non-transgenic control mice; Tg, Pkd1\textsubscript{TAG} transgenic mice, line 26. Gapdh was used as an internal loading control.

Figure 2. Expression analysis of Pkd1\textsubscript{TAG} transgenic mice. (A) Renal expression analysis of total Pkd1 (endogenous and transgene: ~14.2 kb) transcript of Pkd1\textsubscript{TAG} transgenic mice assessed by northern blotting using Pkd1 probe ‘f’ (exon 36–45) and Gapdh (1.2 kb). One representative kidney sample from each transgenic line 6, 18 and 26 is compared with endogenous Pkd1 transcript of control (C) genetic background and age-matched mice. Quantification of renal transcripts from transgenic Pkd1\textsubscript{TAG} mouse lines were increased compared with endogenous Pkd1 transcript as indicated below the blot (control refers to 1). (B) Quantitative real-time PCR of Pkd1 expression from renal and extrarenal tissues was carried out using primers in exons 1 and 2. Transgenic mice (n = 3; *n = 2) from each of the three different lines and non-transgenic age-matched control mice (4–12 mo) were analyzed in triplicata for Pkd1 and S16 that served as an internal control. Quantification of renal expression in these transgenic mice ranged from 1.3- to 15.5-fold relative to endogenous levels of control mice arbitrarily set at 1. Extrarenal tissue expression levels were established in function of Pkd1 levels in control kidneys. Number in parentheses refers to the ratio of transgene expression levels to the organ control. Similar gene expression ratio or fold-increase was detected for each transgenic line across the tissues analyzed. (C) Renal and extrarenal polycystin-1 protein expression analysis in Pkd1\textsubscript{TAG}26 mice (6 mo) by western blot using the N-terminal Pc-1 7e12 antibody. In Pkd1\textsubscript{TAG} organs, Pc-1 expression was intact and at higher expression levels than controls (6 mo). Of the organs tested, highest Pc-1 signal was detected in lungs, heart and kidney. Quantities of protein loaded (40 or 80 µg prot) are indicated below the blot. C, non-transgenic control mice; Tg, Pkd1\textsubscript{TAG} transgenic mice, line 26. Gapdh was used as an internal loading control.
Altered renal physiology in Pkd1TAG mice

Renal function was monitored in the low- and high-expressor Pkd1TAG6 and 26 transgenic lines. Animals were monitored for urinary levels of urea nitrogen, creatinine, protein and urine osmolality and volume (Table 1). In comparison to negative controls of same genetic background, the low and high expressors exhibited significant increase in urine volume similar to the positive PKD controls SBM mice (28). These urinary and blood analysis (Tables 1 and 2) are consistent with mild concentrating defects but cannot exclude AVP deficiency. Accordingly, urinary urea nitrogen, creatinine and protein were significantly decreased. In addition, Pkd1TAG mice had urinary calcium (0.8 ± 0.2; n = 8, 9–14 months) and urinary pH (6.0 ± 0.1, n = 16, 7–18 months) comparable to controls (0.9 ± 0.2; n = 4, 11 months) (5.9 ± 0.1, n = 4, 11 months). Mice from all three Pkd1TAG lines were also monitored for hematocrit levels since patients with progressive renal insufficiency commonly develop anemia. Consistently, the three Pkd1TAG mouse lines at 5–7 months of age displayed significantly reduced hematocrit levels (Table 2 and data not shown). Mice from the three transgenic Pkd1TAG lines were also analyzed qualitatively for proteinuria from urine samples on SDS–PAGE (Fig. 4A). Despite the

\(\alpha \)-acetylated tubulin staining in Pkd1TAG26 line and control mice at few weeks of age prior to overt cystogenesis (Fig. 3M and N). Most strikingly, the cilia size distribution (at 1 \(\mu \)m interval) in all Pkd1TAG mice showed significantly longer cilia length relative to controls (Fig. 3N). Indeed, most cilia of the Pkd1TAG mice (n = 346) (Fig. 3N) were >5 \(\mu \)m, whereas cilia in controls (n = 266) (Fig. 3M) were mainly 2–3 \(\mu \)m in length. Cilia from Pkd1TAG renal epithelium were often of kinky structure and occasionally displayed 2 or multicilia by EM. These mice consistently developed PKD features pointing to the induced expression from the transgene as specifically responsible for the pathogenesis.

Figure 3. Renal phenotype in Pkd1TAG mice. (A and B) Overview of renal cortical sections from adult 20-month-old control and Pkd1TAG6 mice, respectively. While control exhibited normal glomeruli (g) and tubule (t), Pkd1TAG6 mice showed presence of numerous glomerular and tubular cysts associated with frequent proteinaceous casts (pc) and of tubulointerstitial fibrosis (H&E). Original magnification, ×10. (C and D) High power view of renal sections of Pkd1TAG6 and 26 mice (26 and 16 mo) that show epithelial hyperplasia and hypertrophy (H) as well as presence of polyps (arrowhead) in cystic tubules. Original magnification, ×40. (E and F) Assessment of nephron segment origin in control and Pkd1TAG26 mice (7 mo), respectively, was determined by immunofluorescence using specific markers of proximal

(\textit{Lotus tetragonolobus}, green), distal (\textit{Solanum lycopersicon}, blue) and collecting ducts (\(\alpha \)-calbindin D28K, red). Transgenic mice displayed cysts from all nephron segments and in higher proportion in proximal and collecting tubules. Noticeably, epithelial hyperplasia and hypertrophy (H) were frequently observed in dilated collecting ducts. Original magnification, ×20. (G and H) Analysis of calcium deposits from renal sections of control and Pkd1TAG26 (10 mo), respectively, was evaluated by Alizarin red staining. Intense extracellular calcium deposits were detected in the renal papilla of Pkd1TAG26 mice (inset) but absence of signal in cysts or in kidneys of non-transgenic mice. Original magnification, ×10. (I and J) Proliferation was assessed from control and Pkd1TAG26 renal sections (13 mo), respectively, with the Ki67 nuclear proliferation marker. Epithelial cells from normal and dilated tubules displayed higher rate of proliferation in Pkd1TAG26 mice compared with control. Original magnification, ×40. (K and L) Detection of c-myc in renal tissues of control and Pkd1TAG6 (13 mo), respectively, correlated with higher proliferation rate. Increased nuclear and even cytoplasmic staining in cystic and non-cystic regions in Pkd1TAG6 relative to control. Original magnification, ×40. (M and N) Primary cilia of renal epithelial cells from control and Pkd1TAG mice (1 mo), respectively, were assessed. Triplet figure consists of staining by \(\alpha \)-acetylated tubulin (left panel) marker for cilia. DAPI (middle panel) for nucleus and merge (right panel). In control mice, the average length of cilia was estimated to 2–3 \(\mu \)m, whereas in Pkd1TAG26 mice a significant shift in cilia length distribution to longer cilia of \(\geq 5 \) \(\mu \)m was measured. Original magnification, ×100.
Figure 4. Analysis of urinary proteins in Pkd1\TAG mice. (A) Protein urine samples from all Pkd1\TAG mouse lines (4 mo) were compared with non-transgenic age-matched control (C) and SBM transgenic mice (positive control that develop PKD) in addition to serum protein sample (S) from non-transgenic mice on SDS–PAGE stained by Coomassie blue. Albumin normally present in serum was detected at abnormally high levels in Pkd1TAG26 urine comparable to SBM urine. Pkd1TAG mice like SBM mice exhibit non-selective proteinuria. Mice also displayed normal excretion of the major urinary proteins (MUPs). M: molecular mass markers of 31–200 kDa. (B) Polycystin-1 was analyzed in fractioned urinary samples by western blot using the N-terminal 7e12 Pc-1 antibody. Two bands (slightly above /C20 420 kDa and /C20 360–380 kDa) were typically detected in native (N, without treatment) samples whether from total kidney protein extracts of Pkd1TAG26, from total urinary proteins (T) or exosome-free fraction (S1) of Pkd1TAG26 and of control mice (mean /C20 9 mo). A unique Pc-1 band slightly above /C20 420 kDa was observed in exosome (Exo) fractions from Pkd1\TAG and control urine, whereas the uromodulin-positive (S2) fraction appears devoided of Pc-1. Noticeably, Pkd1\TAG transgenic mice in comparison to age-matched control mice consistently showed more intense Pc-1 bands and likely higher Pc-1 excretion. Upon deglycosylation (DG) of protein extracts with PNGase, a unique band is detected at the size of the lowest native band (360–380 kDa), showing strong glycosylation of Pc-1 and indicating that the band above ~420 kDa is likely the cleaved form of Pc-1 (predicted mass of 448 and 328 kDa glycosylated and deglycosylated, respectively).

Table 1. Urine analysis

<table>
<thead>
<tr>
<th>Mice\</th>
<th>Age (mo)</th>
<th>n</th>
<th>Volume (ml)</th>
<th>n</th>
<th>Urea nitrogen (mmol/l)</th>
<th>n</th>
<th>Creatinine (mmol/l)</th>
<th>n</th>
<th>Protein (g/l)</th>
<th>n</th>
<th>Osmolality (mOsm/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 16</td>
<td>5</td>
<td>0.5 ± 0.2</td>
<td>5</td>
<td>682 ± 407</td>
<td>5</td>
<td>4.9 ± 0.6</td>
<td>5</td>
<td>1.4 ± 0.8</td>
<td>5</td>
<td>2026 ± 160</td>
<td></td>
</tr>
<tr>
<td>Pkd1TAG6 15</td>
<td>6</td>
<td>1.6 ± 0.3*</td>
<td>6</td>
<td>309 ± 148*</td>
<td>6</td>
<td>1.1 ± 0.3*</td>
<td>6</td>
<td>0.7 ± 0.3</td>
<td>6</td>
<td>627 ± 166*</td>
<td></td>
</tr>
<tr>
<td>Control 4–9</td>
<td>12</td>
<td>0.7 ± 0.4</td>
<td>12</td>
<td>809 ± 320</td>
<td>15</td>
<td>3.9 ± 1.8</td>
<td>11</td>
<td>6.9 ± 5.5</td>
<td>11</td>
<td>1426 ± 547</td>
<td></td>
</tr>
<tr>
<td>SBM 4–10</td>
<td>10</td>
<td>2.7 ± 1.3*</td>
<td>7</td>
<td>328 ± 76*</td>
<td>8</td>
<td>1.3 ± 0.6*</td>
<td>5</td>
<td>3.4 ± 1.4</td>
<td>4</td>
<td>843 ± 265*</td>
<td></td>
</tr>
<tr>
<td>Pkd1TAG26 5–7</td>
<td>7</td>
<td>2.4 ± 1.5*</td>
<td>8</td>
<td>461 ± 267*</td>
<td>10</td>
<td>1.6 ± 1.3*</td>
<td>8</td>
<td>1.1 ± 0.7*</td>
<td>6</td>
<td>985 ± 566</td>
<td></td>
</tr>
</tbody>
</table>

*Urine analysis of Pkd1TAG with control mice at severe renal phenotype time points.
*P ≤ 0.02; *P ≤ 0.01; *P ≤ 0.001; *P ≤ 0.0001.

Table 2. Blood analysis

<table>
<thead>
<tr>
<th>Mice\</th>
<th>Age (mo)</th>
<th>n</th>
<th>Hematocrit (%)</th>
<th>n</th>
<th>BUN range (mmol/l)</th>
<th>n</th>
<th>Creatinine (mmol/l)</th>
<th>n</th>
<th>Sodium (mmol/l)</th>
<th>n</th>
<th>Osmolality (mOsm/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 6</td>
<td>5</td>
<td>54 ± 3</td>
<td>5</td>
<td>6.3–8.4 (mean 7.5 ± 0.8)</td>
<td>5</td>
<td>19.6 ± 2.6</td>
<td>151 ± 2</td>
<td>329 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pkd1TAG6 15</td>
<td>6</td>
<td>40 ± 3*</td>
<td>6</td>
<td>9.0–12.8</td>
<td>20.1 ± 3.2</td>
<td>157 ± 2*</td>
<td>340 ± 4*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pkd1TAG26 6</td>
<td>7</td>
<td>35 ± 6*</td>
<td>8</td>
<td>5.5–10.8</td>
<td>29.8 ± 7.5*</td>
<td>156 ± 2*</td>
<td>336 ± 6*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P ≤ 0.05; *P ≤ 0.005; *P ≤ 0.001; *P ≤ 0.005; *P ≤ 0.0001.
Reduced concentration level of protein in urine, Pkd1_TAG animals at 4 months of age appeared to display non-selective proteinuria that was most pronounced in the high transgene expressor. To determine whether Pc-1 in Pkd1_TAG26 transgenic mice were present in urine, we prepared total crude protein from urine (T), urine devoided of exosome or uromodulin aggregates (supernatant 1, S1), the resuspended pellet was separated in two additional fractions the surpernatant containing uromodulin (supernatant 2, S2) and urinary exosome following the protocol of (32,33). Western analysis of total crude urinary protein with the LRR Pc-1 antibody (7e12) showed a similar pattern to that of total kidney extracts from native untreated (N) and deglycosylated (DG) samples (Fig. 4B). While samples in the native form displayed two protein bands estimated by migration at ~360–380 kDa and slightly above ~420 kDa, in the deglycosylated form a unique product was detected corresponding to the lower band. Pc-1 was detected in three urine fractions (T, S1 and exosomes), whereas it appears absent in the supernatant (S2) for both control and transgenic mice. In exosomal pellet fraction, Pc-1 was present mainly in the glycosylated form, as for both control and transgenic mice. In exosomal pellet fraction, Pc-1 was detected in three urine fractions (T, S1 and exosomes), whereas it appears absent in the supernatant (S2) for both control and transgenic mice. In exosomal pellet fraction, Pc-1 was present mainly in the glycosylated form, as observed in human ADPKD urinary exosomes (33). Interestingly, Pc-1 was present mainly in the glycosylated form, as observed in human ADPKD urinary exosomes (33). Interestingly, significant proportion of Pc-1 was also found in the S1 supernatant in both Pkd1_TAG transgenic mice and controls observed in human ADPKD urinary exosomes (33). Interestingly, significant proportion of Pc-1 was also found in the S1 supernatant in both Pkd1_TAG transgenic mice and controls observed in human ADPKD urinary exosomes (33). Interestingly, significant proportion of Pc-1 was also found in the S1 supernatant in both Pkd1_TAG transgenic mice and controls observed in human ADPKD urinary exosomes (33).

Hepatic anomalies in Pkd1_TAG mice similar to PKD

Since human ADPKD frequently developed biliary dysgenesis, we investigated whether enhanced Pkd1_TAG gene expression could induce hepatic abnormalities in mice. Readily from macroscopic liver examination, hepatic cysts could be detected in both transgenic 6 and 26 lines (low and high Pkd1 expressors): 5 of 34 Pkd1_TAG transgenic mice from line 26 and in 1 of 32 from line 6 (Fig. 5A and B). Histologically, these liver developed cysts likely of cholangiocyte origin that ranged from mild to very severe (Fig. 5C and D). Interestingly, these characteristic cystic features affected mainly female mice (4 out of 5) as in human ADPKD. Further, hepatic parenchyma from both transgenic 6 and 26 lines showed presence of a broad band of fibrosis along the intrahepatic ducts that was systematically observed and in some mice, fibrosis was widespread (Fig. 5E and F). Quantification of fibrosis over the liver sections showed ~4–5-fold increase, respectively, for the Pkd1_TAG6 (9.8 ± 9.3%; n = 10; P < 0.02) and 26 lines (11.1 ± 7.9%; n = 12; P < 0.002) compared with controls (1.9 ± 0.8%; n = 10). Similar to Pkd1_TAG6 and 26 renal analysis, we evaluated whether proliferation could be implicated in the hepatic cysts, liver sections were stained with Ki67. The epithelial linings of cysts were uniformly delineated by enhanced Ki67 staining and/or by strong nuclear staining (Fig. 5G and H). These Pkd1_TAG livers also displayed elevated c-myc expression in the cystic areas with more intense signal in cell lining the cysts (Fig. 5I and J). Interestingly, this increased proliferation and c-myc expression paralleled the marked fibrosis in regions of liver cysts. Since the Pkd1_TAG6 and 26 transgenic mice develop typical hepatic ADPKD characteristics, it is likely...
that Pkd1 overexpression in the liver may be a pathogenetic mechanism through potentially modulating c-myc.

Cardiac anomalies in Pkd1_TAG mice

Because a proportion of ADPKD patients develop cardiac anomalies, we performed physiologic studies using non-invasive ultrasound imaging in Pkd1_TAG6 and 26 relative to control mice (Fig. 6A and B; Tables 3 and 4). The M-mode dimensions showed significantly increased left-ventricular posterior wall thickness at diastole and at systole indicating left-ventricular hypertrophy (Table 3). The interventricular septa thickness was also increased. Further, the aortic root diameter and area were significantly increased in the Pkd1_TAG mice showing important dilatation as described in ADPKD patients. At necropsies, gross heart anatomy of mice from the three Pkd1_TAG lines showed significant and extensive enlargement relative to that of negative control littermates (Fig. 6C and D; Table 3), providing evidence of eccentric dilated cardiac hypertrophy. Hearts of Pkd1_TAG relative to controls also showed important alteration in the cardiac structure and morphology as analyzed by Microfil casting that fills the body entire vasculature providing a three-dimensional visualization of organ circulation (Fig. 6E and F). Substantial abnormalities of the ventricular vasculature were readily detectable under different angles, suggesting injury to the myocardium with possible development of fibrosis (Fig. 6F versus E). We then verified by histology and detected that 35–40% of Pkd1_TAG mice (lines 18 and 26) displayed 2–4-fold increase in cardiac fibrosis.

Functional analysis by echographic measurements consistently showed a marked increase in stroke volume as well as in the cardiac output by almost 2-fold in Pkd1_TAG26 mouse lines (Table 4). While the heart rates of Pkd1_TAG and control mice were similar, cardiac valves displayed some anomalies in the Pkd1_TAG mice (Table 4 and Fig. 6A and B). As shown in Tables 3 and 4, the significant increase in mean and peak velocity downstream of the aortic valve suggested stenosis. This increased velocity measurement was consistent with the abnormal aortic valve leaflets detected by ultrasound imaging as opaque in some Pkd1_TAG6 and 26 mice rather than delicate and translucent (Fig. 6B). Upon heart sectioning, large areas within the ventricular lining exhibited change in pigmentation, indicative of ventricular lining calcification (Fig. 6G and H). To determine whether the valves opacity and ventricular lining anomalies resulted from calcium deposits, cardiac histologic sections were stained individually with Alizarin and VonKossa. Analysis revealed presence of calcification in 6 of the 15 aortic valves, 4 of which also had staining in ventricular lining (Fig. 6I and J). Furthermore, 3 of these 6 Pkd1_TAG mice exhibited staining in the myocardium as well. Since observations of valvular, vascular and myocardium calcification in individuals with chronic kidney disease has been associated with higher serum phosphate (34), we determined the levels of phosphate in serum of Pkd1_TAG mice. Analogously to human, the Pkd1_TAG mice (1.9 ± 0.3 mmol/l; n = 8) had significantly
Table 3. Cardiac dimension analysis

<table>
<thead>
<tr>
<th>Mice</th>
<th>n</th>
<th>Heart wt/Body wt (%)</th>
<th>Echocardiographic measurement</th>
<th>Inter-ventricular septum (10^{-2} mm/wt)</th>
<th>Aortic root (10^{-2} mm/wt)</th>
<th>Left ventricle volume (μl/wt)</th>
<th>Ventricle diameter (10^{-2} mm/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>d</td>
<td>s</td>
<td>d</td>
<td>s</td>
</tr>
<tr>
<td>Control</td>
<td>21</td>
<td>0.7 ± 0.1</td>
<td>6</td>
<td>2.0 ± 0.3</td>
<td>2.8 ± 0.6</td>
<td>2.1 ± 0.4</td>
<td>3.0 ± 0.5</td>
</tr>
<tr>
<td>Pkd1TAG6</td>
<td>26</td>
<td>0.9± ± 0.3</td>
<td>6</td>
<td>3.8± ± 0.6</td>
<td>5.1± ± 0.7</td>
<td>3.6± ± 0.4</td>
<td>4.9± ± 0.5</td>
</tr>
<tr>
<td>Pkd1TAG26</td>
<td>27</td>
<td>1.0± ± 0.2</td>
<td>4</td>
<td>3.3± ± 0.4</td>
<td>4.6± ± 0.6</td>
<td>3.2± ± 0.6</td>
<td>4.0± ± 1.3</td>
</tr>
</tbody>
</table>

wt, weight; pw, posterior wall; d, diastolic; s, systolic; diam., diameter.

\(^a P \leq 0.05; ^b P \leq 0.003; ^c P \leq 0.002; ^d P \leq 0.0002; ^e P \leq 10^{-6} \)

Table 4. Echocardiographic functional analysis

<table>
<thead>
<tr>
<th>Mice</th>
<th>n</th>
<th>Stroke vol. aorta (10^{-2} ml/wt)</th>
<th>Fractional ejection (%)</th>
<th>Fractional shortening (%)</th>
<th>Cardiac output (ml/min/wt)</th>
<th>Heart rate (bpm)</th>
<th>Aortic valve velocity Upstream (mm/s)</th>
<th>Downstream (mm/s)</th>
<th>Mitral valve velocity Upstream (mm/s)</th>
<th>Downstream (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>0.27 ± 0.03</td>
<td>54.8 ± 6.1</td>
<td>28.5 ± 4.3</td>
<td>1.29 ± 0.16</td>
<td>474 ± 16</td>
<td>554 ± 56</td>
<td>977 ± 140</td>
<td>1152 ± 134</td>
<td>1901 ± 247</td>
</tr>
<tr>
<td>Pkd1TAG6</td>
<td>6</td>
<td>0.31 ± 0.06</td>
<td>66.6± ± 8.1</td>
<td>36.4± ± 6.2</td>
<td>1.49± ± 0.32</td>
<td>482 ± 22</td>
<td>486 ± 104</td>
<td>776 ± 170</td>
<td>1155 ± 343</td>
<td>1861 ± 565</td>
</tr>
<tr>
<td>Pkd1TAG26</td>
<td>4</td>
<td>0.53± ± 0.13</td>
<td>53.6± ± 17.1</td>
<td>28.5± ± 12.2</td>
<td>2.59± ± 0.46</td>
<td>487 ± 43</td>
<td>581 ± 251</td>
<td>965 ± 431</td>
<td>1705± ± 344</td>
<td>2772± ± 562</td>
</tr>
</tbody>
</table>

bpm, beats per minute.

\(^a P \leq 0.05; ^b P \leq 0.03; ^c P \leq 0.01. \)
increased serum phosphate relative to controls (1.4 ± 0.2 mmol/l; n = 4), supporting the hypothesis that elevation in serum phosphate concentration may contribute to calcification risk and cardiovascular events.

Vascular anomalies in Pkd1_TAG mice

To investigate whether adult Pkd1_TAG mouse lines exhibited altered cardiovascular response, we measured blood pressure in two Pkd1_TAG lines (26 and 18) and control mice using the tail cuff method. Two groups of Pkd1_TAG mice were readily distinguishable in both lines. In Pkd1_TAG26 line (6–7 months of age), the first group of mice (n = 5) exhibited systolic blood pressure at 113.5 ± 11.0 mmHg comparable to control mice (n = 4) of systolic blood pressure at 116.2 ± 3.1 mmHg. The second group of Pkd1_TAG26 mice (n = 3) had significantly increased blood pressure at 161.1 ± 5.1 mmHg (P < 0.001). Similarly, evidence of hypertension in two of six Pkd1_TAG18 mice (132.3 ± 1.3 mmHg; P < 0.0009) indicated that the Pkd1_TAG mouse lines can progress to severe hypertension as in human ADPKD.

Upon signs of distress in three mice of Pkd1_TAG26 line, we macroscopically observed severe hemorrhage and severe intracranial edema. These mice at dissection did not show closure of the cranial bone at the sutura sagitalis and have evidence of hydrocephalus with ventricle dilatation (Fig. 7A and B). No control mice exhibited this phenotype. In the Pkd1_TAG26 mice, subarachnoid hemorrhages were observed in different areas of the brain and were so severe in some cases that a significant portion of the brain was completely destroyed/obliterated. Further, the cerebellum of these Pkd1_TAG26 mice at histologic examination was underdeveloped, reduced in size or constricted, providing signs of prior compression of this region and adjacent structures (Fig. 7D). To visualize and analyze the vasculature, we introduced Microfil casting to model the entire vasculature of Pkd1_TAG26 (n = 5) and control (n = 7) mice. As illustrated in Figure 7E and F, two Pkd1_TAG26 mice compared with none in controls, showed unruptured cerebral aneurysm, the most dreadful complication of ADPKD.

Figure 7. Pkd1_TAG mice vascular defect: intracranial aneurysm. (A and B) Macroscopic view of scalped head is shown from adult control and Pkd1_TAG26 mice (1 mo), respectively. Evidence of enlarged skull associated with abnormal brain/ventricle morphology, sagital suture, intracranial hemorrhages and edema in Pkd1_TAG mice. (C and D) Overview of brain sections from adult control and Pkd1_TAG mice (1 mo), respectively. Evidence of Pkd1_TAG cortex (c) thinning is shown with a major cavity associated with elongated and compressed cerebellum (ce) due to hemorrhage and excessive fluid (H&E). Original magnification, ×1.25. (E and F) Brain vasculature from adult control mice and Pkd1_TAG26 mice (11 and 13 mo), respectively, filled with Microfil latex. Evidence of unruptured cerebral aneurysm (arrow) was observed in a Pkd1_TAG mouse, whereas not detected in vasculature of control mice. Original magnification, ×5.
Lifespan in Pkd1TAG mice

Lifespan of mice from the three transgenic Pkd1TAG lines was also quantified. Animals died at 5.5 ± 2.8 months (n = 18) for the high expressing Pkd1TAG26 line presumably due at least in part to renal failure, at older age of 16.7 ± 5.5 months (n = 9) and 16.6 ± 1.8 months (n = 12) for the lower expressors Pkd1TAG 18 and 6 lines, respectively.

DISCUSSION

This study reports generation and characterization of the first Pkd1 mouse model of ADPKD that develops the typical renal and extrarenal pathologic spectrum. This model was produced by expressing a ‘wild type’ full length Pkd1 gene and proximal regions purified from a BAC that produces a functional polycystin-1 (Pc-1) protein. Since this mouse model reproduces both the entire phenotypic spectrum and at the similar frequency occurrence as in ADPKD, a systemic Pkd1 enhanced expression is most likely a pathogenetic mechanism.

The three transgenic Pkd1TAG mouse lines generated showed a copy-number dependent expression of the full-length Pkd1 transgene in all tissues. Since the regulatory pattern of transgene expression was similar to that of the endogenous gene, it is likely that the transgene includes all the necessary transcriptional regulatory regions of the Pkd1 gene. Consistently, the Pc-1 protein is also similarly overexpressed in these mice. Of importance, gene dosage or expression correlated with the progression of phenotypic severity.

The Pkd1TAG mice are the first model among the mice with dysregulated or mutated Pkd1 gene that develops the typical multicystic ‘bosselated’ cortical surface with tubular and glomerular cysts as in ADPKD. Renal insufficiency was detected in Pkd1TAG mice at 5–6 months of age by altered urinary and blood analysis. Severe cystogenesis with loss of renal function and increased kidney fibrosis are hallmarks of ADPKD renal pathology. In addition to frequent hemorrhagic cysts and hematuria, an incidence of ~39% of Pkd1TAG mice with pronounced cystic disease displayed intraluminal but also paracystic renal calcifications limited to the papilla. Presence of this localized nephrocalcinosis in Pkd1TAG mice is compatible with the nephrolithiasis observed in 20–36% of patients with ADPKD (30,31). While the mechanism responsible for these calcium deposits is unknown, the urinary concentration of cystic disease increased with elevated renal epithelial proliferation. While defects in the primary cilia have been observed in other cystic diseases, most of cilia anomalies have been attributed to shorter or absence of cilia (35–38) except for the Nek8 and p75/cux genes (39,40).

The consistent increase in Pc-1 in equivalent proportion from crude urine to subfractionated exosomes of the Pkd1TAG over control mice argues that Pc-1 in transgenic kidneys undergoes the normal in vivo physiologic protein processing. The shed Pc-1 protein both glycosylated and unglycosylated in crude urine corresponded approximately in size to a N-terminal cleaved form of Pc-1 at the G protein-coupled receptor proteolytic site (GPS at amino acid 3041). Strikingly, similar size Pc-1 glycosylated and unglycosylated forms were free in urine itself, whereas only the glycosylated form was detected in the exosome fraction. This finding is consistent with the cleaved form of PC-1 present in human urinary exosomes. While the role of Pc-1 in extracellular signaling. Alternatively, exosomes if in close proximity of cilia as shown in vitro (33) could interact, fuse and consequently, induce longer cilia with profound impact on mechanosignaling and tubular integrity.

The spectrum of extrarenal phenotypes in the Pkd1TAG mice closely recapitulates that of human ADPKD. Indeed, the high frequency of hepatic cysts in Pkd1TAG mice affecting mainly females is reminiscent of ADPKD. Cysts affecting intrahepatic bile ducts are consistent with the endogenous pattern of Pkd1 expression (14,16) and likely due to enhanced transgene expression in Pkd1TAG mice. The systematic increased fibrosis surrounding the biliary ducts in Pkd1TAG mice indicated that fibrosis precedes cyst formation. Furthermore, it also suggests that Pkd1 overexpression interferes with the extracellular environment and results in active remodeling of the extracellular matrix. Regions of hepatic cysts and fibrosis were associated with elevated proliferation. Interestingly, such association of liver fibrosis and cyst development has also been observed when Pkd1 gene dosage expression is reduced from a hypomorphic allele (42).

The concomitant features of fibrosis and cyst formation in the liver and in kidneys of Pkd1TAG mice correlated with substantial stimulation of proliferation. Such phenotypic similarities to the SBM transgenic mice (43) produced by targeted c-myc expression prompted analysis of c-myc expression in liver and kidneys of Pkd1TAG mice. This study demonstrates that Pkd1 overexpression activates c-myc in both tissues and with a higher signal in cysts. Hence, it is likely a critical component of this signaling event. While the molecular mediators immediately downstream of Pkd1 protein are not yet delineated, c-myc appears to play a central role in the signaling pathway cascade triggered by Pkd1.

Cardiovascular anomalies are the most prevalent non-cystic extrarenal manifestation of ADPKD and of Pkd1TAG mice. Pkd1TAG mice structural cardiac defects are consistent with enhanced Pkd1 transgene expression following the Pkd1 endogenous pattern. We and others have shown that endogenous Pkd1 expression was high in the aortic arch, valve leaflets,
atrioventricular cushion, and low in myocardium of wild-type mice (8,14–16,44). Accordingly, the generalized cardiac anomalies in Pkd1TAG transgenic mice included frequent left-ventricular hypertrophy, thickening of the myocardial wall associated with significantly increased aortic root dilatation. In addition, the cardiac aortic and mitral valve morphologic anomalies, particularly stenosis and calcification revealed severe functional impact and suggested signs of valvular regurgitation. In fact, this would be consistent with a compensatory mechanism of heart dilatation/ cardiomegaly and increased cardiac output with similar heart rate. In parallel to these anomalies, systemic hypertension in Pkd1TAG mice could be responsible indirectly for the marked aortic insufficiency as well as the cardiac hypertrophy. However, the strong Pkd1 expression in the aortic valve and root is likely to have a direct contributory role. Together, these cardiac and aortic anomalies with important complications are analogous to those of ADPKD patients (45,46).

Probably the most devastating extrarenal manifestation in ADPKD is intracranial aneurysm. Given that Pkd1 is expressed in endothelial cells and vascular smooth muscle (8,47), the presence of cerebral aneurysms in Pkd1TAG was consistent with a primary defect in vascular structure. Similarly, this Pc-1 expression may also be the cause of hypertension independently of renal cystogenesis. Development of cerebral aneurysms in Pkd1TAG mice as in humans is asymptomatic and could be exacerbated by systemic hypertension. However, rupture of aneurysms was detected in a few Pkd1TAG mice at 1 month of age upon very brief exposure, if any, to hypertension. Rupture of cerebral aneurysms was evident by compression of adjacent structures, focal brain ischemia and subarachnoid hemorrhage as well as by morbidity.

Systemic enhanced expression of Pkd1TAG mice leads to abnormalities in various organs/tissues as well as in kidneys. Anomalies in a particular organ of Pkd1TAG mice likely result from direct expression of Pkd1 in this organ per se. Evidence for this direct effect instead of a secondary consequence of renal defects, is provided by the renal-targeted Pkd1 mice, SBPkd1TAG, that essentially displays a renal restricted PKD1/PC-1 would be sufficient to reproduce the ADPKD systemic clinical manifestations. Enhanced Pkd1 gene expression recapitulates a physiologic bona fide murine ADPKD disorder with renal and extrarenal phenotypes. Thus, these transgenic mice may be instrumental for numerous studies including the design of novel therapeutic strategies to modulate in vivo progression of ADPKD.

MATERIALS AND METHODS

Constructs for homologous recombination of Pkd1-BAC clone

The Pkd1-BAC clone from the bacterial host strain DH10B (RecA−; RecBC+) was isolated from a 129/Sv mouse pBe-lo11BAC library (Research Genetics) and was orthologous to the human PKD1 gene as described in (27). To modify the original wild-type Pkd1-BAC by homologous recombination, two constructs were produced in the pLD53.SC-AB BAC recombination vector (54). The first construct was carried out in order to introduce a silent point mutation by substitution of a G to A nucleotide as we did for SBPkd1TAG (27). This substitution created a new EcoRI restriction site in Pkd1 exon 10 that distinguished the transgene from the endogenous gene transcript. The second construct was performed to delete Tsc2 gene body and consisted of two homology arms, the Tsc2 promoter-intron 2 linked directly to Tsc2 exon 42–exon 46 Pkd1 in a BAC recombination vector. The first homology arm was obtained by PCR amplification of 1116 bp fragment (Tsc2 promoter-intron 2) with the primers: 5′-TCAGATGCTGCGGCCCGGGACGCA-3′ (forward Tsc2 promoter) and 5′-GGACAGCATGCTCATGCCCTATGCAATG (reverse intron2) followed by a restriction enzyme digest Smal–SpHl. The second arm was also generated from a PCR product of 1.2 kb with the following primers: 5′-TTCAGCACA TGCTCATGCC-3′ (reverse Tsc2 intron 40) and 5′-GTCGAATGGGCCATTTACC-3′ (forward Pkd1 exon 46) followed by a SpHl–BamHI restriction digest that produce 0.9 kb from Tsc2 exon 42 to exon 46 Pkd1. Both these arms were introduced into the pLD53.SC-AB BAC recombination vector.

Modification of BAC clones by homologous recombination in Escherichia coli

Each of the two BAC recombination vectors was used in a two-step RecA strategy for BAC modifications, as previously described (27). Approximately 64 co-integrates were analyzed for each recombination by Southern blot to monitor for appropriate integration event. Two proper co-integrates were chosen for the second recombination event and positive clones from
the resolved BACs were further analyzed by Southern following standard and PFGE using seven probes spanning the entire sequence of the modified standard. The probes were designed in (14,27): (a) genomic exon 1; (b) genomic exon 2–3; (c) genomic exon 7–15; (d) cDNA exon 15–20; (e) cDNA exon 25–34; (f) cDNA exon 36–45; (g) genomic exon 45–46. Subsequently, modified Pkd1 gene regions were sequenced to confirm that the intended recombined BAC clones were achieved. Following these two modifications the BAC clone was referred as Pkd1TAG-BAC.

Production and analysis of Pkd1TAG-BAC transgenic mice

The Pkd1TAG-BAC (40–50 μg of DNA) was digested with the restriction enzymes MluI and NotI. The ~75 kb transgene fragment was isolated on low melt agarose by PFGE. The Pkd1TAG linearized DNA fragment was purified as in (27). The fragment preparation was verified for integrity by PFGE and was microinjected as described (28). Transgenic founder mice and progenies were identified by Southern analysis of DNA from tail biopsies digested with HindIII, EcoRI and/or KpnI and, respectively, hybridized with the 7 mouse Pkd1 probes to verify integrity of the transgene. The 5′ transgene integrity was verified by a polymorphism at 4.47 kb of the murine Pkd1 gene specific for 129/sv that can be distinguished from the C57BL/6J and CBA/J inbred strains that served to produce the transgenic mice. PCR amplification of genomic DNA from transgenic mice at the polymorphic region was carried out with the primers: (forward) 5′-CTGCACCCA TGTCAGGTGTA-3′ and (reverse) 5′-GTGTCAGGTGTA GCCAACTC-3′ and expected fragment for 129sv, C57Bl6/J and CBA/J are 100, 133 and 113 bp, respectively. All transgenic mouse lines were backcrossed onto C57Bl6/J. Animal procedures were approved by the Animal Care Committee of the IRCM and conducted according to the guidelines of the Canadian Council on Animal Care.

RNA expression analysis

Total RNA was extracted from various tissues, including kidneys, lungs, spleen, brain, heart, pancreas and liver, of 4–9-month-old animals using guanidium thiocyanate or trizol/chloroform method (55). The integrity of all RNA preparations was monitored by electrophoresis on formaldehyde-agarose gels prior to analysis (56).

Pkd1TAG transgene expression in all tissues was analyzed by quantitative real-time PCR. All RNA samples were reversed transcribed as previously described (10). The primers used were as follows: 5′-TCAATTGCTCCGGCCGCTG-3′ (forward Pkd1 exon 1) and 5′-CCAGCGTCTGAAGTAGGTTGTGGG-3′ (reverse S16 exon 2) that detect endogenous and transgene. The S16 ribosomal gene product served as an internal control with the following primers: 5′-AGGAGCGATTGTGCTTGTTG-3′ (forward S16 exon 3) and 5′-GCTACCAGGGCCTTGAGATG-3′ (reverse S16 exon 4).

Protein expression analysis

Total protein extracts from multiple organs, kidney, lung, brain, liver, pancreas and heart, were produced in RIPA buffer (20 mM Tris, pH 8; 2 mM EDTA; 150 mM NaCl; Triton 0.5%) supplemented by cocktail of inhibitors of proteases (1 ×, SIGMA) and PMSF (1 mM). Protein concentration was measured by Bradford assay (BioRad). Total protein extracts (40 or 80 μg) was reduced in NuPAGE loading dye for 7 min at 65°C and loaded on 4–12% NuPage Bis–Tris gel using 1X MES SDS Invtrogen migration buffer. Urinary proteins were prepared as described (32,33). In brief, urine was supplemented with cocktail inhibitors, centrifuged to remove cell debris and supernatant was considered total urinary fraction (T). Total fraction was then centrifuged, the new supernatant is the S1 fraction and pellet resuspended for centrifugation, resulting in non-clustered uromodulin (S2) in the supernatant and the exosomes (Exo) in the pellet. Total urinary and S1 fractions (50 μg) were precipitated by trichloroacetic acid and resuspended in loading dye. Exosomes were directly re suspende in loading dye with half the volume analyzed under the native form and the other half following deglycosylation with 750U of PNGase (New England Biolabs). Proteins were transferred on PVDF membranes that were hybridized with mouse monoclonal antibodies, 7e12 against N-terminal of polycystin-1 (51) and secondary goat anti-mouse IgG (SIGMA) coupled to horseradish peroxidase or with mouse monoclonal antibody Gapdh (Abcam, Cambridge, MA) and revealed with Amersham ECL Advance Plus (GE HealthCare) on X-Omat films.

Renal and cardiac physiological function analysis

Renal function was evaluated by analysis of urine samples collected in metabolic cages for 24 h with non-restricted water supply. Urinary urea nitrogen, creatinine and ion concentrations were measured with a CX9 Beckmann apparatus, whereas urine osmolality was determined with a radiometer. Proteinuria was qualitatively analyzed using 50 μg of total urinary protein on a 10% SDS–PAGE stained with Coomassie blue as described (57).

Echocardiographic measurements on transgenic and control mice were carried out using the Vevo 770 (Visualsonics) with a probe transducer of 35 MHz as in (58). Preheated ultrasound transmission gel (Aquasonic 100) was placed on heart region to provide acoustic coupling between the probe and the mice. Cardiac dimensions including aortic root and left ventricle wall thickness and diameter were monitored in the M-mode. Functional analysis of stroke volume and cardiac output was
determined from aortic Doppler measurements, whereas the heart rate was obtained from ECG. Mitral and aortic valvular velocities upstream and downstream were measured using Doppler to evaluate their functional efficiency.

Morphologic, histologic and cellular analysis

Different tissues including kidneys, heart, pancreas, lung, liver, brain, spleen were analyzed from adult transgenic mice aged between 1 and 20 months. Four-micrometer-thick paraffin sections of paraformaldehyde- or formalin-fixed tissues were deparaffinized and stained with hematoxylin and eosin. Detection of calcium deposits was monitored with specific stains by Alizarin red or Von Kossa and fibrosis by Sirius red. Cysts from renal tissue were immunostained to identify the origin of the nephron segment affected. Sections (4 μm) were incubated with one primary antibody α-calbindin (Sigma) for collecting ducts, lycopersicon esculentum lectin (Vector Lab) for distal convoluted tubules and lotus tetragonolobus lectin linked to fluorescein (Vector Lab) for proximal tubules and then with secondary antibodies a goat α-mouse IgG Alexa 255 (Invitrogen) and AMCA-streptavidin (Vector Lab). Then with secondary antibodies a goat linked to fluorescein (Vector Lab) for proximal tubules and collecting ducts, lycopersicon esculentum lectin (Vector Lab) incubated with one primary antibody a-acetylated tubulin (Sigma) as primary antibody and goat α-mouse IgG Alexa 255 (Invitrogen) as secondary antibody and slides were mounted with vextashield and DAPI. Analysis of cellular c-myc expression and proliferation using Ki67 marker was performed by immunohistochemistry (59). Kidney and liver adult mice fixed tissues from transgenic and control mice were incubated with rabbit c-myc (Upstate) or rabbit Ki67 (Novocastra) O/N at 4°C, then for 1 h with secondary anti-rabbit biotinylated antibody and signal detected using Vectastain ABC kit (Vector Lab) and diaminobenzidine. Proliferation rate was evaluated according to the number of renal tubules normal (control) or cystic (Pkd1TAG) with 0, 1, ≥2 nuclei positive for Ki67 on multiple non-overlapping images (≥5) using Axiophot (Zeiss) microscope. Vascular analysis was performed from anesthetized animals perfused intracardiac with paraformaldehyde and Microfil media (Flow Tech, Inc., MA, USA). Fixation was carried out overnight and tissues collected were cleared with methyl salicylate and photograph with Nikon SMZ-U using Q-capture software.

Statistical analysis

Values were expressed as mean ± standard deviation. A two-tailed unpaired Student’s t-test was used for statistical analysis; P < 0.05 was considered significant.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We thank Dr V. Gattone and the Indiana University School of Medicine EM Center and the generous support of that facility by the Polycystic Kidney Disease Foundation. The authors thank K. Jani for technical support and Dr C. Deschepper for critical reading of the manuscript.

Conflict of Interest statement. None declared.

FUNDING

This work was supported by the Canadian Institutes of Health Research (CIHR) [MOP-81325 to M.T.] and a CIHR Frederick Banting and Charles Best studentship to A.K. and a Fonds de la Recherche en Santé du Québec (FRSQ) studentship to M.C.

REFERENCES

