Identification of mutations in two major mRNA isoforms of the Chediak–Higashi syndrome gene in human and mouse

Maria D. F. S. Barbosa, Franck J. Barrat, Velizar T. Tchernev, Quan A. Nguyen, Vishnu S. Mishra, Steven D. Colman, Elodie Pastural, Rémi Dufourcq-Lagelouse, Alain Fischer, Randall F. Holcombe, Margaret R. Wallace, Stephen J. Brandt, Geneviève de Saint Basile and Stephen F. Kingsmore

Departments of Medicine, Pathology and Pediatrics, Center for Mammalian Genetics, University of Florida, Gainesville, FL 32610-0221, USA, INSERM U 429, Hopital Necker-Enfants Malades, 75743 Paris, Cedex 15, France, Departments of Medicine and Cell Biology, Vanderbilt University, Nashville, TN 37232, USA and Departments of Medicine, Microbiology and Immunology, Louisiana State University Medical Center, Shreveport, LA 33932, USA

Received February 21, 1997; Revised and Accepted April 10, 1997

INTRODUCTION

Chediak–Higashi syndrome (CHS) is an autosomal recessive, immune deficiency disorder of human (CHS) and mouse (beige, bg) that is characterized by abnormal intracellular protein transport to, and from, the lysosome. Recent reports have described the identification of homologous genes that are mutated in human CHS and bg mice. Here we report the sequences of two major mRNA isoforms of the CHS gene in human and mouse. These isoforms differ both in size and in sequence at the 3′ end of their coding domains, with the smaller isoform (∼5.8 kb) arising from incomplete splicing and reading through an intron. These mRNAs also differ in tissue distribution of transcription and in predicted biological properties. Novel mutations were identified within the region of the coding domain common to both isoforms in three CHS patients: C→T transitions that generated stop codons (R50X and Q1029X) were found in two patients, and a novel frameshift mutation (deletion of nucleotides 3073 and 3074 of the coding domain) was found in a third. Northern blots of lymphoblastoid mRNA from CHS patients revealed loss of the largest transcript (∼13.5 kb) in two of seven CHS patients, while the small mRNA was undiminished in abundance. These results suggest that the small isoform alone cannot complement Chediak–Higashi syndrome.

As an antecedent to identification of the human CHS gene, two groups positionally cloned the homologous mouse mutation, beige (bg) (20,21). The clinical and pathologic features of CHS and bg are very similar, and bg maps on proximal mouse Chr 13 within a linkage group conserved with human Chr 1q42–q43 (the position of the CHS locus) (1–3,22–24). Subsequently, the human homolog of the bg gene was mapped to Chr 1q42–q43 (designated LysP) (20,21). We reported a novel mouse cDNA from a bg critical region yeast artificial chromosome (YAC) that was mutated in bg mice (20). Simultaneously, another group...
published a partial cDNA sequence that had been isolated from the same YAC clone (21). The latter was mutated in two other bg alleles, but differed in sequence from the former. In the present report, this discrepancy was explained by the demonstration that each of the previously reported bg gene sequences are derived from a single gene with alternatively spliced mRNAs. We also report the sequences of two major isoforms of the CHS gene in human. These isoforms arise in mouse and human as a result of incomplete mRNA splicing and differ in pattern of expression and predicted biological properties.

RESULTS

Incomplete splicing generates two mRNA isoforms of the mouse bg gene

The existence of more than one mRNA isoform of the mouse bg gene (designated Lyst) had been suggested both by Northern blot analysis and by Lyst cDNA sequences that differed at their 3' end (20,24). Mouse Lyst mRNA isoforms were therefore sought by anchored, nested PCR (3'RACE-PCR). Two fragments (1.25 and 2 kb) were amplified from mouse spleen cDNA using this technique. The 1.25 kb clone contained the 3' end of the previously described 5893 bp Lyst cDNA that corresponds to a small mRNA isoform (Lyst-II) (20). The 5' end of the 2 kb clone, however, contained sequence derived from the Lyst-II cDNA, while the 3' end sequence was from the largest isoform of the bg gene (Lyst-I, previously called BG) (24). Reverse transcription and PCR (RT-PCR) confirmed that nucleotides 1–4706 of Lyst are common to both mRNA isoforms (Fig. 1A). The large isoform cDNA that contains the entire coding domain was assembled from nucleotides 1–4706 of Lyst, the 2 kb 3'RACE-PCR clone, and 6824 nucleotides of BG cDNA. This 11817 bp cDNA sequence (Lyst-I, GenBank accession no. U70015) corresponds to the largest mRNA observed in Northern blots (20). This 11.8 kb cDNA, however, is truncated at both the 5' end of the 5'-untranslated region (UTR) and at the 3' end of the 3' UTR, and thus is smaller than the largest mRNA observed on mouse Northern blots (~12–13 kb) (20).

Analysis of a P1 genomic clone (number 8592) (26) containing the entire bg gene revealed that the 11817 bp Lyst-I cDNA results when splicing occurs from Lyst exon σ (containing nucleotide 4706) to downstream exon τ (Fig. 1A and B). In contrast, incomplete splicing and reading through intron σ' interposed between exons σ and τ yields the truncated Lyst-II isoform, of length 5893 bp cDNA (Lyst-II, GenBank accession No. U70015) corresponds to the largest mRNA observed in Northern blots (20). This 11.8 kb cDNA, however, is truncated at both the 5' end of the 5'-untranslated region (UTR) and at the 3' end of the 3' UTR, and is thus smaller than the largest mRNA observed on mouse Northern blots (~12–13 kb) (20).

Figure 1. cDNA structures and alternative splicing of the Chediak–Higashi syndrome gene. (A) Alternative splicing of the mouse bg gene (Lyst). Solid boxes represent Lyst exons σ and τ (not drawn to scale). Splicing of exon σ to exon τ occurs in the Lyst-I mRNA (~12 kb). The hatched box represents the intronic region that forms the 3' end of the Lyst-II ORF (5.9 kb). The intron contains a stop codon (*) and a polyadenylation signal (A). Nucleotide positions indicated are from GenBank accession No. L77884 (Lyst-II) and U70015 (Lyst-I). (B) Detection of mRNA isoforms of the mouse bg gene by RT-PCR and genomic PCR. DNase-treated mouse melanocyte RNA was reverse transcribed and amplified with primers F1/R1 (expected amplicon size 273 bp) or F1/R2 (expected amplicon size 560 bp). RNase-treated C57BL/6J DNA was amplified with primers F1/R1. The primer sequences are F1, 5'-TGTTGGAATCATTGAATGACGAGTGCTCCGAGGAGAGAG-3'; F2, 5'-GAGCCAGGAGGAGCTGT-3'; F1, 5'-GGTTTCCGAACAAAAATTTGTCGGAACCTT-3'; R2, 5'-GAGACCCATGATGGAGTTTCC-3'. (C) Schematic representation of PCR clones corresponding to the human CHS cDNA (GenBank accession No. U70064). The solid and open bars represent the CHS coding region and the 5' UTR, respectively. Nucleotide 5095 corresponds to the junction between the largest isoform (CHS-I, shown), and the smaller isoform (CHS-II) that arises through retention of intron σ'. The three human ESTs identified by database searches with the mouse sequence (#1, #2 and #3; GenBank accession Nos: #1, L77889; #2, W26957; #3, H51623) are shown at the top. Clones #4, #5, #6 and #8 are RT-PCR products. Clone #7 is a 2 kb 5'RACE product.

Sequences of two isoforms of the human Chediak–Higashi syndrome gene

cDNAs corresponding to the human homolog of the largest mRNA isoform of the bg gene were obtained by identification of human expressed sequence tags (ESTs) similar in sequence to mouse Lyst-I by database searches (GenBank accession Nos L77889, W26957 and H51623) (Fig. 1C). Intervening cDNA sequences were isolated using RT-PCR, and a partial human cDNA sequence (GenBank accession No. U70064; 7.1 kb) was assembled by alignment of these clones with the largest mouse bg gene cDNA (Fig. 1C). The predicted human and mouse peptides shared 82% amino acid identity over 1990 amino acids. The predicted human amino acid sequence contains a six amino acid insertion relative to that of mouse at residue 1039. While this paper was being reviewed, another group published the complete sequence of the human CHS cDNA (25). Our partial cDNA sequence differs in four nucleotides and three predicted amino acids from the latter (25). This 13.5 kb cDNA sequence corresponds to the largest mRNA observed on Northern blots of human tissues (CHS-I, legend of Fig. 2) (20). These Northern blots also demonstrated the existence of a smaller human transcript (~4.5 kb) that was similar in size to the small mouse Lyst mRNA, and that appeared to differ in distribution of expression in human tissues from the large isoform (20). Assuming that the genomic derivation of the human small isoform might be the same as the mouse small isoform, the 3' end of the human small isoform was identified by cloning human intron σ' using PCR of CHS cDNA.
Figure 2. Comparison of the relative abundance of CHS mRNA isoforms in human tissues after normalization. The inset shows the human 5.8 kb cDNA isoform (CHS-II, which arises through incomplete splicing, with intron σ′ supplying the 3′ end of the transcript), the largest cDNA (CHS-I, 13.5 kb, which results from removal of intron σ′) and the locations of probes. A normalized human RNA dot-blot was hybridized sequentially with a cDNA probe specific for the largest isoform (shown in blue, nucleotides 10941–11590 of human \(CHS\), GenBank accession No. U67615) and a cDNA probe that identifies all CHS transcripts (shown in orange, nucleotides 190–445 of human \(CHS\), GenBank accession Nos U70064 and U84744) (20,25). Variation of relative mRNA abundance among tissues was assessed by phosphorimaging, dot quantitation, subtraction of background and calculation of the intensity percentage for each tissue. The relative mRNA abundances between normalized tissues for each probe were expressed as the percentage of the total hybridization signal obtained for each tissue with that probe. The average percentage intensity for housekeeping genes in all tissues was \(\sim 2\%\) (data not shown). No hybridization was evident to control dots containing yeast total RNA, yeast tRNA, \(E. coli\) rRNA, \(E. coli\) DNA, poly r(A), human C0t1 DNA and human DNA (data not shown). Exposure time for phosphorimaging was 20 h.

Additional splicing complexity of small \(CHS\) isoforms exists: exon α, and/or exon β, and/or exon γ also can be alternatively spliced, and are absent in small \(CHS\) isoform mRNAs of ~3.5, 4.5 and 5.5 kb, that correspond to additional bands observed on human Northern blots (20).

The only significant sequence similarity of the human short isoform to known proteins was with the stathmin family (20). Identity with mouse Lyst-II in this region (amino acids 376–540) was 92% (and similarity was 99%) (Fig. 4).

Expression of the long and short isoform mRNAs in human tissues

Analysis of Northern blots of mouse mRNA had suggested that the relative abundance of the mouse large and small transcripts differed from tissue to tissue (20). The relative abundance of mRNA isoforms of the homologous human gene in human tissues at different developmental stages was examined by sequential hybridization of a poly(A)+ RNA dot-blot with several cDNA
probes. The quantity of poly(A)⁺ RNA loaded on the blot was
normalized to eight housekeeping genes (phospholipase, ribo-
somal protein S9, tubulin, a highly basic 23 kDa protein,
glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine gua-
nine phosphoribosyl transferase, β-actin and ubiquitin).

Using a probe that hybridized only to the largest mRNA
isoform on Northern blots (20), transcripts were most abundant
in thymus (adult and fetal), peripheral blood leukocytes, bone
marrow and several regions of the adult brain (Fig. 2). However,
the largest mRNA isoform was not detected in fetal brain. There
was also negligible transcription of this isoform in heart, lung,
kidney and liver in all developmental stages.

A somewhat different pattern of relative expression was evident
upon rehybridization of the blot with a probe derived from the 5′
end of the coding domain of CHS (Fig. 2), a region that hybridized
to all mRNA isoforms on Northern blots (20). Consistent with
the transcription pattern of the largest isoform, this probe detected
abundant expression in peripheral blood leukocytes, thymus (adult
and fetal) and bone marrow, but negligible expression in skeletal
muscle. However, several tissues with abundant large isoform
transcripts exhibited considerably less relative expression with the
5′ probe, including most regions of the adult brain, fetal and adult
thymus, and spleen. Furthermore, several tissues with negligible
large isoform relative transcription exhibited increased relative
expression with the 5′ probe, including adult and fetal heart,
kidney, liver, and lung, and adult aorta, thyroid gland, salivary
gland and appendix, and fetal brain.

Mutation analysis

As an initial screen for mutations in CHS patients, we analyzed
Northern blots of poly(A)⁺ RNA from CHS patients. The largest
mRNA species (∼13 kb) was greatly reduced in abundance or
absent in lymphoblastoid mRNA of patients P1 and P3,
respectively (Fig. 3A), while the smaller transcript (∼4.4 kb) was
both present and undiminished in abundance in all three patients.
While the selective loss of the larger transcript in these two
to patients cannot be excluded definitively, rehybridization of this
blot with an actin probe suggested that absence of the larger
transcript was not due to uneven gel loading or RNA degradation
(data not shown). Fibroblast poly(A)⁺ RNA from three other CHS
patients (369, 371 and 373) showed a moderate reduction in the
∼13 kb mRNA (51–60% of control by densitometry), while the
∼4.4 kb mRNA was essentially unaltered in abundance
(103–147% of control) (data not shown).

Single-strand conformation polymorphism (SSCP) analysis
was undertaken using cDNA samples derived from lymphoblasto-
loid or fibroblast cells lines from CHS patients. Anomalous bands
were detected in PCR products from the 5′ end of the open reading
frame (ORF) in two unrelated CHS patients (371 and 373)
different from those with probable selective loss of the larger
transcript on Northern blots (Fig. 3B). Sequence analysis
identified a C→T substitution at nucleotide 118 of the coding
domain in patient 373 (Fig. 3C). Four of nine cDNA clones
derived from patient 373 contained this mutation. Restriction
enzyme digestion confirmed this mutation: TaqI digestion of
cDNA (nucleotides 520–808) showed loss of this restriction site
in patient 373 to be heterozygous (data not shown). The C→T
substitution creates a stop codon at amino acid 50 (R50X).
The mutation in patient 373 occurs within a CpG dinucleotide, which
represents a common hotspot for mutations when methylated.

Patient 371 had been shown previously to have a frameshift
mutation with a G insertion at nucleotide 118 of the coding
domain (Fig. 3C) (20). While analysis of genomic DNA had
shown patient 371 to be heterozygous for this mutation (24), each
of five cDNA clones isolated from lymphoblasts of this patient
contained the insertion mutation. Allele-specific oligonucleo-
tide (ASO) hybridization of cDNA from this patient failed to
detect a signal with an oligonucleotide corresponding to the
normal allele, suggesting that the patient is transcriptionally
hemizygous for the G insertion mutation. Alternatively, the lack
of ASO hybridization may reflect a base mismatch (such as a
polymorphism) within the patient’s cDNA.

Novel mutations were identified in two other CHS patients: a
homozygous C→T substitution at nucleotide 3085 of the coding
domain that created a stop codon at amino acid 1029 (Q1029X)
was found in patient 370, and a heterozygous frameshift mutation
was found in patient 369. Nucleotides 3073 and 3074 of the
coding domain were deleted in two of five cDNA clones isolated
from the latter patient. This deletion results in a frameshift at
codon 1026 and termination at codon 1030.

Despite mutation analysis of >6 kb of ORF, the mutations in
CHS patients P1 and P3 (that appear to have selective loss of the
larger transcript on Northern blots) have not been identified.

Lymphoblasts from all of these patients (369, 370, 371, 373, P1
and P3) contain the giant perinuclear lysosomal vesicles that are
the hallmark of CHS. Patients 369, 370 and 371 had typical
clinical presentations of CHS, with recurrent childhood infections
and oculocutaneous albinism. The parents of patients 369 and 370
are known not to have been consanguinous. In contrast, the
clinical courses of patients 373 and P3 were milder; this patient has not had
systemic infections and remains alive at age 37. Patient 373 does,
however, have hypopigmented hair and irides as well as
peripheral neuropathy.
DISCUSSION

We have demonstrated here that each of the previously reported bg gene sequences (20,21) are derived from a single gene with alternatively spliced mRNAs. The previously reported sequences are derived from non-overlapping parts of two Lyst mRNA isoforms with different predicted C-terminal regions. By sequencing RT-PCR products, we have shown that nucleotides 1–4706 of Lyst also represent the previously undetermined 5' region of the largest Lyst isoform. Alternative splicing at nucleotide 4706 results in bg gene isoforms that contain different 3' regions. Splicing from exon σ (containing nucleotide 4706) to exon τ results in an ~12 kb mRNA (Lyst-I) that corresponds to the largest band observed on Northern blots. Incomplete splicing at nucleotide 4706 results in a 5893 bp cDNA (Lyst-II) that contains intron-derived sequence at the 3' end. Lyst-II corresponds to a smaller mRNA observed on Northern blots (20). While several other genes generate an alternative C-terminus by incomplete splicing (27–31), the bg gene is unique in that the predicted structures of the two C-termini are quite different. The C-terminus of Lyst-I contains a 'WD'-repeat domain that is similar to the β-subunit of heterotrimeric G proteins and which may assume a propeller-like secondary structure (32). This domain is absent in Lyst-II.

Northern blots of human tissues had suggested that transcription of the homologous human gene, CHS, has a similar complexity to the mouse (20). We recently identified two human ESTs homologous to mouse Lyst and described a mutation in one of these in a CHS patient (20). Subsequently, another group published the cDNA sequence of the largest CHS isoform, and identified mutations in this gene in two additional patients with CHS (25). Here we have described the identification of a second isoform of the human CHS gene. This mRNA encodes a protein of 1531 amino acids that is homologous to mouse Lyst. Like the latter, this human mRNA arises from incomplete splicing and retention of a transcribed intron that encodes the C-terminus of the predicted CHS protein. The mouse and human codons unique to this short isoform share 65% amino acid identity. The stop codon, however, is not conserved precisely between the human and mouse short isoforms. While mouse Lyst-II is predicted to contain a C-terminal prenylation motif (CYSP), translation of human short isoform is predicted to terminate 22 codons earlier and to lack this motif.

However, the other predicted structural features of the human short isoform were conserved with mouse. The most notable of these was a region similar in sequence to stathmin (amino acids 376–540) (20). While the mouse and human CHS genes had an overall amino acid identity of 81%, identity in the stathmin-like domain was 92% (and similarity was 99%) (Fig. 4). Stathmin is a coiled-coil phosphoprotein that regulates microtubule polymerization in a phosphorylation-dependent manner, and acts as a relay for intracellular signal transduction (33–35). This region of the CHS gene may encode a coiled-coil protein interaction domain and may regulate microtubule-mediated lysosome trafficking. Intriguingly, a defect in microtubule dynamics has been documented previously in CHS (36) and intact microtubules are required for maintenance of lysosomal morphology and trafficking (37–40).
Comparison of the relative abundance of CHS gene transcripts in human tissues at different developmental stages revealed an overlapping but distinct pattern of expression (Fig. 2). A quantitative estimate of the relative expression of the smaller mRNA isoforms was obtained by comparing the relative hybridization intensity obtained with a probe specific for the large isoform with that obtained with a probe that hybridizes to all CHS transcripts. Large isoform transcripts predominated in thymus, fetal thymus, spleen and brain (with the exception of amygdala, occipital lobe, putamen and pituitary gland). Large and small mRNA transcripts were abundant in the latter brain tissues, peripheral blood leukocytes and bone marrow. However, in several tissues, only the small isoforms were expressed, including heart, fetal heart, aorta, thyroid gland, salivary gland, kidney, liver, fetal liver, appendix, lung, fetal lung and fetal brain. The developmental pattern of mRNA isoform expression in brain was particularly interesting, since only the small isoforms were expressed in fetal brain, whereas the largest isoform predominated in many regions of the adult brain.

Novel mutations were identified within the coding domain of the CHS gene in three CHS patients (Table 1). The genetic lesions in two CHS patients (370 and 373) were C→T substitutions that resulted in premature termination (Q1029X and R50X, respectively). Another patient had a frameshift mutation. This patient was heterozygous for a dinucleotide deletion that results in premature termination at codon 1030. Interestingly, all bg and CHS mutations identified to date are predicted to result in the production of either truncated or absent proteins (20,21,25). Unlike Fanconi anemia, type C, there does not appear to be a correlation between the length of the truncated proteins (which may or may not be stable) with clinical features or disease severity in CHS patients (41). However, until the other mutant allele in the CHS patients to date are within the region of the coding domain that is common to all isoforms (20,25). However, the mouse bg^{bg} mutation results in the generation of a premature stop codon in Lyst-I that is unlikely to affect Lyst-II mRNA processing (21). Together, these results suggest that defects in the full-length mRNA alone can elicit CHS and that expression of the smaller isoform alone cannot compensate for loss of the largest isoform.

MATERIALS AND METHODS

Cloning of human CHS cDNAs

Segments of the human CHS sequence were obtained by an anchored, nested PCR (5′RACE-PCR) using liver cDNA as a template (Clontech Laboratories, Palo Alto, CA), by RT-PCR using total RNA and by sequencing of human ESTs similar in sequence to mouse Lyst. For the 5′RACE-PCR, two nested primers were used that were derived from a human EST (GenBank accession No. W26957) and had the following nucleotide sequences: 5′-CCAAGATGAAAGCAGCCGATGG-GGAAAACCT-3′ and 5′-TCAGCCCTTTCTTCTGCTCCGTGA-AACTGCT-3′. For RT-PCR experiments, total RNA was prepared from the promyelocytic HL-60 cell line. RT-PCR was performed with Expand polymerase (Boehringer Mannheim, Meylan, France) with the following primer pairs: 5′-AGTTTAT-GAGTCACAAATGAT-3′ and 5′-GAATGATGAAGTTGTCCT-GA-3′ (bp 490–2034); 5′-CAGCGTCCTTCCATGGGA-3′ and 5′-ATCTTTCTGTGGTCCCTA-3′ (bp 1891–3050); and 5′-TAGGGGAGCAACAGAAAGAT-3′ and 5′-GCTCAGAT-AGTATCCATTT-3′ (bp 3320–4722). The primers used to amplify the cDNA between base pairs 1891 and 3050 were derived from the mouse Lyst sequence (20). Human primers were designed from the sequence of the PCR product (1159 bp) and used to amplify the flanking sequences. Human CHS intron was PCR amplified from human genomic DNA (100 ng) with the primers 5′-CCGCTCGAGATGATGTCTTTAAGGGTAAATC-3′ and 5′-GTATACTAATATGGCCTTCATCAGTATC-3′. PCR conditions were: 94°C for 1 min, then 32 cycles of 94°C for 15 s, 63°C for 20 s and 72°C for 30 s, followed by 10 min at 72°C.

Long-range PCR of mouse Lyst cDNA isoforms

Total cellular RNA was isolated from mouse bone marrow cells with Trizol (Life Technologies Inc., Bethesda, MD). Five µg of
RNA was reverse transcribed using Superscript reverse transcriptase (Life Technologies Inc.), with first strand cDNA synthesis priming by an oligo(dT) primer and a gene-specific primer (5'-CACAGTCATGGGACTGCTA-3') for Lyst-I and Lyst-II, respectively. One µl of cDNA was used as template for PCR amplification using KlenTaq DNA polymerase (Clontech, Palo Alto, CA). PCR conditions were: 94°C for 1 min, then 30 cycles of 94°C for 15 s, 68°C for 10 or 5 min (for Lyst-I and Lyst-II, respectively), followed by 20 or 10 min (for Lyst-I and Lyst-II, respectively) at 68°C. The same upstream primer (5'-AGCCGA-GGTGAAGCCTTATGCTGAGACAGT-3') was used for PCR amplification of both isoforms. Isoform-specific downstream primers used were 5'-TTATGTCTCTTGAGGACACTCTTC-TC-3' (for Lyst-I) and 5'-ACAGAGCATCCCCACTCTCTCAT-CATAGT-3' (for Lyst-II).

DNA sequencing and sequence analysis

PCR products were cloned using a TA cloning kit (Invitrogen Corporation, San Diego, CA) and both strands were cycle sequenced. The sequences were analyzed with the GCG Package (42,43) (National Library of Medicine, via INTERNET) and the Whitehead Institute Sequence Analysis Programs (MIT, Cambridge, MA).

Southern and Northern blot analysis

Preparation of mouse, human, bacteriophage P1 and yeast DNA samples, digestion with restriction endonucleases, agarose gel electrophoresis and Southern transfers were performed using standard techniques (44,45). An EcoRI monochromosomal somatic cell hybrid blot was obtained from BIOS Laboratories (New Haven, CT). Isolation of poly(A)+ RNA from fibroblast somatic cell hybrid blot was obtained from BIOS Laboratories standard techniques (44,45). An EcoRI monochromosomal somatic cell hybrid blot was obtained from BIOS Laboratories (New Haven, CT). Isolation of poly(A)+ RNA from fibroblast somatic cell hybrid blot was obtained from BIOS Laboratories standard techniques (44,45).

SSCP analysis

Detection of nucleotide changes by SSCP was performed as described by Orita et al. (46). Briefly, each PCR product was mixed with an equal volume of denaturing buffer and heated to 95°C for 3 min, after which the samples were loaded onto 0.8 mm thick, 10% native polyacrylamide gels. Gels were run at ambient temperature at 9 W for 6–10 h, depending on the size of the PCR product. Bands were visualized by silver staining (47). Primer sequences are available upon request.

Allele-specific oligonucleotide analysis

PCR products spanning the mutation site in patient 371 were transferred to nylon membranes using a slot-blot apparatus. Approximately 5 ng of each PCR product was treated with a denaturing solution (0.5 M NaOH, 1.5 M NaCl), split in half and loaded in duplicate. Two 17mer oligonucleotides were synthesized that span the region containing the mutation. One contained the sequence of the normal allele (5'-CGCACTATGCC-AACCTTT-3'), while the other contained the sequence of the mutant allele (5'-GCACATGGGAAAACCTTT-3'). These were end-labeled with [γ-32P]dATP using T4 polynucleotide kinase and hybridized to the membranes at 50°C. Hybridization and wash buffers were as described (48). Membranes were washed sequentially at 45, 55 and 65°C for 10 min each and exposed to X-ray film.

ACKNOWLEDGEMENTS

We thank K. Achey and S. Certain for technical assistance and Dr Seth Orlow for provision of mouse melanocyte RNA. We thank Dr Roberto Solari and Dr Charlie Hodgman for sequence alignments. S.F.K. is supported by the American Cancer Society, the Arthritis Foundation, Glaxo-Wellcome Research and Development, the Howard Hughes Medical Institute and the National Institutes of Health (AI39651 and AI39824). S.J.B. is supported by the Vanderbilt Cancer Center and the National Institutes of Health (5P30-AR 41943). G.S.B. is supported by grants from INSERM, l’Association Vaincre les Maladies Lysosomiales, l’Association Française contre les Myopathies, le Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche and l’Assistance Publique Hôpitaux de Paris.

REFERENCES