Ataxia is the major neuropathological finding in arylsulfatase G-deficient mice: similarities and dissimilarities to Sanfilippo disease (mucopolysaccharidosis type III)

Björn Kowalewski1, Peter Heimann2, Theresa Ortkras1, Renate Lüllmann-Rauch3, Tomo Sawada4, Steven U. Walkley4, Thomas Dierks1, and Markus Damme1,†,*

1Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany, 2Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany, 3Anatomical Institute, University of Kiel, D-24098 Kiel, Germany, and 4The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA

*To whom correspondence should be addressed at: Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany. Tel: +49 04318802218; Fax: +49 04318802238; Email: mdamme@biochem.uni-kiel.de

Abstract

Deficiency of arylsulfatase G (ARSG) leads to a lysosomal storage disease in mice resembling biochemical and pathological features of the mucopolysaccharidoses and particularly features of mucopolysaccharidosis type III (Sanfilippo syndrome). Here we show that Arsg KO mice share common neuropathological findings with other Sanfilippo syndrome models and patients, but they can be clearly distinguished by the limitation of most phenotypic alterations to the cerebellum, presenting with ataxia as the major neurological finding. We determined in detail the expression of ARSG in the central nervous system and observed highest expression in perivascular macrophages (which are characterized by abundant vacuolization in Arsg KO mice) and oligodendrocytes. To gain insight into possible mechanisms leading to ataxia, the pathology in older adult mice (>12 months) was investigated in detail. This study revealed massive loss of Purkinje cells and gliosis in the cerebellum, and secondary accumulation of glycolipids like GM2 and GM3 gangliosides and unesterified cholesterol in surviving Purkinje cells, as well as neurons of some other brain regions. The abundant presence of ubiquitin and p62-positive aggregates in degenerating Purkinje cells coupled with the absence of significant defects in macroautophagy is consistent with lysosomal membrane permeabilization playing a role in the pathogenesis of Arsg-deficient mice and presumably Sanfilippo disease in general. Our data delineating the phenotype of mucopolysaccharidosis IIIE in a mouse KO model should help in the identification of possible human cases of this disease.
Introduction

Mucopolysaccharidoses (MPS) are autosomal recessive diseases characterized by the accumulation of glycosaminoglycans (GAGs) in lysosomes, thereby achieving the key feature of a larger group of metabolic diseases designated as lysosomal storage disorders (LSDs). The lysosomal degradation pathway of GAGs includes exoglycosidases for the cleavage of monosaccharides and sulfatases for the hydrolytic removal of sulfate from saccharides in different positions of GAGs, which is a prerequisite prior to glycosidic cleavage. Mutations in genes coding for these enzymes cause different variants of MPS. The great majority of patients of all MPS variants associated with the accumulation of sulfated GAGs suffer from neurological deficits, and particularly those resulting from an impaired degradation of heparan sulfate (HS), namely MPS I (Hurler–Scheie syndrome), MPS II (Hunter syndrome), MPS VII (Sly syndrome) and MPS type III (Sanfilippo syndrome), are severely diminished in cognitive functions. Whereas MPS I, II and VII patients are also affected by impaired hydrolysis of chondroitin/dermatan sulfate, MPS III disease only affects HS degradation. Somatic symptoms in MPS III are mild, and the central nervous system (CNS) is the main organ involved in pathogenesis (1,2). Patients suffering from Sanfilippo syndrome present with mild coarse facial features, developmental delay, progressive loss of mental and motor functions, and behavioral problems. Older patients frequently develop epileptic seizures (3,4). Autopsy of human cases revealed widespread neuronal vacuolization of most brain regions with a particularly high degree of storage in pyramidal cells of the third and fifth layers of the cerebral cortex, secondary cortical atrophy, white matter and ventricular dilatation, myelin pallor and fibrillary gliosis (5). A remarkable feature in the course of the disease is profound secondary accumulation of glycolipids and particularly high amounts of the gangliosides GM2 and GM3 in neurons (6). Furthermore, a secondary accumulation of lipofuscin and subunit c of the mitochondrial ATP synthase (SCMAS) has been documented in human cases of MPS III (7–9) and a mouse model of MPS III (10).

According to the different enzymes affected, four genetically distinct MPS III variants have been described in humans, namely MPS IIIA-D. Mouse models for the variants MPS IIIA (caused by mutations in Sgsh gene coding for sulfamidase) and MPS IIIB (caused by mutations in Naglu coding for N-acetyl-alpha-d-glucosaminidase) have been described (11,12) and both closely resemble the pathological alterations present in human subjects and have been used as valuable tools for understanding pathological events and for experimental therapeutic approaches (13–16).

The lysosomal degradation of HS is a stepwise process involving at least nine different enzymes, with five of them being sulfatases removing sulfate groups at different positions of the glucosamine and iduronic acid or glucuronic acid building blocks. We have previously shown that ARSG is critical for the removal of sulfate from 3-O sulfated N-sulfo-glucosamine (GlCN3S) of HS (17), thus generating the substrate for sulfamidase. Arsg knock-out mice reveal lysosomal storage of HS and GlCN3S in particular in the liver, the kidney and remarkably, as observed in other MPS III mouse models and MPS III patients, in the CNS. Accordingly, we termed the resulting disease MPS IIIE. CNS phenotype of up to 12-month-old knockout mice includes micro- and astrogliosis of the cerebellum and loss of Purkinje cells (PCs) (17). Premature death up to that age was not observed.

A mutation in Arsg coding for a stable protein with severely reduced enzymatic activity has been reported in American Staffordshire Terrier dogs (18). These dogs suffered from locomotor ataxia and exhibited extensive PC death. Enlarged lysosomes filled with heterogeneous, PAS-positive autofluorescent material resembling ceroid lipofuscin were found in PCs and other neurons, and thus suggested this to be an adult variant of neuronal ceroid lipofuscinosis (18).

Even though the initial primary cause for neuropathological events in MPS IIIE can be clearly assigned to the impaired degradation and subsequent accumulation of 3-O sulfated HS in lysosomes, delineation of secondary events in the pathogenesis of the disease and a comparison of the pathology to other MPS III disease models are lacking. In this article, we evaluated in detail the expression of ARSG in the adult CNS and investigated pathological cascades secondary to lysosomal storage likely contributing to impaired cellular function up to 24 months of age. We also directly compared MPS IIIE mice with the pathology of MPS IIIA mice that exhibit a surprisingly different phenotype. Our results provide important insight into the pathology of MPS IIIE and further define the resulting neurological phenotype, findings that we believe will assist in identifying human patients with this disorder.

Results

Differential lysosomal storage pathology in neurons and glia

Enlarged lysosomes were previously found in PCs, several neuron types in the thalamus and macrophages in the brain of Arsg KO mice (17). Comparison of the vacuoles in perivascular macrophages and neurons of Arsg KO mice revealed striking differences in the content and appearance of the storage material (Fig. 1). Perivascular macrophages were abundantly vacuolated with mostly large, electron lucent vacuoles of a diameter of up to 3 μm and typically containing an electron dense core (Fig. 1A). Meningeal macrophages in particular often contained additionally lipid droplet-like material embedded in the dense core and occasionally zebra-body structures, indicating accumulation of lipid-like substances, possibly gangliosides, in addition to the water-soluble GAGs (Fig. 1B). PC somata in contrast displayed complex, partially electron dense and often lipofuscin-like texture of enlarged lysosomal structures of a typical diameter of ~2 μm (Fig. 1C and F) and small vesicles filled with heterogeneous material in dendrites (Fig. 1E and G). Microglia in most parts of the brain did not display signs of lysosomal storage, but macrophages in the molecular layer of the cerebellum were abundantly vacuolated with debris-filled lysosomes, presumably secondary to phagocytosis of dying PCs (Fig. 1D).

ARSG expression in the CNS

To determine the expression pattern more precisely in different regions of the brain, adult WT mouse brain was dissected and all regions were analyzed by immunoblot (Fig. 2A). Highest protein levels were found in the spinal cord and brain stem, whereas moderate amounts were detected in the cerebellum, hippocampus, thalamus and cerebral cortex. Lowest ARSG expression was found in the olfactory bulb. To further narrow down the expression in the CNS, we applied immunohistochemistry on brain sections of adult mice and used sections from Arsg KO mice as controls for the specificity of the antibody (Fig. 2B). Specific staining was detected in all brain regions with highest immunoreactivity in cells of the gray matter of the spinal cord and the inferior colliculus. Co-immunofluorescence experiments with the lysosomal marker LAMP1 (Fig. 2C) revealed a high degree of co-localization and the absence of staining in tissues from KO
Figure 1. Different types of storage vacuoles in CNS cells. (A) Electron micrograph of a massively enlarged perivascular macrophage with several distended vacuoles, whose major content is washed out during preparation and an electron-dense core. (B) Similar macrophage as depicted in (A) with additional lipid-rich lipofuscin (light grey). (C) Perikaryon with a large vacuole containing heterogeneous material. (D) Phagocytosing microglia/macrophage from the molecular layer of the cerebellum filled with debris and different types of phagolysosomes. (E) Storage body from the soma of a PC with partially lamellar and partially granular appearance. (F) Typical large storage body in the PC soma with irregular, lamellar electron-dense structure with similarity to ceroid lipofuscin with structured areas. (G) PC dendrite abundantly vacuolated with heterogeneous, partially water-soluble and partially electron-dense material ranging from structured to unstructured areas. Scale bars: a = 2.5 µm; b, c, d and g = 5 µm; e = 250 µm; f = 1 µm.
Figure 2. Expression of ARSG in the murine central nervous system. (A) Immunoblot analysis of different brain areas (Cb = cerebellum, Hc = hippocampus, Cx = cortex, Ob = olfactory bulb, Bs = brain stem, Th = thalamus, Sc = spinal cord) shows highest expression of ARSG in the spinal cord and the brain stem and lowest expression in the olfactory bulb. Homogenates from Arsg KO mice (−/−) served as controls for specificity of the antibody. ARSG-specific bands are labelled with arrows. A non-specific band also present in KO mice is labelled with an asterisk. (B) ARSG was specifically detected with a polyclonal antibody in wild-type sections with particularly high expression in the anterior horn of the spinal cord and the inferior colliculus. Absence of specific DAB staining reveals specificity of the antibody. Scale bars = 200 µm. (C) Double immunofluorescence shows co-localization of ARSG and LAMP1 with additional cytoplasmic staining for ARSG in cells of the spinal cord. ARSG staining is absent in the spinal cord of KO mice. Scale bars = 15 µm. (D) Double immunofluorescence staining of ARSG with markers for different CNS cell types reveals modest expression in microglia (Iba1+), highest expression in perivascular macrophages (CD68+) but no expression in astrocytes (GFAP+). Oligodendrocytes (Olig-2+ and CNPase+) reveal extensive expression of ARSG, while neurons (NeuN+) reveal only subtle staining. Endothelial (Pecam-1+) cells lack ARSG staining. All pictures from the inferior colliculus, except CNPase (granular layer of the cerebellum). Scale bars = 15 µm. (E) Semi-quantitative grading of the ARSG expression in wild-type cells and comparison with lysosomal storage phenotype in Arsg KO mouse cells reveal that highest expression in perivascular cells is paralleled with the highest vacuolization. However, oligodendrocytes with high expression do not reveal signs of lysosomal storage. (1) not determined due to non-specific antibody reactivity in PCs; (2) lysosomes containing phagocytosed debris were considered to be unrelated to the primary enzyme defect.
mice except in PCs, which revealed a non-specific antibody binding. Subtle cytoplasmic staining was observed in addition to the LAMP1-positive lysosomal pattern. Co-labeling with cell type-specific markers was applied on wild-type sections to identify the CNS cell types with ARSG expression, and these were compared with electron microscopy findings [this study (Fig. 1) and (17)] from Arsg KO mice for the presence or absence of lysosomal storage pathology in the corresponding cell type (Fig. 2D and E). Microglia (Iba1-positive) in a resting state revealed moderate levels of ARSG levels. Microglia in most parts of the brain of Arsg KO mice were unaffected by storage, except the molecular layer of the cerebellum where they were abundantly vacuolated with cellular debris. We considered this to result from phagocytic activity secondary to nearby cell death and thus unrelated to the primary enzyme defect. By far the highest expression in all cell types was that seen in perivascular and meningeal CD68+ macrophages, a finding that is in good agreement with the abundant vacuolization of these cells in young (<3 months) mice. Gliarial fibrillary acidic protein (GFAP)-positive astrocytes or endothelial PECAM-1+ cells did not stain positively for ARSG. Oligodendrocytes showed abundant expression of ARSG in cell bodies as revealed by co-staining with CNPase and Olig-2. However, surprisingly no lysosomal pathology was observed in oligodendrocytes even in the oldest evaluated mice (data not shown).

**Myelination of the cerebellum of Arsg KO mice**

Since ARSG is highly expressed in wild-type oligodendrocytes, we further evaluated myelination of the cerebellum to reveal a potential role of ARSG in the degradation of myelin components or in the proper function of oligodendrocytes and myelination. No gross changes in the degree of myelination were observed in white matter tracts of the cerebellum by immunofluorescence or immunoblot in cerebellar extracts for myelin basic protein (MBP) even in the oldest mice evaluated (20 months; Fig. 3A and B). Similarly, no differences were observed for CNPase immunoreactivity in comparing WT and mutant mice. However, activated microglia were abundantly present in white matter tracts, indicating subtle degenerative changes in myelination (Fig. 3C). In addition to cellular debris and vesicular structures, high-power electron microscopy revealed inclusions with myelin figures in microglia, indicating phagocytosis of lipids that could in principle be derived from myelin (Fig. 3D).

**Purkinje cell degeneration**

PC death was readily observed in 12-month-old Arsg KO mice (17). We followed these degenerative changes in animals up to 24 months at which time they exhibited ataxic gait (Supplementary Material, video S1), consistent with apparent degeneration and atrophy of the cerebellum (Fig. 4A). Mice were terminated usually at 24 months due to ataxia and generally poor health conditions.

In 24-month-old animals, only a few PCs survived and these typically had abnormal swollen dendrites (Fig. 4B and C). As previously shown for other LSDs like Niemann–Pick disease (19,20), PC cell death was typically seen in descending anterior-to-posterior gradient. These surviving PCs regularly revealed axonal swellings and often contained several consecutive swellings of varying size in single axons as revealed by calbindin staining (Fig. 4C). Electron microscopy revealed typical appearance of the spheroids completely filled with vesicular structures and more or less intact organelles like mitochondria, or in larger spheroids additional filamentous material (Fig. 4D).

Immunoblotting with cerebellar homogenates from 12-month-old and 24-month-old animals with antibodies against calbindin and GFAP confirmed our histological findings and showed a clear aggravation of the phenotype by decreasing calbindin immunoreactivity and increasing GFAP immunoreactivity (Fig. 4E). Hypertrophic Bergmann glia typically replaced PC bodies in the molecular layer of the cerebellum (Fig. 4B).

**Secondary accumulation of lipids in the brain**

Lysosomal storage of GAGs and other metabolites in neurons is often accompanied by secondary accumulation of lipids like gangliosides and cholesterol (21–23). We therefore applied immunostaining for the gangliosides GM2 and GM3, both of which have been found as secondary accumulating metabolites in MPS but are essentially undetectable by immunohistochemistry in normal wild-type brain. Dramatically increased GM2
staining was evident in small vesicles, most likely in cell processes scattered through the molecular layer of the cerebellum (Fig. 5A). In contrast, GM3 was found in densely packed granular structures in cells with small condensed nuclei dispersed in the molecular layer, most likely representing phagocytic microglia (Fig. 5B). Both gangliosides were additionally evident in scattered neurons, particularly in the brain stem and septal nuclei (data not shown). Periodic acid–Schiff (PAS) staining accordingly revealed glycoconjugates in PCs, phagocytic macrophages in the molecular layer of the cerebellum and the pia mater (Supplementary Material, Fig. S1). Filipin staining of the brain of KO animals also revealed a clear accumulation of significant amounts of cholesterol in PCs of the cerebellum, including cell bodies and apparent dendrites (Fig. 5C). Even as early as 6 months of age, every single PC showed abundant staining with filipin. In addition, neurons of the septal nucleus and inferior colliculus were also affected by cholesterol accumulation. Both cerebral cortex and hippocampus were largely free of detectable cholesterol or ganglioside storage (data not shown). Filipin labeling decreased in cerebellum of older animals (>12 months) as PCs died and were removed from the tissue by phagocytic microglia. Filipin staining also revealed unesterified cholesterol accumulation in perivascular macrophages, particularly in the meninges of the cerebellar sulci (Fig. 5C).

Aggregation of autophagy adapter proteins and polyubiquitinated proteins

Impaired autophagy was previously described to be a major pathological hallmark of lysosomal storage diseases (24). However, we did not detect any changes in the amounts of LC3-II, a marker for autophagosomal membranes in detergent-soluble extracts (Fig. 6A), and non-ambiguous deposits of apparent autophagosomes were rarely seen with the exception of axonal swellings (Fig. 6B). In detergent-insoluble extracts, increased amounts of the autophagy adapter protein p62 and phosphorylated p62 were detected, indicating build-up of aggregated protein species (Fig. 6A). Similarly, increased ubiquitin-positive protein species of apparent molecular weights of ∼25–35 kDa were detected in detergent-insoluble aggregates, whereas high molecular weight ubiquitinated proteins were not increased significantly (Fig. 6B). Despite the absence of increased amounts of autophagosomes, large aggregates positive for ubiquitin and p62 were observed frequently in the molecular layer and the PC layer...
of the cerebellum (Fig. 6D) as assessed by immunohistochemistry. Of note, these aggregates were seen early in the pathogenesis in <12-month-old KO mice. Co-immuno-fluorescence experiments of p62 and calbindin clearly indicated localization of these large aggregates in PC dendrites and somata (Supplementary Material, Fig. S2a). In later stages of the disease, additional p62 aggregates of smaller size and skein-like shape were seen in white matter tracts of the cerebellum (Supplementary Material, Fig. S2b). p62 and ubiquitin in the molecular layer revealed extensive co-localization (Fig. 6E), but most aggregates did not co-localize at all with LAMP1 or showed only poor co-localization (Fig. 6F). Interestingly, some p62 aggregates were observed in very close contact to LAMP1 positive lysosomes and at times appeared to surround swollen lysosomes (Fig. 6F) in a manner previously reported as possible evidence of lysosomal membrane permeabilization (LMP) (25). p62 also was found to decorate autofluorescent lipofuscin granules in a shell-like fashion (Fig. 6G). Accordingly by electron microscopy (Fig. 6C), we observed large filamentous inclusions of a diameter up to 10 µm in the molecular layer of the cerebellum that resembled structures referred to as sequestosomes (26) and likely representing the p62−/−ubiquitin positive aggregates also seen by immunofluorescence.

Secondary storage of SCMAS in the cerebral cortex but not the cerebellum

SCMAS was previously shown to accumulate secondarily in the pathogenesis of MPS III and could in principle cause LMP (7,9,10). We therefore evaluated SCMAS distribution in 24-month-old Arsg KO mice by immunofluorescence. Surprisingly, significant SCMAS accumulation was observed only in the cerebral cortex with pronounced immunoreactivity in layer III, which was free of any other pathological signs including massive vacuolization evident by light or electron microscopy, reactive gliosis or secondary lipid accumulation. In contrast, the cerebellum showed only modest increase in SCMAS immunoreactivity (Fig. 7A). Moreover, areas of the cerebral cortex with SCMAS accumulation were devoid of p62 or ubiquitin-positive aggregates, indicating no direct link between SCMAS accumulation and aggregates. SCMAS aggregates in cortical neurons were found in close proximity to LAMP1-positive lysosomes, but did not perfectly co-localize with LAMP1, indicating only partial localization in functional lysosomes (Fig. 7B).

Differences in the neuropathology of MPS IIIA and MPS IIIE

The neuropathological alterations in human MPS III patients are comparable in all four types (MPS IIIA-D). Similarly, the two so far described mouse models, MPS IIIA and MPS IIIB show comparable phenotypic alterations among each other (27). The phenotype of MPS IIIE mice, however, seemed to be considerably milder even though the principal storage material HS is the same. To directly compare Arsg KO mice with the established and well-described MPS IIIA mouse model [which has 3–4% residual activity of the sulfamidase (28)], we applied staining for markers of microgliosis and astrogliosis, which are sensitive and reliable indicators of CNS injury in most LSDs (Fig. 8). Both microglia and astroglia revealed dramatic hypertrophy and significant activation throughout the entire brain of 10-month-old MPS IIIA mice, i.e. close to the end point of the disease. In contrast, both microgliosis (Fig. 8A) and astrogliosis (Fig. 8B) were absent in most regions of the brain of Arsg KO mice with the exception of the cerebellum, which was severely affected by the presence of PC death accompanied by phagocytic macrophages in the molecular layer and activated microglia in white matter tracts. Bergmann glia were also characterized by extensive hypertrophy (compare also Fig. 4B). These findings indicate limitation of neuropathology mostly to the cerebellum and profound differences in the course of the disease in MPS IIIE compared with MPS IIIA.

Discussion

We have previously shown that deficiency of ARSG in mice leads to a new type of MPS III/Sanfilippo disease which we designated as MPS IIIE (17). It is likely that human patients with a mild MPS phenotype possibly including ataxia secondary to ARSG deficiency exist but have remained undiagnosed. Here we describe...
in detail the expression pattern of ARSG in the CNS and secondary pathological cascades in a KO mouse model that are likely to contribute to or cause neuronal cell death and ultimately ataxia as the main feature of this disease. Our findings and further delineation of the phenotype should enable identification of patients with this disorder.

Even though ARSG is expressed in all regions of the brain, pathological conditions and lysosomal storage are almost exclusively restricted to the cerebellum and perivascular macrophages. Actually, macrophages show the highest degree of ARSG expression compared with other cell types, implicating significant contribution to HS degradation, either from endocytosed proteoglycans or as phagocytosed material. Perivascular macrophages were shown to actively participate in the phagocytosis of metabolites from the bloodstream (29), and in this regard, the abundant vacuolization is not surprising but clearly indicates significant presence of 3-O-sulfate-modified HS in the circulation. Of note, perivascular macrophages are affected to a similar extent in other types of MPS (30–32), indicating relatively high abundance of HS 3-O-sulfation in phagocytosed HS that in general is assumed to be rare (33). Also oligodendrocytes express surprisingly high amounts of ARSG, implicating an important role in the metabolism of myelin, as shown previously for the closest homolog of ARSG, arylsulfatase A (ARSA). ARSA deficiency leads to metachromatic leukodystrophy (MLD) due to accumulation of another 3-O-sulfated metabolite 3-O-sulfogalactosylceramide (sulfatide), an abundant component of myelin (34). However, in Arsg KO mice, we did not observe any signs of massive demyelination, a key feature of MLD, nor storage pathology in oligodendrocytes. However, both closely related

![Figure 6. Accumulation of aggregated proteins in the cerebellum.](image-url)
enzymes might share common transcriptional regulators regulating their high expression in oligodendrocytes. The role of ARSG in oligodendrocytes remains to be further determined.

Secondary accumulation of lipids is a typical feature of LSDs and particularly the mucopolysaccharidoses (reviewed in 21 and 23). Extensive neuronal GM2 and GM3 ganglioside buildup was documented in patients of most MPS forms including MPS III (5,6,35,36), the mouse models of MPS IIIA (22), and MPS IIIB (10,22) and MPS IIID goats (37). Similarly, secondary storage of free cholesterol was widespread in the CNS. Of note, these secondary metabolites were demonstrated to accumulate in different intracellular compartments (22), and we have shown previously that cholesterol accumulation depends in part of ganglioside expression and storage, at least in Niemann-Pick type C (38,39). In regard to this secondary ganglioside and cholesterol accumulation, MPS IIIE closely follows other MPS subtypes, again with the restriction mostly to the cerebellum and few local neuronal nuclei in the brain stem and septal nuclei. In contrast, secondary lipid accumulation was conspicuous in the cerebral cortex and other regions in the other MPS III models (22). However, we also found significant amounts of free cholesterol accumulation in perivascular macrophages, a feature that is to the best of our knowledge unique among the mucopolysaccharidoses. Moreover, GM2 and GM3 clearly showed buildup in different cell types. While GM2 was likely localized in PC dendrites, GM3 was found presumably in phagocytic macrophages. Cholesterol closely followed the distribution of GM2 with the exception of the perivascular macrophages, where no GM2 accumulation was readily apparent. These data are in good agreement with co-incidence of cholesterol and GM2 and imply a pathological role of one of these lipids in the decline of PCs, whereas GM3 seems not to play a major role. The early accumulation of cholesterol and the absence of GM2 in perivascular macrophages, however, may suggest that secondary cholesterol accumulation primes GM2 accumulation and not vice versa.

Even though the primary cause leading to the initiation of pathogenic cascades in PCs and other neurons is the lysosomal accumulation of 3-O-sulfated HS, the precise mechanisms ultimately leading to secondary metabolite storage and cell death are unknown. However, it has recently been shown that LMP accompanied by aggregation of autophagy cargo adapters is an important pathological feature of neurons in Tpp1−/− mice (a model for CLN2 disease) and that a similar LMP mechanism might be occurring in a variety of lysosomal diseases (25). As a consequence of LMP, cytosolic aggregates containing autophagy adapters like p62 and NBR1 are formed resulting from leakage of lysosomal content. Intriguingly, in Arsg KO mice we found large p62 and ubiquitin-positive aggregates exclusively in PCs, the only cell type clearly affected by cell death, implicating its involvement in cellular degradation. Moreover, LMP-damaged lysosomes have recently been shown to be degraded by autophagy in an autophagy-adapter and ubiquitin-dependent manner (40,41). This pathway could therefore serve as an explanation for p62-decorated lysosomal membranes as seen in ARSG-deficient PCs. In CLN2 and other neuronal ceroid lipofuscinoses (NCLs), a major part of the storage material is composed of SCMAS, a proton pore in its native conformation, which might directly act in the destruction of lysosomal membranes. Even though we observed significant SCMAS accumulation in neurons of the cerebral cortex presumably resulting from impaired lysosomal proteolytic capacity as observed before in MPS IIIB mice (10) and human MPS III patients (7), it is unlikely to account for LMP
in the case of ARSG deficiency. Only modestly increased SCMAS staining was detected in PCs and p62 aggregates were lacking in the cerebral cortex, indicating that a direct link is unlikely. Factors like osmotic swelling or destabilization by other secondary storage metabolites like lipids might contribute to LMP. However, we cannot completely rule out the possibility that SCMAS primes LMP in PCs due to their higher susceptibility. Our findings suggest that LMP might be of general relevance in the neuropathology of LSDs and can be extended at least to MPS III disease. Furthermore, LMP might also play a pivotal role in the pathogenesis of other forms of neurological diseases for which accumulation of ubiquitinated proteins and autophagy cargo adapter-bound aggregates has been described (25). Our findings on SCMAS accumulation in the cerebral cortex further highlight a link between MPS III and ceroid lipofuscinoses as described in the report on ARSG-deficient dogs (18), in which, however, SCMAS accumulation was not evaluated.

An intriguing question arising from our study is how the considerable phenotypical differences between MPS IIIA (and other forms of MPS III) and MPS IIIE can be explained, since in all cases sulfated HS with glucosamine at the reducing end is the primary storage material and the previously known four MPS III variants present with a similar, even though subtle different phenotype. Sulfamidase deficiency affects the entire brain, as holds true also for the other MPS III forms and the clinical course tends to be slightly more severe compared with the other MPS subtypes (42,43). However, 3-O sulfate seems to be a rare modification of HS. Since ARSG most likely is the only enzyme capable of degrading GlcNS3S, cells with storage vacuoles are likely to represent those cells with highest endogenous 3-O sulfate synthesis. In this regard, macrophages are likely an exception, due to their extensive phagocytic abilities.

The precise function of 3-O sulfate is still unknown, and even the specific sulfotransferases responsible for the generation of GlcNS3S in HS remain to be elucidated (44). Seven different isoenzymes (3-OST isoforms 1, 2, 3a1, 3b1, 4, 5 and 6) have been characterized, which could in principle all contribute to GlcNS3S synthesis. In the cerebellum, most 3-OST isoforms (including 3-OST-2, 3-OST-3b and 3-OST-4) are only transiently expressed during embryonic development and downregulated after postnatal day 7 (45). However, whereas expression in general decreases, expression increases particularly in PCs in adult mice. The meaning of such a high expression is unclear, but mature PCs might require a more complex HS structure for their physiological function (45). This high expression of the substrate in combination with the high susceptibility to LMP followed by

Figure 8. Comparison of microgliosis and astroglialosis of Sgsh KO mice (MPS IIIA) and Arsg KO mice (MPS IIIE). (A) Immunofluorescence staining of CD68, a marker for macrophages, and activated microglia reveals generalized microgliosis in the cerebral cortex, hippocampus and cerebellum of 10-month-old MPS IIIA mice, whereas microgliosis is restricted to the cerebellum of 24-month-old MPS IIIE mice. Note enlarged perivascular macrophages in MPS IIIE mice in the cerebral cortex and the hippocampus. (B) Microgliosis is accompanied by severe astroglialosis as revealed by GFAP staining in all regions of the CNS in MPS IIIA mice, but restricted to the cerebellum in MPS IIIE mice with intense Bergmann gliosis in the molecular layer and subtle white matter astroglialosis. Scale bars = 300 µm (70 µm in magnified panels).
protein aggregate formation might explain the observed cell death of FCs and restriction of cell death pathology to the cerebellum.

Materials and Methods

Mice

Arsg KO mice were described previously (17). Description of sulfamidase hypomorphic mice, a mouse model for MPS IIIA, with a point mutation in Sgsh was published previously (19). Experiments were carried out with cohorts of at least 3–4 mice with the exception of electron microscopy (N = 2). All mouse experiments were approved by and carried out according to local authorities.

Antibodies and chemicals

Primary antibodies used in this study: Calbindin (Sigma Aldrich), GFAP (Sigma Aldrich), CNPase, ARSG (R&D Systems), NeuN (Millipore), LAMP1 (clone 1D4B, Developmental Studies Hybridoma Bank), CD68 (Abd Serotec), Iba1 (Genetex), MBP (Millipore), Gapdh (Santa Cruz), p62 (Enzo Life Sciences), ubiquitin (Dako), eIF2alpha antibodies: AlexaFluor-coupled secondary antibodies were purchased from Invitrogen. Horseradish peroxidase-coupled secondary antibodies were purchased from Vector Labs. Chemicals including Filipin were purchased from Sigma Aldrich.

Immunohistochemistry

Preparation of sections was performed as described above. For immunohistochemistry staining, endogenous peroxidases were quenched with 1.6% (v/v) H2O2 in 0.1 M PB for 30 min at room temperature. After two washing steps in PB, sections were blocked with blocking buffer [4% (v/v) normal goat serum, 1% (w/v) bovine serum albumin and 0.02% (w/v) saponin in PB] and subsequently incubated with primary antibodies [in antibody solution: 1.5% (v/v) normal goat serum, 1% (w/v) bovine serum albumin and 0.02% (w/v) saponin in PB overnight]. After four washing steps (10 min each) in washing buffer [0.02% (w/v) saponin in PB], sections were subsequently incubated with biotinylated secondary antibody (Vector Labs) at room temperature for 2 h. After additional four washing steps in washing buffer, sections were incubated in Streptavidin-HRP solution (Vector Labs) for additional 2 h at room temperature. After final four washing steps, sections were developed with 3, 3’-diaminobenzidine (DAB) substrate solution (Vector Labs) and cover slipped in Mowiol.

Electron microscopy

Mice were anesthetized and transcardially perfused (with a permit from the local authorities) in a three-step procedure slightly modified according to (21) with 3% paraformaldehyde, 3% glutaraldehyde, 0.5% picric acid in 0.1 M PB, pH 7.4 for 10 min. The cerebellum was dissected and fixed in the same solution for additional 1–2 h at 4°C, postfixed in 2% osmium tetroxide (2 h, 4°C) and embedded in Araldite resin. For light microscopic identification, sections of 1.5 µm thickness were stained with Richardson’s blue (1% w/v methylene blue, 1% w/v Azur II) for 1.5 min, 80°C and visualized with x >100 objective Zeiss Axiopt microscope. For electron microscopy, 60–80 nm sections (stained for 40 min in uranyl acetate and 7 min in lead citrate) were used (Zeiss EM 109). For correlated light- and electron microscopy, alternating semi thin sections (1.5 µm thickness) were made and every second section further processed for ultrathin sectioning.

Tissue homogenates and immunoblotting

Tissue homogenates were prepared as described previously (22). In brief, snap-frozen tissues were homogenized with a potter Elvejem in 15 volumes of ice cold 1× TBS containing 1% Triton X-100 (v/v) and protease inhibitors. After incubation of the homogenates on ice for 30 min, homogenates were centrifuged for 15 min at 13 000 g at 4°C and the supernatant used for immunoblot. Immunoblotting was performed according to standard procedures on 12.5 or 15% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels and blotting on nitrocellulose- or polyvinylidene fluoride membrane (for ARSG antibody). For separation of detergent-soluble and -insoluble fractions, brains were homogenized in 5 volumes of buffer (0.25 M sucrose, 50 mM Tris/HCl pH 7.4, 1 mM EDTA + complete protease inhibitor cocktail) with a potter Elvejem followed by centrifugation for 10 min at 500g. Triton X-100 (v/v) was added to the supernatant to a final concentration of 1% and lysates were incubated for 1 h on ice. After another centrifugation at 13 000g at 4°C, the supernatant was used as the detergent-soluble fraction, and the pellet was resuspended in homogenization buffer supplemented with 2% SDS (w/v) and used as the detergent-insoluble fraction.

Quantification and statistics

Densitometry and quantification of immunoblot analyses were done with ImageJ. For statistical analysis, all samples were...
normalized to the wild-type (WT) controls in each experiment, and quantification was represented as the mean ± SEM. Data were plotted with GraphPad Prism. Statistical significance using unpaired Student’s t-test was calculated with GraphPad Prism (Version 5.04) (GraphPad Software) and statistical significance was set at *P < 0.05, **P < 0.01 and ***P < 0.001.

Supplementary Material
Supplementary Material is available at HMG online.

Acknowledgements
Claudia Prange and Kerstin Böker are acknowledged for excellent technical assistance. Marion Knufinke and Christiane Grebe are acknowledged for mouse breeding. We thank Thorsten Schinke for providing the MPS IIIA mice. Elizabeth Neufeld is acknowledged for the kind gift of the SCMAS antibody. Elena Grawe is acknowledged for help in the photography of mouse brains.

Conflict of Interest statement. None declared.

Funding
This work was supported by grants of the Deutsche Forschungsgemeinschaft (Grant DI 575/6) to T.D. and National Institutes of Health (grants HD054461, P30 HD071593) to S.U.W.

References


