Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS

Ines Taes1,2, Mieke Timmers1,2, Nicole Hersmus1,2, André Bento-Abreu1,2, Ludo Van Den Bosch1,2, Philip Van Damme1,2,3, Johan Auwerx4 and Wim Robberecht1,2,3,*

1Experimental Neurology, Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven (KU Leuven), Leuven, Belgium, 2Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium, 3Neurology, University Hospitals Leuven, Leuven, Belgium and 4Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Received October 28, 2012; Revised and Accepted January 24, 2013

Defects in axonal transport are thought to contribute to the pathogenesis of neurodegenerative disease. Because α-tubulin acetylation facilitates axonal transport, inhibition of the α-tubulin deacetylating enzymes, histone deacetylase 6 (Hdac6) and silent information regulator 2 (Sirt2), is thought to be an interesting therapeutic strategy for these conditions. Amyotrophic lateral sclerosis (ALS) is a one such rapidly progressive and fatal neurodegenerative disorder, in which axonal transport defects have been found in vitro and in vivo. To establish whether the inhibition of Hdac6 or Sirt2 may be of interest for ALS treatment, we investigated whether deleting Hdac6 or Sirt2 from the superoxide dismutase 1, SOD1G93A mouse affects the motor neuron degeneration in this ALS model. Deletion of Hdac6 significantly extended the survival of SOD1G93A mice without affecting disease onset, and maintained motor axon integrity. This protective effect was associated with increased α-tubulin acetylation. Deletion of Sirt2 failed to affect the disease course, but also did not modify α-tubulin acetylation. These findings show that Hdac6, rather than Sirt2, is a therapeutic target for the treatment of ALS. Moreover, Sirt2 appears not to be a major α-tubulin deacetylase in the nervous system.

INTRODUCTION

Axonal transport defects are thought to contribute to the pathogenesis of neurodegenerative disorders and restoring transport is suggested to be a therapeutic strategy. Post-translational modification of microtubules is a major regulator of axonal transport. One such modification, acetylation of α-tubulin, has been studied extensively in neurodegeneration. It promotes axonal transport by recruiting the molecular motor proteins kinesin-1 and cytoplasmic dynein to microtubules (1,2). Decreased acetylation of α-tubulin underlies the transport defects in Huntington’s disease (HD) and Charcot–Marie–Tooth disease (CMT) (1,3). Moreover, neuroprotective effects of genetic or pharmacological inhibition of Hdac6 and Sirt2, the two major α-tubulin deacetylases, have been reported in models of HD, CMT and Parkinson’s disease (PD) (1,3–6). However, these enzymes have several other functions in the cell. For instance, Sirt2 has recently been suggested to play a role in programmed necrosis (7). In particular however, Hdac6 plays a major role in the degradation of misfolded proteins that play a causal role in the mechanism of neurodegeneration. It can bind ubiquitinated proteins and dynactin simultaneously (8). It thus enhances transport of ubiquitinated proteins by the cytoplasmic dynein motor to the microtubule-organizing center where these are degraded through the autophagy machinery (9). This ubiquitin-dependent function of Hdac6 is dependent upon the α-tubulin deacetylase activity of this enzyme (8,9). Thus, deacetylase inhibition may have deleterious effects as well. It is therefore necessary to evaluate the net effect of the inhibition of these multifunctional enzymes before accepting them as favorable therapeutic targets.

Amyotrophic lateral sclerosis (ALS) is a progressive, incurable and fatal condition characterized by the loss of upper and lower motor neurons. Its molecular pathogenesis is multifactorial and modified by non-neuronal cells (10,11). In animal models of ALS, axonal transport defects are present early in life, well before the onset of clinical deficits (12,13). The relevance of axonal transport dysfunction for human ALS is

*To whom correspondence should be addressed at: Laboratory of Neurobiology, Research Group Experimental Neurology, O&N IV Herestraat 49, box 912, B-3000 Leuven, Belgium. Tel: +32 16373188 or +32 16330762; Fax: +32 16330770; Email: wim.robberecht@vib-kuleuven.be

© The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
demonstrated by the occurrence of spheroids, axonal swellings packed with filamentous material, in familial and sporadic ALS (14,15). In order to elucidate whether deacetylase inhibitors may be a promising avenue for intervention in ALS, we investigated the effect of \(\text{Hdac6} \) and \(\text{Sirt2} \) deletion on the motor neuron degeneration in the superoxide dismutase 1, \(\text{SOD1G93A} \), mouse model of ALS.

RESULTS

\(\text{Hdac6} \) or \(\text{Sirt2} \) knockout does not affect neuromuscular function in mice

In this study, we have used \(\text{Sirt2} \) knockout (KO) mice, obtained by mating conditional \(\text{Sirt2} \) KO mice (16) with CMV-Cre mice, and \(\text{Hdac6} \) KO mice (17). We confirmed the absence of Hdac6 and Sirt2 protein from nervous tissues of \(\text{Hdac6} \) KO and \(\text{Sirt2} \) KO mice, respectively (Fig. 1A and B). In wild-type mice, mainly the smaller 39 kDa isoform of Sirt2 was expressed as reported before (18). Analysis of Sirt2 mRNA expression levels revealed a complete loss of Sirt2 in homozygous \(\text{Sirt2}^{-/-} \) KO mice and a \(\sim 50\% \) decrease in heterozygous \(\text{Sirt2}^{+/+} \) mice compared with control littermates (Fig. 1C). As a result of the location of the \(\text{Hdac6} \) gene on the X-chromosome, there is variable protein expression in heterozygous females as a result of lyonization, and male mice—who share only one X-chromosome—are either non-transgenic or full KO. Therefore, no heterozygous \(\text{Hdac6} \) KO mice were used in this study.

We first excluded that the deletion of either \(\text{Hdac6} \) or \(\text{Sirt2} \) results in a neuromuscular phenotype on itself. Motor performance was evaluated using an accelerating rotarod and was not different between \(\text{Hdac6} \) KO mice and control mice (Supplementary Material, Fig. S1A) or between \(\text{Sirt2} \) KO and control mice (Supplementary Material, Fig. S1B). The compound muscle action potential (CMAP), an electrophysiological measure of neuromuscular innervation, of \(\text{Hdac6} \) KO and \(\text{Sirt2} \) KO mice was not different from control mice (Supplementary Material, Fig. S1C and D). To exclude more subtle changes, we quantified the number of neurons in the ventral horn of lumbar spinal cord as well as the fraction of innervated neuromuscular junctions (NMJs) in the gastrocnemius muscle. No differences in these parameters were detected (Supplementary Material, Fig. S2).

Effect of deletion of \(\text{Hdac6} \) on the course of motor neuron degeneration in \(\text{SOD1G93A} \) mice

\(\text{Hdac6} \) KO mice were crossbred with \(\text{SOD1G93A} \) mice. As disease onset and survival of \(\text{SOD1G93A} \) mice vary between litters and genders (19) and female \(\text{Hdac6}^{-/-} \) mice do not have female control littermates within the same litter, only male mice were included in this study. Age at disease onset, defined by failure on the paw grip endurance (PaGE) test, was not affected by the absence of Hdac6: it was \(132 \pm 2 \) days for \(\text{SOD1G93A/Hdac6}^{+/+} \) mice \((n = 25)\) and \(135 \pm 2 \) days for \(\text{SOD1G93A/Hdac6}^{-/-} \) mice \((n = 26)\) (Fig. 2A). In contrast, deletion of \(\text{Hdac6} \) significantly prolonged survival of \(\text{SOD1G93A} \) mice from \(150 \pm 2 \) days for \(\text{SOD1G93A} \) mice.
Hdac6+/ mice (n = 28) to 160 ± 3 days for SOD1G93A/Hdac6−/− mice (n = 29) (P = 0.008) (Fig. 2B). Median survival was increased from 145 days for SOD1G93A/Hdac6+/+ mice to 159 days for Hdac6-deficient SOD1G93A mice. This effect may appear modest, but it should be noted that survival after disease onset was increased with 60% from 15.7 ± 1.1 days for SOD1G93A/Hdac6+/+ to 25.1 ± 2.7 days for SOD1G93A/Hdac6−/− mice (P = 0.003) (Fig. 2C).

To confirm the survival benefit observed, we studied the CMAP in age-matched (130 days of age), symptomatic littermates, and quantified the innervation of their NMJs as well as the remaining neurons in the ventral spinal cord. CMAP amplitudes in SOD1G93A/Hdac6−/− mice were significantly higher compared with control SOD1G93A/Hdac6+/+ mice (Fig. 2D, P = 0.017). Consistent with this increased function, NMJ innervation of the gastrocnemius muscle was better preserved in SOD1G93A/Hdac6−/− mice (47% complete innervation) compared with controls (32% complete innervation) [Fig. 2E, odds ratio (OR) = 0.535 (0.429–0.667), P < 0.001], and the number of remaining neurons in the ventral horn of SOD1G93A/Hdac6−/− mice was significantly higher than in SOD1G93A/Hdac6+/+ mice (Fig. 2F, P = 0.006). This protective effect tended to be more pronounced for large neurons (>400 μm²: +60%; 250–400 μm²: +50%) than small neurons (200–250 μm²: +38%; 150–200 μm²: +18%).

The beneficial effects observed in the SOD1G93A/Hdac6−/− mice were associated with significantly increased levels of α-tubulin acetylation in the spinal cord (P = 0.035), sciatic nerve (P = 0.021) and brain (P = 0.005) (Fig. 3 and Supplementary Material, Fig. S3). The expression of the SOD1G93A transgene was not affected by the deletion of Hdac6 and thus cannot account for the increase in survival of SOD1G93A/Hdac6−/− mice (Fig. 3A and Supplementary Material, Fig. S3A).

These results indicate that Hdac6 is a major α-tubulin deacetylase in the nervous system and that absence of Hdac6 does not induce neuromuscular abnormalities. Deletion of Hdac6 from the SOD1G93A mouse significantly slowed the progression of motor neuron degeneration, suggesting that in this condition the beneficial effects of the absence of this enzyme (e.g. on axonal transport) outweigh its hazardous effects (e.g. on autophagy).
Effect of deletion of Sirt2 on the course of motor neuron degeneration in SOD1^{G93A} mice

To study the effect of Sirt2 deletion, we crossed SOD1^{G93A} mice with Sirt2 KO mice. In contrast to what was observed for Hdac6, Sirt2 deletion did not affect disease onset or survival of SOD1^{G93A} mice (Fig. 4A and B). In line with this lack of effect on behavioral disease parameters, we did not find any difference in CMAP amplitude or number of remaining neurons in the ventral spinal cord of symptomatic SOD1^{G93A}/Sirt2^{+/-} mice and SOD1^{G93A} mice deficient for Sirt2 (Fig. 4C and D). Reduction of Sirt2 did not change SOD1^{G93A} expression (Fig. 3A and Supplementary Material, Fig. S3A).

To further explore the discrepancy between the effects of Hdad6 KO versus Sirt2 KO, we studied the effect of Sirt2 deletion on the acetylation of α-tubulin in end-stage SOD1^{G93A} mice. In contrast to what we found in Hdad6-deficient mice, we did not find any difference in the level of acetylated α-tubulin upon deletion of Sirt2 (Fig. 3 and Supplementary Material, Fig. S3). We confirmed this lack of effect at an earlier disease stage in age-matched (160 days of age) symptomatic littermates (Supplementary Material, Fig. S4). To exclude a confounding effect of the presence of SOD1^{G93A} and to elucidate whether Sirt2 actually regulates α-tubulin acetylation in the nervous system at all, we analyzed α-tubulin acetylation in spinal cord, brain and sciatic nerve of Sirt2 KO mice. Surprisingly, but consistent with the results obtained, no differences in α-tubulin acetylation were present (Supplementary Material, Fig. S5). To exclude that the absence of Sirt2 was compensated for by upregulation of Hdad6, we quantified Hdad6 expression in 80-day-old and 250-day-old Sirt2 KO mice, but found no alteration of Hdad6 mRNA in spinal cord and brain (Supplementary Material, Fig. S6).

These data suggest that although Sirt2 is clearly expressed in the nervous system (Fig. 1A), its contribution to the regulation of α-tubulin acetylation in this tissue is minor. Deletion of Sirt2 does not induce neuromuscular abnormalities on itself and also fails to modify the disease course in the SOD1^{G93A} mouse.

DISCUSSION

Inhibitors of Hdad6 and Sirt2 have been suggested to be potential treatments for neurodegenerative diseases as they increase...
the acetylation of lysine at position 40 of α-tubulin. Increased acetylation at this site promotes the recruitment of the molecular motors kinesin-1 and cytoplasmic dynein (1,2), and facilitates intracellular trafficking and axonal transport. Defects in axonal transport have been implicated in the pathogenesis of neurodegenerative disorders characterized by protein accumulations [reviewed in (20)]. Protein accumulations can arise from deregulated transport, and in turn block the transport of other proteins, organelles and vesicles. Hence, improving axonal transport by inhibiting α-tubulin deacetylation is thought to be a strategy to treat these diseases. Genetic and pharmacological inhibitions of Hdac6 and Sirt2 have been studied in a variety of neurodegenerative disorders, such as HD, PD, Alzheimer’s disease (AD), spinal and bulbar muscular atrophy (SBMA) and CMT (1,3,21–23), but these studies have generated contradictory results. In models of AD and SBMA, Hdac6 activation rather than inhibition was beneficial, (22,23). In contrast, in a model of HD, Hdac6 inhibition rescued the impaired transport of the brain-derived neurotrophic factor (BDNF) in striatal neurons in vitro (1). However, in an in vivo mouse model of HD, genetic deletion of Hdac6 failed to modify disease progression or BDNF transport (24). In a CMT mouse model, Hdac6 inhibition reversed the phenotype in vivo and rescued the axonal transport defects (3). In cellular and Drosophila models of PD and HD, inhibition of Sirt2 was reported to have neuroprotective effects (4–6). These variable results may be explained by the fact that these enzymes have several different functions and several different substrates in the cell. This is particularly true for Hdac6, which plays an important role in autophagy through its ubiquitin-binding ability (8,9). The involvement of this enzyme in both axonal transport and misfolded protein degradation argues for a dual role of this protein in neurodegeneration. Depending on the type of neurodegeneration and perhaps even the disease stage, the importance of enhanced autophagy may outweigh the importance of restored axonal transport.

Ever since axonal swellings—resulting from neurofilament accumulations—have been observed in familial and sporadic ALS (14,15), defects in axonal transport are intensively studied in ALS. In order to elucidate whether increasing axonal transport through α-tubulin deacetylase inhibitors may...
be a promising avenue for intervention in this disease, we investigated the effect of Hdac6 and Sirt2 deletion on the motor neuron degeneration in the SOD1

The absence of the Hdac6 protein did not result in a neuromuscular phenotype on behavioral and physiological levels. This is consistent with previous findings of Bobrowska et al., who tested motor coordination and balance, forelimb grip strength and spontaneous motor activity of Hdac6 KO mice, and found no difference with control mice (24). Interestingly, no differences were observed in aggregate load of mutant huntingtin, suggesting that the role of Hdac6 in huntingtin aggregate clearance is minor or compensated by another protein. Although genetic depletion of Hdac6 indeed resulted in highly increased levels of acetylated α-tubulin, this did not modify behavioral phenotypes in HD mice. In contrast, we found that the absence of Hdac6 successfully modified the disease course in the SOD1

In vivo differentiation of axonal transport in sensory neurons (3), and techniques for measuring axonal transport in adult mouse motor neurons

As deletion of Hlac6 from the SOD1

Disease onset and survival

To determine disease onset in SOD1

Nerve conduction study

Mice were anesthetized with isoflurane and placed on a heating pad to maintain body temperature. Nerve conduction was measured using sub-dermal needle electrodes (Technomed Europe) and a Medelec EMG monitor (Medelec Vickers/Modul USA). To measure the compound muscle action potential (CMAP), the stimulating electrode was placed at the sciatic notch and the recording electrode at the level of the gastrocnemius muscle.

Histological analyses

Mice were sacrificed using CO₂ immediately followed by dissection of the gastrocnemius muscle, which was instantly

Methods

Additional information is provided in Supplementary Methods.

Transgenic mice

Sirt2 KO mice, obtained by mating conditional Sirt2 KO mice (16) with CMV-Cre mice, and Hdad6 KO mice (17) were maintained in a C57Bl6/J background. Mice overexpressing human SOD1

In conclusion, these findings suggest that inhibition of Sirt2 does not provide beneficial effect on ALS in rodents in vivo, in contrast to what has been reported in in vitro and Drosophila models of PD (5) and HD (4,6). In contrast, Hdad6 inhibition may be an appealing therapeutic strategy in ALS, as deletion of Hdad6 attenuates motor neuron degeneration in the SOD1

Histological analyses

Mice were sacrificed using CO₂ immediately followed by dissection of the gastrocnemius muscle, which was instantly

Methods

Additional information is provided in Supplementary Methods.

Transgenic mice

Sirt2 KO mice, obtained by mating conditional Sirt2 KO mice (16) with CMV-Cre mice, and Hdad6 KO mice (17) were maintained in a C57Bl6/J background. Mice overexpressing human SOD1

In conclusion, these findings suggest that inhibition of Sirt2 does not provide beneficial effect on ALS in rodents in vivo, in contrast to what has been reported in in vitro and Drosophila models of PD (5) and HD (4,6). In contrast, Hdad6 inhibition may be an appealing therapeutic strategy in ALS, as deletion of Hdad6 attenuates motor neuron degeneration in the SOD1

Histological analyses

Mice were sacrificed using CO₂ immediately followed by dissection of the gastrocnemius muscle, which was instantly
frozen in isopentane cooled with liquid nitrogen. To determine NMJ innervation, 40 μm thick longitudinal sections were stained with Alexa 555 conjugated α-bungarotoxin (1/500; Invitrogen) and rabbit anti-NF200 (1/200; Sigma) to visualize the axon innervating the NMJ. More than 100 NMJs spread over three to four sections of the gastrocnemius muscle were scored per animal. After transcardiac perfusion with phosphate buffered saline (PBS) and PBS with 4% paraformaldehyde (PFA), the lumbar region of the spinal cord was dissected, further fixed with 4% PFA, dehydrated in 30% sucrose solution and embedded in OCT medium (VWR). Sixty cryosections of 20 μm thickness each were made. Every sixth cryosection was stained with cresyl violet (Sigma) and used for quantitative analysis of the number of neurons. Thus, in total 10 sections were analyzed per spinal cord covering a range of 1.2 mm. At ×10 magnification, the area of normal appearing neurons with nucleoli in the ventral horn was calculated using AxioVision (version 4.8, Carl Zeiss) and the number of neurons in different size groups was determined.

Statistics
Analyses were performed using SPSS 16.0.2 software. Log-rank was used to analyze survival and disease onset; data from accelerating rotarod were analyzed by repeated measures ANOVA. Univariate ANOVA was applied for neuron counts. Student’s t-test or one-way ANOVA was used for analyses of nerve conduction, disease duration, mRNA expression levels and protein expression levels. Chi-square test Pearson uncorrected was used to analyze the mRNA expression levels and protein expression levels.

Study approval
All animal experiments were approved by the local Ethical Committee of the University of Leuven, Belgium (P020/2010).

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS
The authors thank Dr Yao Tso-Pang from the Department of Pharmacology and Cancer Biology, Duke University (Durham, USA) for providing the Hdac6 KO mice.

Conflict of Interest statement. None declared.

FUNDING
This work was supported by grants from the University of Leuven (KU Leuven) (GOA/11/014); the Interuniversity Attraction Pole (IUAP) program P7/16 of the Belgian Federal Science Policy Office; the European Community’s Health Seventh Framework Programme (FP7/2007-2013 under grant agreement 259867); the Frick Foundation for ALS Research, ALS Therapy Alliance; the Fund for Scientific Research, Flanders (FWO-F) (G.0440.12N); the Ecole Polytechnique Fédérale de Lausanne; the EU Ideas program (ERC-2008-AdG-23118); L’Association Française contre les Myopathies (14471); the E von Behring Chair for Neuromuscular and Neurodegenerative Disorders (to W.R.); the Agency for Innovation by Science and Technology (to J.A.); the Fund for Scientific Research Flanders (FWO-F) (to P.V.D.); the Velux Stiftung; and the Swiss National Science Foundation (31003A-12473).

REFERENCES

