Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis

Elisabetta Flex1,†, Mamta Jaiswal3,‡, Francesca Pantalone1,†, Simone Martinelli1,‡, Marion Strullu4,7,‡, Eyad K. Fansa3,‡, Aurélie Caye4,7, Alessandro De Luca8, Francesca Lepri9, Radovan Dvorsky2, Luca Pannone1, Stefano Paolacci1, Si-Cai Zhang3, Valentina Fodale1, Gianfranco Bocchinfuso10, Cesare Rossi11, Emma M.M. Burkitt-Wright12, Andrea Farrotti10, Emilia Stellacci1, Serena Cecchetti2, Rosangela Ferese8, Lisabianca Bottero1, Silvana Castro13, Odile Fenneteau5, Benoît Brethon6, Massimo Sanchez2, Amy E. Roberts14, Helger G. Yntema15, Ineke Van Der Burgt15, Paola Cianci16, Marie-Louise Bondeson17, Maria Cristina Digilio9, Giuseppe Zampino18, Bronwyn Kerr12, Yoko Aoki19, Mignon L. Loh20, Antonio Palleschi10, Elia Di Schiavi13,‡, Alessandra Carè1, Angelo Seldicorni16, Bruno Dallapiccola9, Ion C. Cirstea3,21, Lorenzo Stella10, Martin Zenker22, Bruce D. Gelb23,24,25, Hélène Cavé4,7,§, Mohammad R. Ahmadian3,§ and Marco Tartaglia1,§,*

1Dipartimento di Ematologia, Oncologia e Medicina Molecolare and 2Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome 00161, Italy, 3Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, Düsseldorf 40225, Germany, 4Genetics Department, 5Biological Hematology Department and 6Pediatric Hematology Department, Robert Debré Hospital, Paris 75019, France, 7INSERM UMR_S940, Institut Universitaire D’Hématologie (IUH), Université Paris-Diderot Sorbonne-Paris-Cité, Paris 75010, France, 8Laboratorio Mendel, Istituto di Ricostruzione e Cura a Carattere Scientifico-Casa Sollievo Della Sofferenza, Rome 00198, Italy, 9Ospedale Pediatrico ‘Bambino Gesù’, Rome 00165, Italy, 10Dipartimento di Scienze e Tecnologie Chimiche, Università ‘Tor Vergata’, Rome 00133, Italy, 11UO Genetica Medica, Policlinico S.Orsola-Malpighi, Bologna 40138, Italy, 12Genetic Medicine, Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK, 13Istituto di Genetica e Biofisica ‘A. Buzzati Traverso’, Consiglio Nazionale Delle Ricerche, Naples 80131, Italy, 14Department of Cardiology and Division of Genetics, and Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA, 15Department of Human Genetics, Radboud University Medical Centre, and Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen 6500, The Netherlands, 16Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy, 17Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden, 18Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome 00168, Italy, 19Department of Medical Genetics, Tohoku University School of Medicine, Sendai 980-8574, Japan, 20Department of Pediatrics, Benioff Children’s Hospital, University of California School of Medicine, and the Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA, 21Leibniz Institute for Age Research, Jena 07745, Germany, 22Institute of Human Genetics, University Hospital of

†To whom correspondence should be addressed at: Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy. Tel: +39 0649902569; Fax: +39 0649902850; Email: marco.tartaglia@iss.it
‡These authors contributed equally to this project.
§These authors contributed equally to this project.
*Present address: Institute of Bioscience and BioResources, Consiglio Nazionale delle Ricerche, Naples 80131, Italy.
†These authors contributed equally as the senior investigators for this project.

© The Author 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in \(\text{RRAS} \), a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic \(\text{RRAS} \) mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of \(\text{RAS} \) genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant previously linked to the RASopathy-causing \(\text{SHOC2S2G} \) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.

INTRODUCTION

Signalling elicited by activated cell surface receptors and transduced through RAS proteins to the RAF/MEK/ERK and PI3K/AKT cascades is central to cell proliferation, survival, differentiation and metabolism (1,2). Owing to this nodal role, enhanced traffic through RAS proteins and their downstream effectors has been established to have a major impact on oncogenesis (3,4). This signalling network also controls early and late developmental processes (e.g. organogenesis, morphology determination, synaptic plasticity and growth), and germline mutations in a number of genes encoding transducers and modulatory proteins participating in the RAS/MAPK signalling pathway have been causally linked to Noonan syndrome (NS) (5), one of the most common diseases affecting development and growth, and a group of clinically related syndromes, the so-called RASopathies (6–8). In this family of disorders, constitutional dysregulation of RAS signalling can be caused by enhanced activation of HRAS, KRAS and NRAS (RAS proteins hereafter), aberrant function of upstream signal transducers or effectors (PTPN11/SHP2, SOS1, SHOC2, RAF1, BRAF, MAP2K1/MEK1 and MAP2K2/MEK2) or inefficient down modulation by feedback mechanisms (CBL, NF1 and SPRED1). More recently, \(\text{RIT1} \), encoding a monomeric GTPase structurally linked to RAS proteins, was identified as disease gene implicated in NS (9), extending the concept of ‘RASopathy gene’ to a transducer that contributes to signal propagation through RAS effector pathways but does not belong to the RAS/MAPK signalling backbone.

Clinical manifestations of RASopathies include postnatal reduced growth, a wide spectrum of cardiac defects, facial dysmorphism, ectodermal and skeletal anomalies and variable cognitive deficits (5,8,10). Consistent with the key role of most RASopathy genes in oncogenesis, these disorders are also characterized by variably increased risk for certain haematologic malignancies and other paediatric cancers (6,7,11,12). Most of these conditions are genetically heterogeneous, and the underlying disease gene has not been identified yet for a still significant fraction of cases. Based on the strict mechanistic link between the molecular events controlling development and contributing to oncogenesis, these ‘missing’ genes represent excellent candidate oncogenes/tumour suppressors.

Here, we report that constitutional dysregulation of \(\text{RRAS} \) function is associated with a Mendelian trait within the RASopathy spectrum and that somatically acquired mutations in the same gene occur in an aggressive form of juvenile myelomonocytic leukaemia (JMML), a rare childhood myeloproliferative/myelodysplastic neoplasm representing the archetypal somatic RASopathy (13), rapidly progressing to acute myeloid leukaemia (AML). We also demonstrate that RASopathy-causing \(\text{RRAS} \) mutations are activating and promote signalling perturbation by enhancing stimulus-dependent MEK, ERK and, at a lower extent, AKT phosphorylation.

RESULTS

Identification of candidate disease genes and \(\text{RRAS} \) mutation analysis

While the core of the machinery implicated in RAS signalling has been characterized comprehensively, signal propagation through this network is likely to include a larger number of proteins playing a modulatory or structural role (14), whose aberrant or defective function is expected to perturb development and
contribute to oncogenesis. Based on this assumption, we used a protein interaction/functional association network analysis to select a panel of genes encoding proteins functionally linked to the RAS signalling network as candidates for NS or a related RASopathy (15). Candidate gene selection was based on the use of the previously identified RASopathy genes as ‘seed’ proteins (i.e. proteins used to build the interaction/functional networks), and considering a panel of databases to construct functional subnetworks (Supplementary material, Table S1 and Fig. S1). Sequence scanning of the best candidates in a RASopathy cohort including 96 unrelated subjects negative for mutations in known disease genes allowed the identification of a functionally relevant RRAS change (c.163G>A, p.Val55Met) (Supplementary material, Fig. S2) in an adult subject with clinical features suggestive of NS but lacking sufficient characteristics to allow a definitive diagnosis (Supplementary material, Table S2). Parental DNA was not available for segregation analysis. The mutation was not identified among >400 population-matched unaffected individuals, indicating that it did not represent a common polymorphic nucleotide substitution. This change, rs368625677 (dbSNP 138), had been described in 1/13,006 alleles in the NHLBI Exome Sequencing Project (http://exac.washington.edu/EVS/). Of note, similar frequencies have been reported in the same database for recurrent RASopathy-causing mutations (e.g. c.922A>G in PTPN11, and c.1259G>A in CBL). Mutation analysis was extended to additional 408 patients with NS or a clinically related phenotype tested negative for mutations in the major NS disease genes (see Materials and Methods), allowing to identify one sporadic case heterozygous for a three-nucleotide duplication (c.116_118dup, p.Gly39dup) (Supplementary material, Fig. S2). Parental DNA sequencing of the relevant exon demonstrated the de novo origin of the variant, and STR genotyping confirmed paternity. In this subject, the duplication was documented in DNA obtained from skin fibroblasts, excluding a somatic event restricted to haematopoietic cells. The subject had features reminiscent of NS (Fig. 1A and Supplementary material, Table S2), with onset of AML suspected to represent a blast crisis of JMML (Supplementary material, Table S3 and Fig. S3). In this patient, exome sequencing performed on leukemic and non-leukemic DNA failed to disclose any additional relevant germline/somatic change affecting genes known to be mutated in RASopathies and JMML, as well as genes directly linked to the RAS signalling network, further supporting the causal role of the identified RRAS lesion. Based on this association, the occurrence of RRAS mutations was also explored in a panel of genomic DNAs obtained from bone marrow aspirates/circulating leukocytes of 110 subjects with JMML. Heterozygosity for the previously identified Gly39 duplication and the c.260A>T (p.Gln87Leu) change was observed in two patients with JMML rapidly progressing to AML (Supplementary material, Table S3 and Fig. S3). Both lesions were absent in non-leukemic DNA, indicating their somatic origin (Supplementary material, Fig. S2). These subjects also carried a somatic NRAS mutation, suggesting that the two hits might cooperate with this particularly severe form of disease. Sequencing of isolated JMML myeloid colonies in patient 14385 showed that NRAS and RRAS mutations coexisted in the same progenitors but failed to establish their sequence of appearance during leukaemogenesis, not allowing to discriminate whether the latter was involved in initiation or progression of disease.

Structural analyses

RRAS encodes a 23-kD a membrane-bound monomeric GTPase with 55–60% amino acid identity to RAS proteins (16). This highly conserved structure is flanked by a unique 26-amino acid region at the N-terminus (Fig. 1B). Similarly to the other RAS family proteins, RRAS binds to GTP and GDP with high affinity and specificity and functions as a molecular switch by cycling between active, GTP-bound and inactive, GDP-bound states (17). RRAS is activated by guanine nucleotide exchange factors (GEFs) in response to signals elicited by cell surface receptors. In the GTP-bound state, two functionally conserved regions, switch I and switch II (Fig. 1B), undergo a conformational change enabling RRAS to bind to and activate effector proteins. This interaction is terminated by hydrolysis of GTP to GDP, which is promoted by GTPase-activating proteins (GAPs) and results in switching towards the inactive conformation. Disease-associated RRAS mutations affected residues highly conserved among orthologs and paralogs (Supplementary material, Fig. S4) residing in the GTP-binding pocket (Fig. 1C) and were predicted to be damaging with high confidence (Supplementary material, Table S4). Among them, Gly87, homolog of Gin81 in RAS proteins, is directly involved in catalysis (18,19). The p.Gln87Leu substitution had previously been reported as a rare somatic event in lung carcinoma, and mutations affecting Gin81 are among the most recurrent oncogenic lesions in RAS genes (COSMIC database, http://cancer.sanger.ac.uk/nci/ cancer genome/projects/cosmic/). Likewise, p.Gly39dup altered the G1 motif participating in GTP/GDP binding and GTPase activity (Fig. 1B). Within this motif, Gly12 and Gly13 (Gly38 and Gly39 in RRAS) represent major mutation hot-spots in human cancer (COSMIC database) and account for the majority of germline HRAS mutations causing Costello syndrome (20). Of note, analogous insertions in RAS proteins have been reported in JMML and other malignancies (21–24). In contrast, no somatic/germline RRAS mutation affecting Val29, homolog of Val55 in RRAS, had previously been reported. Val55 side-chain is not directly involved in GTP/GDP binding. GTP hydrolysis or interaction with effectors. However, it has been reported that H-bonds are possible between the backbone of Val29 in HRAS and GDP, which is promoted by GTPase-activating proteins. This interaction is terminated by hydrolysis of GTP to GDP, or as supported by the evidence that the Val29Gly substitution in HRAS accelerates the GDP/GTP exchange in vitro (27).

Molecular dynamics (MD) simulations were performed to predict in silico the effects of p.Val55Met on the structure and dynamics of RRAS (Fig. 2). The mutation was introduced in the available crystallographic structure of RRAS in complex with GDP and Mg2+, and the system was simulated in water for 200 ns. For comparison, MD simulations were also performed using the wild-type protein, which maintained a stable structure along the whole simulation, as expected (Fig. 2A, left panel). In contrast, a dramatic local structural transition extending up to the switch I region (residues 58–64), which mediates effector binding, was documented for the RRASV55M mutant, after ~80 ns (Fig. 2A, right panel). This conformational transition resulted in an increased solvent exposure of Met85, in agreement with the higher hydrophilicity of this residue compared with Val, and was accompanied by the formation of a stable
cluster involving residues Ile^{50}, Met^{55} and Tyr^{58} (Fig. 2A and Supplementary material, Table S5) permitted by the unbranched and long side-chain of Met^{55}. No further significant conformational changes were observed for the remaining interval of the simulation. The major effect of this structural rearrangement was to increase exposure of GDP to the solvent (Fig. 2B), with an almost doubled solvent accessible surface area of the nucleotide after the conformational transition. This structural rearrangement was accompanied by a perturbation of the intermolecular H-bond network stabilizing GDP binding, with loss of the H-bonds between residues at codons 55 and 56, and GDP (Supplementary material, Table S5). Of note, a possible impact of the described structural transition on RRAS binding to GEF proteins, which bind to this region and mediate GDP release, was also noticed. Specifically, we observed that after the conformational transition, the RRAS^{V55M} region implicated in GEF binding populated a structure similar to that assumed in RAS/GEF complexes (Fig. 2C), suggesting a possible enhanced interaction of the disease-associated RRAS mutant with GEFs.

Biochemical and functional characterization of RRAS mutants

Previous studies documented the gain-of-function role of p.Gln87Leu on RRAS function, and MAPK and PI3K/AKT signalling (31). To characterize the impact of p.Val55Met and p.Gly39dup on protein function, we analysed the intrinsic and GEF-accelerated nucleotide exchange reaction of these mutants. Dissociation kinetics analysis demonstrated a dramatically increased intrinsic (RRAS^{G39dup}) and GEF-stimulated (RRAS^{G39dup} and RRAS^{V55M}) dissociation rate of mantGDP, indicating a facilitated nucleotide release in both mutants (Fig. 3A). RAS proteins exhibit low intrinsic GTPase activity that is enhanced by GAPs (32). Assessment of RRAS^{G39dup} and RRAS^{V55M} GTPase activity documented a significantly reduced intrinsic and GAP-stimulated GTP hydrolysis in the former (Fig. 3B) and Supplementary material, Fig. S5). Finally, the interaction of RRAS proteins with various effectors was analysed by fluorescence polarization (Fig. 3C). While RRAS^{WT}, aberrant binding behaviour of the two RRAS mutants was demonstrated, with RRAS^{G39dup} exhibiting an increased binding affinity towards PIK3CA, RAF1, PLCE1 and RASSF5, and RRAS^{V55M} to RALGDS.

To gain further insights into the impact of disease-causing mutations on RRAS functional dysregulation and explore their effects on RAS signalling, the activation state of RRAS proteins

Figure 1. RASopathy-causing and leukaemia-associated RRAS mutations. (A) Facial features of the affected subject (9802) heterozygous for the de novo germline c.116_118dup. (B) RRAS exon–intron arrangement with coding exons as blue boxes. RRAS functional motifs include the GDP/GTP binding domain (G1 to G5, starting from the N-terminus) (red), switch I (light green), switch II (dark green) and hypervariable region (light brown) with the C-terminal CAAX motif (dark brown). The unique N-terminal region is also shown (violet). Location of disease-associated mutations is reported. (C) Position of affected residues on the three-dimensional structure of RRAS in its GDP-bound, inactive state (PDB: 2FN4) (above) and that of non-hydrolysable GTP analogue (GppNHp)-bound, active HRAS (PDB: 5P21) (below). The red surface indicates Gly^{39} and Val^{40} (Gly^{13} and Val^{14} in HRAS), whereas Val^{55} (Val^{29}) and Gln^{87} (Gln^{61}) are shown in blue and green, respectively. GDP is reported as semi-transparent yellow surface.
and extent of signalling through the MAPK and PI3K/AKT cascades were evaluated using transient expression in COS-7 cells. Consistent with the above-mentioned findings, pull-down assays revealed a variably higher proportion of active, GTP-bound form for both mutants (Fig. 4A). Moreover, similarly to what observed under cell-free conditions, RRASG39dup was resistant to GAP stimulation. Expression of both mutants promoted enhanced serum-dependent MEK, ERK and AKT phosphorylation (Fig. 4B), which was more evident in cells expressing the RRASG39dup mutant.

Caenorhabditis elegans studies

To explore further the functional impact of the RASopathy causative RRAS mutants on RAS signalling in vivo, we used the nematode *C. elegans* as an experimental model. In *C. elegans*, the role of ras-1, the RRAS ortholog (33), has not been characterized yet. On the contrary, proper signalling through LET-60, the *C. elegans* ortholog of RAS proteins, has been established to play a crucial role in vulval development (34). In particular, LET-60/RAS is known to mediate the priming signal (LIN-3/EGF) released by the anchor cell to induce the three nearby vulval precursor cells (VPCs), P5.p, P6.p and P7.p, to generate a normal vulva. Enhanced and decreased signalling through LET-60 and the MAPK cassette

results in multiple ectopic pseudovulvae (multivulva phenotype) and a failure in VPC induction (vulvaless phenotype), respectively (34,35).

Multiple transgenic lines were generated to conditionally express the wild-type *ras-1* cDNA (*ras-1WT*) or the allele homologous to the disease-associated three-nucleotide duplication (*ras-1G27dup*), which was identified to occur both as a germline and somatic event. Exogenous RAS-1 expression was induced by heat shock at early L3 larval stage to investigate the effects of the mutant protein on vulval development. Animals expressing *ras-1G27dup* displayed abnormal vulval morphogenesis resulting in the formation of a protruding vulva (Pvl) (Fig. 5A and B and Supplementary Material, Table S6), a phenotype associated with aberrant traffic through different signalling cascades (36,37). Of note, this phenotype had previously been reported in worms expressing the RASopathy causative SHOC2S2G mutant (38). Like those animals, *ras-1G27dup* worms showed decreased egg-laying efficiency (Egl phenotype), and accumulation of larvae inside the mother (Bag-of-worms phenotype). A significantly less penetrant phenotype was observed in animals expressing *ras-1WT*. These findings, together with the observation that animals lacking ras-1 do not exhibit any vulval defect (WormBase, http://www.wormbase.org/, and our personal assessment), supported the gain-of-function role of the mutation on RAS-1 function. At the late L3/early L4 larval stage, vulva

Figure 2. Molecular dynamics (MD) simulations. (A) Structural perturbations promoted by the p.Val55Met substitution as obtained from MD simulations of the RRAS/GDP complex. The wild-type (WT) protein is also shown for comparison. Top panels report the protein structures at the beginning of simulations, whereas the final structures (200 ns) are shown at the bottom. The final structure of RRASG55M is well representative of the last 120 ns of the trajectory. The protein surface of RRAS is shown with GDP (yellow). The mutated residues and those forming a cluster in the simulation of mutated RRAS are coloured as follows: Val55/Met55 (blue), Tyr58 (pink) and Ile50 (cyan). Residues 59–64, which, together with Tyr58, form the switch I region, are coloured in green. (B) Solvent accessible surface of GDP in the MD simulations of wild-type (red) and mutant (blue) RRAS/GDP complexes. (C) Conformation of the loop comprised between Val55/Met55 and Asp59 in wild-type (red) and mutant (blue) RRAS/GDP complexes obtained from MD simulations. GDP is reported as semi-transparent yellow surface. Superimposed conformations of the corresponding loop (residues 29–33) in GDP-bound HRAS (violet) (PDB: 4Q21) and GDP-bound HRAS complexed with SOS1 (cyan) (PDB: 1BKD) are shown for comparison. The side chains of Tyr58 and the corresponding residue in HRAS, Tyr32, are displayed as sticks.
morphogenesis normally begins with the descendants of VPC P6.p detaching from the cuticle and forming a symmetric invagination (Fig. 5C) (34). Animals in which the expression of ras-1WT had been induced at early L3 largely maintained this pattern (17/20). In contrast, in larvae expressing ras-1G27dup, descendants of VPCs P5.p and/or P7.p more frequently detached from the cuticle, resulting in larger and more asymmetric invaginations (10/30). This morphogenesis defect was the earliest detectable effect of the ras-1G27dup allele on vulval development, similarly to that previously documented in transgenic lines expressing SHOC2S2G (38).

Genetic interaction between the RAS-1/RRAS mutant and LET-60/RAS was also investigated. While expression of the RAS-1G27dup mutant was able to exacerbate the multivulva phenotype associated with a hyperactive let-60 allele (n1046), expression of wild-type RAS-1 failed to do so (Table 1). Similarly, a significant, although partial rescue of the VPC induction defect associated with a let-23/EGFR hypomorphic allele (syl) was observed in animals expressing the activating RAS-1G27dup mutant, but not in worms expressing the wild-type counterpart (Table 1). Overall, these experiments provided evidence of a positive modulatory role of the RAS-1/RRAS mutant on LET-60/RAS signalling.

DISCUSSION

Mutations of genes coding for proteins with role in RAS signalling and the RAF/MEK/ERK cascade have been identified as the
molecular cause underlying a group of clinically related developmental disorders, the RASopathies. Here, we used a gene candidacy approach based on large-scale protein–protein interaction/functional network analysis to identify RRAS as a novel gene implicated in a condition with features within the RASopathy spectrum. Disease-causing RRAS mutations are activating and act by maintaining the GTPase in its GTP-bound active state. Aberrant RRAS function was demonstrated to perturb variably intracellular signal flow through the RAF/MEK/ERK cascade, and to a certain extent also the PI3K/AKT pathway. Of note, these gain-of-function mutations are likely to define a novel leukaemia-prone condition. Consistent with this view, the same class of RRAS lesions was identified to occur as acquired somatic event in JMML, characterizing a subset of this myeloproliferative/myelodysplastic disorder with rapid progression to AML.

RRAS shares several biochemical properties with HRAS, NRAS and KRAS, as well as some common function, including stimulation of cell proliferation, survival and transformation (19,39). Despite these similarities, however, previous observations have emphasized the role of RRAS in cell adhesion, spreading and migration, and its modulatory function on effectors distinct from those used by ‘classical’ RAS proteins (40,41). While PI3K/AKT has been recognized as a major effector pathway of RRAS, only a minor impact on MAPK signalling had been reported (41,42). The present in vitro findings provide evidence that disease-associated RRAS mutants enhance the activation of the MAPK cascade, at least in response to specific stimuli. On the other hand, the identification of RRAS as a novel disease gene implicated in a RASopathy disorder further emphasizes the relevance of dysregulated signalling controlling cell spreading and migration in certain features of NS (e.g. congenital heart defects and lymphedema) and JMML (leukocyte infiltration in non-haematopoietic tissues) (43–45).

Caenorhabditis elegans studies provided evidence for a genetic interaction between the RAS-1G27dep/RRASG39dup and
LET-60/RAS in vivo. Specifically, expression of the RAS-1 mutant protein was able to rescue, in part, the VPC induction defect resulting from a hypomorphic LET-23 mutant and enhanced the multivulva phenotype associated with a LET-60 gain-of-function genetic background. No impact of wild-type RAS-1/RRAS expression was observed in both models. We also observed that worms expressing ras-1G27dup displayed abnormal vulval morphogenesis (protruding vulva), possibly resulting from aberrant morphogenetic movements of the VPC descendant cells. Of note, we observed an equivalent phenotype in transgenic lines expressing SHOC2520 (38) and a PTPN11/SHP2 gain-of-function mutant (our unpublished data), suggesting functional equivalence of these mutants. Genetic studies support the view that these vulva defects arise, in part, through perturbation of signalling mediated by the RHO-related GTPase, RAC, which plays a critical role in vulval morphogenesis (37). This finding is in line with the established role of RRAS in RAC signalling (40,41) and with preliminary data indicating enhanced migration and chemotactic capabilities in cells stably expressing the disease-associated RRAS mutants (our unpublished data).

The biochemical characterization of disease-associated RRAS mutations provided strong evidence for the existence of distinct structural and mechanistic effects resulting in an overall enhancement of RRAS signalling. Function of RAS family proteins in signal transduction is controlled by two events, the GDP/GTP exchange and GTP hydrolysis. Any perturbation of these processes can affect dramatically the fine-tuned balance of the GTPase interaction with effectors and signal output. The majority of gain-of-function mutations affecting RAS proteins, including those contributing to oncogenesis, trigger the accumulation of these GTPases in the active state by impairing intrinsic GTPase activity, and/or conferring resistance to GAPs (17). This is also the case of two of the three mutations identified in this study, p.Gly39dup and p.Gln87Leu, the latter corresponding to the p.Gln61Leu in RAS proteins (present study and ref. 18,19). The characterization of the biochemical behaviour of RRASG39dup, however, also demonstrated a dramatic increase in both the intrinsic and GEF-catalysed nucleotide exchange as a process contributing to the accumulation of this mutant in its GTP-bound state. Aberrant GEF-accelerated nucleotide exchange dynamics was identified as the event driving functional dysregulation in the RRASV55M mutant, which was documented at the corresponding dose of injection ($P < 0.05$, $^{*}P < 0.005$, $^{* * *}$ $P < 0.0005$; Fisher’s Exact Test). (B) A proper vulva develops in heat-shocked control animals (left), whereas a protruding vulva is observed in heat-shocked ras-1G27dup young adults (middle) and adult worms (right). (C) Nomarski images of vulval precursor cells in late L3 (left), early L4 (middle) and mid-late L4 (right) stages from synchronized animals heat-shocked at early L3. In control animals ($N = 48$), only P6.p descendants invaginate (upper panel), whereas in 10 of 30 analysed ras-1G27dup-expressing worms, P5.p and/or P7.p descendants also detach from the cuticle, generating asymmetric invaginations (lower panel). Black arrowheads point to P6.p descendant invagination, whereas white arrowheads point to P5.p and P7.p descendant invagination. Anterior is to the left and dorsal is up, in all images.

Figure 5. Consequences of ras-1G27dup expression on C. elegans vulval development. (A) Heat-shock-driven expression of ras-1WT and ras-1G27dup at early L3 stage results in protruding vulva (Pvl), egg laying defective (Egl) and bag-of-worms (Bag) phenotypes. Isogenic animals that had lost the transgene (control group) and worms expressing the heat shock-inducible vector (empty vector) were subjected to heat shock and scored in parallel for comparison. The dose at which the transgene has been injected is reported at the bottom. Error bars indicate SD of three independent experiments. Asterisks indicate significant differences compared with ras-1WT at the corresponding dose of injection ($^{*}P < 0.05$, $^{* * }P < 0.005$, $^{* * *}$ $P < 0.0005$; Fisher’s Exact Test). (B) A proper vulva develops in heat-shocked control animals (left), whereas a protruding vulva is observed in heat-shocked ras-1G27dup young adults (middle) and adult worms (right). (C) Nomarski images of vulval precursor cells in late L3 (left), early L4 (middle) and mid-late L4 (right) stages from synchronized animals heat-shocked at early L3. In control animals ($N = 48$), only P6.p descendants invaginate (upper panel), whereas in 10 of 30 analysed ras-1G27dup-expressing worms, P5.p and/or P7.p descendants also detach from the cuticle, generating asymmetric invaginations (lower panel). Black arrowheads point to P6.p descendant invagination, whereas white arrowheads point to P5.p and P7.p descendant invagination. Anterior is to the left and dorsal is up, in all images.

The clinical phenotype of the two subjects with germline RRAS mutations was reminiscent of NS. The individual with the Gly39 duplication displayed pulmonic stenosis, reduced growth, café-au-lait spots, mild motor delay and low-set ears, which recur in NS (5). Facial features, however, were distinctive, and not typical of NS. In contrast, the patient heterozygous for the p.Val55Met substitution exhibited a very mitigated phenotype characterized by suggestive facial characteristics (triangular face, downsloping palpebral fissures and low-set ears), low posterior hairline, broad chest and borderline cognitive abilities, without cardiac involvement or defective growth, indicating that clinical features associated with RRAS mutations might be quite subtle. Of note, the milder phenotype associated with the p.Val55Met change is consistent with the weaker perturbing effect of the RRASV55M mutant on MAPK and PI3K/AKT signalling compared with the RRASG39dup protein. Additional information on the spectrum of germline RRAS mutations, their associated phenotype and their functional impact on signalling.
Upregulation of RAS/MAPK signalling owing to germline and myeloid cells that variably retain the capacity to differentiate. In the childhood characterization of overproduction of immature phenotype correlations. However, it is necessary to establish clinically relevant genotype–phenotype correlations.

JMML is a clonal myeloproliferative/myelodysplastic disorder of childhood characterized by overproduction of immature myeloid cells that variably retain the capacity to differentiate. Upregulation of RAS/MAPK signalling owing to germline and somatic mutations in PTPN11, NRAS, KRAS, NF1 and CBL is a major event implicated in this malignancy (13, 46, 47). Our data document that upregulated RRAS function represents a major event implicated in this malignancy (13, 46, 47). Our findings further extend the concept of ‘RAS-opathy gene’ to a transducer whose dysregulated function perturbs signal flow through the MAPK cascade but does not belong to the core RAS/MAPK signalling cassette.

| Strains: let-60(n1046) is a gain-of-function allele of let-60 (ortholog of the human HRAS, KRAS and NRAS genes); let-23(sy1) is a hypomorphic allele of let-23 (ortholog of the human EGFR gene). ras-1WT and ras-1G27dup indicate hsp-16.41::ras-1WT and hsp-16.41::ras-1G27dup-containing constructs injected at 100 ng/μl, respectively. After each cross, isogenic worms that had lost the transgene were cloned separately and used as controls. Animals were grown at 20°C and heat-shocked in parallel at early L3 stage. N indicates the number of animals scored. Multivulva (Muv), vulvaless (Vul) and protruding vulva (Pvl) phenotypes are expressed as percentage of worms with ectopic pseudovulvae, animals lacking a vulva and adults with a protruding vulva, respectively. Induction of vulval cell fate is expressed as percentage of P6.p that has been induced to invaginate. In all comparisons, P-values were calculated using two-tailed Fisher’s exact test. aSignificantly different from let-60(n1046) (P < 0.02). bSignificantly different from let-23(sy1) (P < 0.01) and let-23(sy1);ras-1WT (P < 0.02). cSignificantly different from let-23(sy1) (P < 0.02) and let-23(sy1);ras-1WT (P < 0.05). |
Genotype	Transgene	N	Muv (%)	Vul (%)	Pvl (%)	N	P6.p induction (%)
wild-type	none	207	0	0	1.0	48	100
let-60(n1046)	none	201	77.9	–	0.5	50	100
let-60(n1046)	ras-1WT	244	76.4	–	2.8	43	100
let-60(n1046)	ras-1G27dup	231	87.1	–	3.0	50	100
let-23(sy1)	none	194	–	87.8	3.6	178	13.4
let-23(sy1)	ras-1WT	169	–	84.3	4.1	156	14.0
let-23(sy1)	ras-1G27dup	282	–	83.3	10.3	128	24.2

Selection of RASopathy candidate genes
A web-based tool, Genes2FANs (http://actin.pharm.mssm.edu/genes2FANs), using a large-scale protein–protein interaction network coupled to a panel of functional association networks (FANs) was utilized to build a subnetwork connecting proteins to the known RASopathy genes (i.e. PTPN11, SOS1, NF1, SPRED1, CBL, NRAS, KRAS, HRAS, RAF1, BRAF, SHOC2, MAP2K1 and MAP2K2), as seed proteins. Gene Ontology (biological process tree), mammalian phenotype browser, and Connectivity Map (drug-associated gene expression signatures), ChEA and TRANSPATH (transcription factor networks) databases were selected to construct the functional subnetworks utilized for prioritization of candidates (15). The programme allows to calculate z-scores for intermediate nodes (i.e. candidates), which are ranked based on their connections to the seed proteins.

Subjects and mutation analysis
Three cohorts of patients were considered in the study. A first group including 96 subjects with clinical features within the RASopathy spectrum and without mutation in previously identified RASopathy genes (i.e. CBL, PTPN11, SOS1, KRAS, HRAS, NRAS, RAF1, BRAF, SHOC2, MAP2K1 and MAP2K2) was screened for a selected panel of candidates. A second cohort including 408 subjects with NS or a closely related phenotype previously tested negative for mutations in a heterogeneous subset.
of RASopathy genes was scanned for **RRAS** mutations. All subjects included in this cohort had been screened for mutations in **PTPN11**, **SOS1** and **RAF1** genes. In both cohorts, the clinical diagnosis was made on the basis of standardized clinical criteria assessed by experienced clinical geneticists and paediatricians. Clinical features for the majority of subjects satisfied diagnostic criteria reported for NS, LEOPARD syndrome and cardiofaciocutaneous syndrome (53–57), but individuals who lacked sufficient features for a definitive diagnosis were also included. **RRAS** mutation analysis was also carried out on a cohort including 110 subjects with non-syndromic JMML that had prospectively been collected and genotyped (58). Mutation screening was performed on the entire **RRAS** coding sequence and flanking intronic stretches (NC_000019.10, 49635295..49640143, complement; NM_006270.3; NP_006261.1) on genomic DNA extracted from circulating leukocytes (cohorts I, II and III) or bone marrow aspirates (cohort III) by denaturing high-performance liquid chromatography (DHPLC) (3100 or 3500HT WAVE DNA fragment analysis system, Transgenicom, Omaha, NE, USA) and/or direct bidirectional sequencing (ABI Prism 3130, 3730 and 3500 Genetic Analyzers; Applied Biosystems, Foster City, CA, USA). Primer pairs, PCR and DHPLC conditions are available upon request. dbSNP137 (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi), HapMap (rel.27) (http://hapmap.ncbi.nlm.nih.gov/) and 1000 Genomes (http://www.1000genomes.org/) databases were used to annotate the identified sequence variants. SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) and MutationTaster (http://www.mutationtaster.org/) were used to predict the functional impact of the identified variants. Paternity was confirmed by STR genotyping, using the PowerPlex 16 System (Promega). DNA from leukocytes, hair bulb cells, bone marrow aspirates and skin fibroblasts was extracted using standard protocols. DNA specimens were collected under Institutional Review Board-approved protocols. Informed consent for DNA storage and genetic analyses was obtained from all subjects. Permission was obtained to publish picture of patient 9802, whereas subject NS1166 denied consent for picture publication.

Exome sequencing

Targeted enrichment and massively parallel sequencing were performed on genomic DNA extracted from circulating leukocytes and fibroblasts of patient 9802. Exome capture was carried out using the SureSelect Human All Exon V4+UTRs (Agilent), and sequencing with a HiSeq2000 instrument (Illumina). Image analysis and base calling were performed using the SureSelect Human All Exon V4+UTRs (Agilent), and sequencing with a HiSeq2000 instrument (Illumina). Paired-end reads alignment to the reference human genome was carried out using the Real Time Analysis (RTA) pipeline v. 1.14 (Illumina). Paired-end reads alignment to the reference human genome (UCSC GRCh37/hg19) and variant calling were carried out using the CASAVA v. 1.8 pipeline (Illumina). Variant annotation, SNP filtering (dbSNP135, 1000 Genomes, HapMap and IntegraGen Exome databases) and patient-matched germline variant filtering were attained using an in-house pipeline by IntegraGen (Evry, France).

Molecular dynamics analyses

Starting coordinates for MD simulations were obtained from the RRAS crystallographic structure in complex with GDP and Mg\(^{2+}\) (PDB: 2FN4; RCSB Protein Data Bank, http://www.rcsb.org/pdb/home/home.do). The N-terminus and C-terminus of RRAS, absent in the crystal, were not considered in simulations. Deep View software was used to add atoms missing in the PDB file, belonging to residues 31, 96, 114, 121 and 192 as well as to substitute residue 55 (simulation of the p.Val55Met mutant) (59). All MD simulations were performed with GROMACS 4.5 package, by using the GROMOS96 43a1 force field parameter file for the protein. Parameters for GDP were taken from the GROMACS website (http://www.gromacs.org). Simulations were performed as previously described (60,61), except for some details. Briefly, the proteins were initially placed in a dodecahedral box, solvated with ~6700 SPC water molecules, and six Na\(^+\) ions were added to neutralize the protein charge. Following initial energy minimization and a 100-ps MD run, during which the protein atoms were position restrained, the temperature of solute and solvent was raised from 50 to 300 K in a stepwise manner. 200-ns-long simulations were performed for wild-type RRAS and the RASopathy causative mutant. The particle mesh Ewald method was used to evaluate electrostatic interactions (62), whereas a cut-off scheme was employed for Van der Waals interactions. Temperature and pressure were kept constant at 300 K and 1 bar by using the Berendsen weak-coupling method (63), using separate temperature baths for protein–GDP complex and solvent, with a relaxation time of 0.1 ps for temperature and 1 ps for pressure. A time step of 2 fs was employed. Root mean square deviations were calculated according to standard definitions. UCSF Chimera Chimera (http://www.cgl.ucsf.edu/chimera/) was used for molecular graphics and structures superposition, by using the MatchMaker option.

Biochemical and functional characterization of RRAS mutants

The generation of constructs, and preparation and purification of proteins were as previously described (64). The intrinsic activities of the RRAS proteins, their modulation by GEFs and GAPs and their interaction with different effector proteins were determined as described earlier (65,66). Dissociation of mantGDP from RRAS proteins (0.1 µM) was measured in the presence of 20 µM GDP in 30 mM Tris–HCl, pH 7.5, 10 mM KH\(_2\)PO\(_4\), 5 mM MgCl\(_2\), 3 mM dithioerythritol (DTE), at 25 °C, using a Perkin Elmer fluorimeter at 366 nm (excitation wavelength) and 450 nm (emission wavelength). Observed rate constants (k\(_{obs}\)) of dissociation were obtained by single exponential fitting of the data. GEF-accelerated mantGDP dissociation from RRAS proteins (0.1 µM) was measured as mentioned earlier, in the presence of the catalytic domain of SOS1, Cdc25 (5 µM), using stopped-flow instrument.

The intrinsic GTPase reaction was performed by mixing 70 µM nucleotide-free RAS proteins (HRAS, RRAS\(^{WT}\), RRAS\(^{V55M}\) and RRAS\(^{G90D}\)) with 50 µM GTP in 30 mM Tris–HCl, pH 7.5, 10 mM KH\(_2\)PO\(_4\)/K\(_2\)HPO\(_4\), 10 mM MgCl\(_2\), 3 mM DTE, at 25 °C, using HPLC assay as previously described (67). Samples were taken at different time points and analysed by HPLC for their GDP and GTP contents to determine the relative GTP content [(GTP)/(GDP + GTP)]. Intrinsic GTP hydrolysis k\(_{h}\) of proteins were obtained by single exponential fitting of the data. For determination of GAP (neurofibromin, residues
1–333)-stimulated GTGase activity, GDP bound to HRAS and RRAS proteins was exchanged with excess mantGTP in the presence of alkaline phosphatase. Unbound nucleotides were removed by NAPS column, and the RAS/mantGTP proteins were snap-frozen in liquid nitrogen (66). GAP-stimulated GT hydrolysis of RAS proteins (0.2 µM) was measured in 30 mM Tris–HCl, pH 7.5, 10 mM MgCl₂, 3 mM DTE at 25 °C using a Hightech TgK Scientific stopped-flow instrument. Reactions measured the decrease in fluorescence owing to hydrolysis of mantGTP. This decay was fit by a single exponential.

Hightech TgK Scientific stopped-flow instrument. Reactions were heat-shocked in parallel and scored blindly at a Leica MZ10F dissecting microscope to check for the presence of HRAS bound to mantGTP. This decay was fit by a single exponential. Effector binding assays were performed in 30 mM Tris–HCl, pH 7.5, 100 mM NaCl, 5 mM MgCl₂, 3 mM DTE at 25 °C using a Fluoromax 4 fluorometer in polarization mode. Increasing amounts of GST-tagged RAS-binding domains (RBD) of RAS effectors were titrated to 0.3 µM mantGppNHp-bound RAS proteins resulting in an increase of polarization (64). The dissociation constants (K_d) were calculated by fitting the concentration-dependent binding curve using a quadratic ligand binding equation.

For cell-based assays, COS-7 cells were transiently transfected with FLAG-tagged RRAS WT, RRAS V55M or RRAS G39dup by the DEAE-dextran method. For serum conditions, cells were incubated for 48 h in 10% FCS. In serum-starved cells, serum was changed to basal medium midway between the transfection and harvesting. Transfected COS-7 cells were harvested and lysed in fishing buffer [50 mM Tris–HCl, pH 7.5, 2 mM MgCl₂, 100 mM NaCl, 1% IGEPA, 10% glycerol, EDTA-free protease inhibitor cocktail (Roche, 1 tablet/50 ml buffer), 20 mM disodium β-glycerol phosphate and 1 mM Na₃VO₄]. Cleared cell lysates were incubated with GSH-beads loaded with GST-RAF1-RBD. GTP-bound proteins and total recombinant proteins were analysed by immunoblotting with anti-FLAG antibody. Antibodies against MEK1/2, ERK1/2, AKT, phospho-MEK1/2 (Ser217/221), phospho-ERK1/2 (Thr202/Tyr204) and phospho-AKT (Thr308) were purchased from Cell Signaling Technology (68).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We are grateful to the participating patients and their families. We thank Serenella Venanzi (Istituto Superiore di Sanità, Rome, Italy), Michela Bonaguro (Policlinico S.Orsola-Malpighi, Bologna, Italy), Federica Consoli (Istituto Mendel, Rome, Italy) and Cédric Vignal and Sabrina Pereira (Hôpital Robert Debré, Paris, France) for skilful technical assistance, and the Open Laboratory (IGB-CNR, Naples, Italy) for experimental support. We also thank Paolo Bazzicalupo (IGB-CNR) for critical reading of the manuscript, paediatricians from the Société Française des Cancers de l’Enfant (SFCE) for providing biological material from their patients and CINECA for computational resources. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN, USA) funded by the NIH Office of Research Infrastructure Programs (P40OD010440).

Conflict of Interest statement. None declared.

FUNDING

This work was supported by grants from the ERA-Net for research programmes on rare diseases 2009 (NSEuroNet to M.Z., H.C., M.R.A. and M.T.), Telethon-Italy (GGP10020 and GGP13107 to M.T.), AIRC (IG 13360 to M.T.), NGFNplus program of the German Ministry of Science and Education (01GS08100 to M.R.A.), German Research Foundation through the Collaborative Research Center 974 (Communication and Systems Relevance...
during Liver Injury and Regeneration to M.R.A.) and NIH (HL071207 to B.D.G.). F.P. was recipient of a research fellowship from ‘Associazione Italiana Sindromi di Costello e cardiofaciocutanea’. Funding to pay the Open Access publication charges for this article was provided by Telethon-Italy.

REFERENCES

