Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse

Vanessa C. Wheeler, Wojtek Auerbach1, Jacqueline K. White+, Jayalakshmi Srinidhi, Anna Auerbach1, Angela Ryan, Mabel P. Duyao§, Vladimir Vrbanac, Meredith Weaver, James F. Gusella, Alexandra L. Joyner1 and Marcy E. MacDonald*

Molecular Neurogenetics Unit, Massachusetts General Hospital East, Building 149, 13th Street, Charlestown, MA 02129, USA and 1Developmental Genetics Program, Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University Medical Center, New York, NY 10016, USA

Received August 10, 1998; Revised and Accepted October 7, 1998

The CAG repeats in the human Huntington’s disease (HD) gene exhibit striking length-dependent intergenerational instability, typically small size increases or decreases of one to a few CAGs, but little variation in somatic tissues. In a subset of male transmissions, larger size increases occur to produce extreme HD alleles that display somatic instability and cause juvenile onset of the disorder. Initial efforts to reproduce these features in a mouse model transgenic for HD exon 1 with 48 CAG repeats revealed only mild intergenerational instability (~2% of meioses). A similar pattern was obtained when this repeat was inserted into exon 1 of the mouse Hdh gene. However, lengthening the repeats in Hdh to 90 and 109 units produced a graded increase in the mutation frequency to >70%, with instability being more evident in female transmissions. No large jumps in CAG length were detected in either male or female transmissions. Instead, size changes were modest increases and decreases, with expansions typically emanating from males and contractions from females. Limited CAG variation in the somatic tissues gave way to marked mosaicism in liver and striatum for the longest repeats in older mice. These results indicate that gametogenesis is the primary source of inherited instability in the Hdh knock-in mouse, as it is in man, but that the underlying repeat length-dependent mechanism, which may or may not be related in the two species, operates at higher CAG numbers. Moreover, the large CAG repeat increases seen in a subset of male HD transmissions are not reproduced in the mouse, suggesting that these arise by a different fundamental mechanism than the small size fluctuations that are frequent during gametogenesis in both species.

INTRODUCTION

Huntington’s disease (HD), with its hallmark choreiform movements and graded pattern of neuronal cell loss in the basal ganglia (1,2), is caused by a CAG tract in one copy of a novel 4p16.3 gene (HD) that is expanded (~35 to >130 units) beyond the normal polymorphic range (6–34 units) (3). The mutation acts at the level of the protein by extending a glutamine segment in huntingtin, triggering a pathogenic mechanism that remains to be elucidated (4,5). Disease onset varies inversely with the length of the expanded glutamine tract (3,6–24). Thus, most HD cases (40–50 CAG units) manifest in mid-life but symptoms may not begin until old age due to tracts of ~35–39 CAGs that exhibit reduced penetrance (19,20). Occasionally, the defect claims its victims in childhood with repeats of ~55 or more units, which are typically inherited from fathers (3,21–24).

In contrast to the intergenerational instability of the expanded HD repeat, limited length variation is exhibited in somatic tissues of most HD patients (3,6,31,35–38). Only the largest arrays (>~65 repeats) show dramatic mosaicism in brain and...
other organs of some juvenile onset HD patients (32,37). Intriguingly, in a proportion of the latter cases the cerebellum possesses a single dramatically reduced allele rather than a combination of different repeat sizes (32). Notably, the predominant mitotic stability of HD CAG repeats argues that specific somatic mosaicism in the target tissues, the basal ganglia and cerebral cortex, does not explain the selective pathogenesis of the disorder (31,37).

The fundamental processes that participate in HD CAG repeat instability are unknown, but comparison of the stable inheritance of alleles in the normal range with the unstable behavior of expanded CAG repeat tracts demonstrates that instability is length-dependent in both male and female transmissions. The observation of mosaicism in sperm, but not somatic tissue, of typical HD patients and the finding that monozygotic twins have an identical HD repeat size both point to gametogenesis as the primary source of instability (31). In HD males, gametic mosaicism in sperm tends to increase with the length of the constitutional CAG repeat (31,33). Gametic mosaicism has not been shown directly in females but similarities to the majority of male transmissions suggest that maternal instability is likely to occur during oogenesis.

To explore HD instability in an experimental animal, we have inserted a single CAG tract into the mouse germline to optimize detection of subtle repeat fluctuations in offspring. Mice harboring a single random integration of an HD exon 1 segment from a typical HD patient with 48 CAGs displayed CAG alterations in only ∼2% of transmissions, indicating dramatic differences in CAG repeat instability between mouse and man. As an optimal test, we inserted CAG tracts of different lengths (18–109 units) into the appropriate genomic location, in exon 1 of the murine HD gene homolog, Hdh (39,40), creating a related set of genetically precise HD mouse models (41). These mice revealed CAG length-dependent inter-generational instability that reproduces many of the features of human transmissions but at longer repeat lengths.

RESULTS

HD exon 1 transgenic and Hdh CAG knock-in mice

HD CAG repeat instability typically constitutes small fluctuations in the modestly sized repeat tracts (40–50 units) that cause adult onset HD, although occasionally larger jumps occur giving rise to extreme repeats (∼55–130 units) that trigger juvenile disease. To study this subtle pattern of repeat behavior we have generated lines of mice with single HD CAG tracts that can be followed accurately in progeny. Initially, we used embryonic stem (ES) cell technology to create lines of transgenic mice in which an HD exon 1 fragment with either 18 or 48 CAGs, typical of normal and HD chromosomes, respectively, is inserted at a random genomic location, in exon 1 of the murine HD gene homolog, Hdh (Materials and Methods).

Two of the lines from this experiment, Hdx1CACAG18 and Hdx1CACAG48, were shown by Southern blot analyses to possess a single copy of the HD exon 1 fragment with 18 and 48 CAGs, respectively (data not shown). The transgene was not designed as an expression cassette and immunoblot studies confirmed that neither line produces stable HD exon 1-encoded polypeptides, although RT–PCR analysis revealed very low levels of RNA product in most tissues of Hdx1CACAG48 mice (data not shown).

Subsequently, to provide an accurate genetic model of the HD defect, we used homologous recombination in ES cells to create Hdh knock-in lines with distinct CAG tracts appropriately inserted in exon 1 of the murine HD homolog (41) on mouse chromosome 5 (39,40). Four knock-in lines from these experiments, HdhQ20, HdhQ50, HdhQ92 and HdhQ111, are precise genetic models of HD that accurately express mutant huntingtin (41; data not shown) and differ only by the length of the CAG repeat tract (18, 48, 90 and 109 CAGs, respectively).

CAG repeat length can be monitored in each of the six HD transgenic and knock-in mouse lines by standard PCR amplification assays, developed for genotyping in man, that depend on oligonucleotide primer sets specific for the human exon 1 sequences flanking the repeat (3,42,43). As shown in Figure 1, the mobility of the PCR product obtained with tail clip DNA decreases with increasing CAG number, from 18 to 109 units, comprising in each case a single nested set of bands that allows assignment of repeat size relative to cloned, sequenced arrays. Because the adjacent CCG-rich segment is mildly polymorphic in man (44), we also assessed its size in members of each of the transgenic and knock-in mouse lines and found it to be unchanged at seven repeat units (data not shown).

Inheritance of normal and adult onset HD CAG repeat lengths

We have monitored intergenerational CAG repeat instability in these HD transgenic and Hdh knock-in lines by directly

![Figure 1](image-url)
Person-parental age effect on frequency of instability

Sex of parent effect on frequency of instability

We also examined the data to determine whether the sex of the transmitting parent influences the mutation rate revealed a tendency for changes to occur more frequently when the repeat tract is inherited from females (Fig. 2). This effect is not apparent at 48 repeats, with about equal proportions of male and female transmissions resulting in changes (4/108 and 2/47 events, respectively), but is evident for both the 90 and 109 repeat arrays. For the HdhQ92 line, the mutation frequency in male transmissions was 41% (17/42 events) versus 69% (29/42 events) in female transmissions. For the longer array, alterations were observed in 66% (42/64 events) and 87% (27/31 events) of the progeny of heterozygous HdhQ111 males and females, respectively. These data demonstrate that the longer repeat tracts change in size more often when transmitted through the female rather than the male germline ($\chi^2 = 7.45$, 1 df, $P = 0.006$).

Lack of parental age effect on frequency of instability

We also examined the data to determine whether the age of the dams and sires at the time of conception influenced the mutation frequency and found no clear evidence of an effect in either sex at the ages tested. Females were 2–17 months and bore two to three litters, while the males were 1–11 months of age and fathered two to five litters each. For example, the 90 CAG tract was altered about two thirds of the time when transmitted by an HdhQ92 female at ∼6 (4/6 meioses), 7 (2/3 meioses) and 8 (5/6 meioses) months of age. An HdhQ92 male transmitted altered repeats about one third of the time when he was 3 (2/7 meioses) and (2/6 meioses) months old. The majority of 109 repeat tracts transmitted by five HdhQ111 females were changed, whether pups were conceived when the mothers were 2 (8/10), 5 (3/3) or 16 (5/5) months of age. This array was altered ~60% of the time during transmissions from an HdhQ111 male at ~1 month (3/5 meioses) and from the same male at 4 months of age (4/6 meioses). Thus, in these experiments CAG repeat instability in the Hdh CAG knock-in mice is not dramatically influenced by the age of the parent. However, we have yet to test a large number of transmissions from either very young or elderly mice of each line.
Figure 3. Relationship of HD CAG repeat size in HdhQ92 and HdhQ111 parents and corresponding progeny. (A) Examples of ABI 377 automated genotyping results obtained for PCR analysis of tail clip DNAs from an HdhQ92 mother (left) and father (right) and four of their progeny. The dashed vertical line in each trace indicates the position of the 90 CAG repeat size standard. In each sibship, the CAG allele size (units) in the parent (top trace) and each offspring (traces below) is indicated. (B) Examples of PCR products amplified and displayed using the radioactive format to ascertain transmission of the longer 109 CAG repeat tract from an HdhQ111 father (F) (top) and two mothers (M) (bottom) to offspring (numbered sequentially to the right of the parent). The position of the 109 CAG repeat size standard is indicated. The father possesses 108 CAGs, rather than 109, and transmitted alleles of 107 (progeny 1), 110 (2), 108 (3), 110 (4), 109 (6), 109 (7), 108 (8), and 108 (10) repeat units. No result was obtained on this gel for progeny 5. The first mother, with 109 CAGs, transmitted alleles of 104 (progeny 1), 105 (3) and 107 (4) repeats, with no PCR product amplified in the DNA of progeny 2. The second mother, also with 109 CAGs, transmitted alleles of 109 (progeny 1), 106 (2), 102 (3), 108 (4) and 101 (5) repeat units.

Magnitude of repeat expansions and contractions

In examining the inheritance of the 48, 90 and 109 CAG arrays of the Hdh knock-in mice we identified a total of 121 altered arrays, 63 deriving from paternal transmissions and 58 produced in maternal transmissions. Typical examples of parents and their offspring are shown in Figure 3. The majority of cases involved subtle changes of only one or a few CAGs. In no case did we observe a large expansion akin to the dramatic jumps in size that are inherited from fathers in HD. Indeed, the largest expansion exhibited an increase of only three CAGs. Most contractions were of similar small magnitude, with the largest constituting a change of eight repeat units.

Sex of parent effect on direction of change

While the magnitude of the size change was typically small, there was a strong bias toward either expansion or contraction determined by the sex of the transmitting parent (Fig. 4). Only six mutant alleles were produced in matings with HdhQ50 knock-in mice, four from paternal and two from maternal transmissions. The former were evenly split between increases and decreases of one CAG unit whereas the latter two maternal changes were both decreases of one and two CAGs. For the 90 CAG tract transmitted by HdhQ92 knock-in mice, the majority of paternally altered repeat tracts (11/17 events) were expansions of a single CAG, while the remaining third (6/17) involved the loss of one unit. In contrast, all but two of the arrays that changed in maternal transmissions were contractions of one to six repeat units (27/29), although increases of one and three CAGs were also identified. Our HdhQ111 breeding has involved predominantly inheritance of the 109 repeat tract from males. The vast majority of the paternally altered repeats (34/42 events) were increases of one or two units, with the remainder (8/42) being decreases of one or two CAGs. In the smaller number of female transmissions, almost all of the altered 109 arrays entailed the loss of one to eight repeats (24/27 events), while the three exceptions had increased by either one or two units. Consistent with the lack of an age effect on frequency of instability, there was no obvious age of parent effect in either sex on the magnitude or the direction of the change for any of the repeat sizes (data not shown).

CAG repeat variability in somatic tissues of Hdh CAG knock-in mice

In HD, somatic CAG repeat variation is obvious only in the post-mortem brain and peripheral tissues of some juvenile onset cases with extreme CAG expansions (32,37). We observed no mosaicism in genotyping tail clip DNAs from any of the Hdh CAG knock-in mice. Similarly, when we examined the size of the repeat tract in DNAs extracted from the brains and peripheral organs of each line we found little or no somatic variability in the 48 CAG tract at 15 months of age (Fig. 5). However, male and female HdhQ92 and HdhQ111 mice at ~9 and 5 months of age, respectively, show mosaicism that is detectable in spleen and cortex but which is striking in liver and striatum. As shown in the examples in Figure 5, the broad PCR signal in the latter tissues suggests that the 90 and 109 repeat tracts both display a bias
toward expansion, particularly apparent in the striatal DNA, which tends to be a smear of larger allele sizes. Remarkably, this dramatic pattern of somatic instability was not observed in female HdhQ92 and HdhQ111 mice at 5 weeks of age (data not shown). Thus, repeat instability occurs in select somatic tissues and is dependent on the length of the CAG tract and the age, but not the sex of the mouse. Notably, we did not observe repeat tracts that were severely reduced in size in any of the tissues surveyed, including the cerebellum which, in some juvenile onset HD cases, exhibits a peculiar single allele dramatically smaller than that found in other tissues (32).

DISCUSSION

We have demonstrated that two distinct HD mouse models which differ in the chromosomal location and expression of a typical adult onset HD CAG tract (48 units) both display similar low levels of CAG repeat instability, ~2–4% of meioses. Thus, in these mice, the precise genomic context of the array, including accurate transcription/translation, is not primary to the underlying mutational process(es). Indeed, by comparing the behavior of repeat tracts in a series of Hdh knock-in mice which differ only in the size of the array (18–109 units), we have established that the length of the CAG repeat itself is the major determinant of intergenerational instability. In addition, in agreement with previous studies (45-49), our data reveal that high mutation frequencies (>70% of meioses) are achieved only by large arrays, akin to those at the extreme high end of the range causing juvenile onset HD. Thus, the HD repeat, appropriately inserted into the mouse HD homolog, reveals length-dependent instability similar to that in man but operating at longer CAG repeat numbers.

Notably, adult and juvenile length HD CAG repeats in our knock-in mice yield levels of instability similar to those observed in a variety of transgenic mouse lines (45–49). CAG repeats of 45 and 54 units, in genomic DNA segments carrying the entire androgen receptor (AR) (45) and DM protein kinase (DMPK) (46) genes, respectively, are altered in ~7–10% of transmissions. In contrast, longer arrays of ~120–150 repeats in HD exon 1 (47) and DMPK 3′-UTR (48) transgenic mice change in ~60–70% of meioses. In addition, extremely high, age-dependent, mutation rates were observed upon female, but not male, transmission of an 82 CAG repeat tract in a spinocerebellar ataxia 1 (SCA1) cDNA transgenic line (49). These results, therefore, are consistent with the view that CAG repeat number, rather than *cis* or *trans* sequence elements (45–48) or transcriptional state (47), is the predominant determinant of instability. Moreover, as suggested previously (46), these data also support the notion that the underlying process(es) acts at a greater repeat length in mouse than in man.

The uniformity of the CAG repeat in the somatic tissues of young adult mice strongly argues that intergenerational instability occurs in gametogenesis. This notion is further supported by parental sex effects that are evident in a higher mutation frequency in females (by ~20%) and a strong bias toward male expansions and female contractions. Moreover, these data indicate that the fundamental mechanisms operating to produce gametic mosaicism in males and females may be distinct.

In contrast to reports of repeat instability in HD (47) and SCA 1 (49) transgenic mice with long CAG tracts, we did not observe a parental age effect in either male or female transmissions, suggesting a different behavior of the repeat arrays in Hdh knock-in mice. However, this feature merits further study as our parental males and females were well into adulthood, averaging 5–6 months of age, when the majority of their pups were conceived. The striking age-related increase in contractions of a long CAG repeat in SCA 1 transgenic mice is already evident in younger mothers (49). A similar female-specific pathway might be found to contribute to the higher mutation frequency and bias
toward contractions that we observed in female transmissions in
Hdh knock-in mice when additional younger females are tested.
The distinctive age-dependent pattern of somatic mosaicism in
the liver and striatum of HdhQ92 and HdhQ111 knock-in mice is also noteworthy. It is reminiscent of instability reported in the
transgenic HD 140–160 CAG exon 1 mouse model, distinguished by
expression of a truncated N-terminal huntingtin fragment
which rapidly causes neurologic disease and death (47,50). In
these mice, striking mosaicism in the liver and striatum, not seen
in young mice, is severe in older mice, indicating that age is a
factor (47). However, our Hdh knock-in mice do not rapidly
develop disease or display evidence of abnormal cell proliferation,
such as reactive gliosis (unpublished data), suggesting that
the age-dependent instability is due to repeated rounds of DNA
repair in post-mitotic cells, rather than proliferative alterations in
the cell population. In any case, it is evident that the underlying
mechanism(s) is critically dependent on CAG repeat length, as we
did not readily detect mosaicism in Hdh knock-in mice with the
shorter repeat tract. Thus, long CAG tracts may form structures
that are targets for processes, active in liver and striatal cells, that
produce DNA damage, leading to repeated rounds of DNA repair
that, over time, yield a smear of CAG repeat sizes in these tissues.
Overall our results indicate both similarities and differences in the
behavior of HD CAG repeat arrays in Hdh knock-in mice and
HD patients. In both species, gametogenesis is the primary target
of the underlying CAG length-dependent processes and distinct
mechanisms are likely to produce instability in males and
females. In addition, altered arrays transmitted from mothers and
fathers are typically subtle variants of the parental repeat tract,
with size increases tending to come from males. However, the two
species exhibit different precise sensitivity to the length of the
CAG tract. Extreme repeat numbers are required to achieve high
levels of gametic instability in the mouse, where the impact of
each additional repeat appears to be mild. This contrasts with the
situation in man, where there is a steep increase in intergenera-
tional instability going from CAG repeats in the normal range
(6–34 units) to those in the HD disease range (~44–48 units).
Moreover, the large jumps in repeat size that characterize paternal
transmission in HD do not appear to occur in the mouse. By the
same token, female Hdh knock-in mice display higher levels of
instability than males, although there is no readily apparent sex of
parent effect on the frequency of instability in HD.
The direct comparison of Hdh knock-in mice and HD patients is
complicated by numerous inherent distinctions, including both
genetic and environmental factors, and some qualitative and
quantitative differences are therefore to be expected. Even in
man, some of these confounding variables, such as the multiplic-
ity of distinct disease chromosomes and diversity of races and
nationalities, limit the interpretation of many HD family studies.
Our results suggest that the mechanism that generates extreme
repeats during transmission from fathers, which explains some of
the perplexing genetic features of HD, is apparently not shared by
the knock-in mouse. However, the preponderance of small
fluctuations in both species suggests the possibility of a common
mechanism for the bulk of CAG repeat alterations. Indeed,
relatively minor species-specific differences in a process com-
mon to both man and mouse could account for the apparent
quantitative and qualitative differences in the patterns of repeat
instability. Consequently, the Hdh CAG knock-in mouse, with its
marked CAG length-sensitive intergenerational instability, pro-
vides a potential system in which to explore the fundamental
processes underlying the most frequent alterations affecting HD
disease alleles in man.

MATERIALS AND METHODS

Generation of HD exon 1 transgenic and Hdh knock-in mice

Mice transgenic for HD exon 1 possessing 18 and 48 CAG repeat
units were created using HD exon 1 CAG18 and HD exon 1
CAG48, two clone constructs generated by inserting a 4.1 kb
EcoRI restriction fragment of the HD gene (accession no. L34020)
from a normal individual and a typical adult onset HD case,
respectively, into pGEM7(KJ1)-Sal upstream of a pGKneo
selection cassette. The number of CAG repeats in these clones was
determined by DNA sequence analysis (51). In each case, the
genomic fragment comprises HD exon 1, 3.6 kb of DNA sequence
5' of the ATG initiation codon and 269 bp of downstream intron 1
sequence. These constructs were linearized at a unique Sal I
restriction site and, in separate experiments, introduced into the R1
line of ES cells by electroporation (52). Selection of ES cell
colonies in G418, extraction of DNA and Southern blot analyses
were as previously described (41,53). DNA isolated from
G418-resistant ES cell clones was assessed by Southern blot
analysis to identify transformants with a single randomly inte-
grated copy of either pGEM7(KJ1)/Sal HD exon 1 CAG18 or
pGEM7(KJ1)/Sal HD exon 1 CAG48. The integrity of the HD exon 1
fragment was confirmed by restriction with EcoRI, while
enzymes that do not cut within the constructs, XhoI, HindIII and
EcoRV, permitted assessment of transgene copy number when
blots were hybridized with a neo-specific hybridization probe (41)
and a single copy probe, 191F1B10A, located at the extreme 5'-end
of the HD gene fragment (accession no. L34020). Founder
chimeric males were generated in aggregation experiments (53,54)
and, in each case, two were bred with CD1 females to establish the
HDex1CAG18 and HDex1CAG48 lines, maintained on a 129SvEv/
CD1 mixed genetic background used in this study. Transgenic mice
were subsequently identified by PCR analysis of the HD CAG
repeat using standard protocols (3,42,43).

Generation of HdhQ20, HdhQ50, HdhQ92 and HdhQ111 knock-in mice with 18, 48, 90 and 109 consecutive CAG repeats, inserted in the appropriate position of the murine HD gene, by targeted replacement of Hdh exon 1 with a chimeric Hdh:HD exon 1 was, accomplished using the ES cell-homologous recombination strategy described previously for HdhQ92 (41). The HdhQ20 and
HdhQ50 lines were established from two germine transmitting
founders while the HdhQ92 and HdhQ111 lines, in each case, were
generated from a single germine transmitting male aggregation
chimera. The presence of the appropriate targeted allele in each
knock-in mouse was determined by specific Southern blot assay of
tail clip DNA as described (41). For all the Hdh knock-in lines, the
male founders were bred to CD1 females and the lines were
maintained on a mixed 129SvEv/CD1 genetic background. Male
and female parental mice were second or third generation from the
germline transmitting founder. In each case, the length and
uninterrupted nature of the CAG repeat was confirmed by DNA
sequencing of PCR products amplified from tail clip DNAs. The
polyglutamine stretch in the mutant huntingtin product, denoted
in the name of the knock-in allele, is two residues longer than the
number of CAG units in the repeat due to invariant, penultimate
exon 1 CAA, CAG codons.
RNA and protein analyses

Expression of the transgene in the $H_{D}{}^F_{ex}C_{AG}{}^{18}$ and $H_{D}{}^F_{ex}C_{AG}{}^{48}$ lines was assessed by RT–PCR of template RNA (DNase I-treated) extracted from brain, liver, kidney, spleen, heart and lung. First strand cDNA, synthesized using random hexamer oligonucleotide primers, was amplified by PCR using H_{D} exon 1 primers (3,42,43) according to the manufacturer’s protocol (RT–PCR kit; Stratagene). Immunoblot analysis of protein extracts from brain, liver, kidney, spleen, heart and lung of the H_{D} exon 1 transgenic and H_{Dh} knock-in mice were as described, using anti-huntingtin antisera that detect the N-terminus of huntingtin (HP12 and 1F8) (41).

DNA extraction and PCR amplification of H_{D} CAG repeats

Genomic DNA was isolated from tail biopsies taken at birth or at weaning and from tissues dissected from adult mice as described previously (41). H_{D} CAG repeat length, for assessment of intergenerational and somatic instability, was determined using ~40 ng of genomic DNA in one of two specific PCR assays (3,42,43). The shorter repeats (18 and 48 units) were amplified using primers CAG1 and CAG2, using incorporation of [α-32P]dGTP and displayed in a denaturing polyacrylamide gel as described (43). For the longer repeats (90 and 109 units) greater sensitivity was obtained by amplification with primers CAG1 and CAG3 (42) using previously reported conditions (47). For the 90 CAG stretch, primer CAG1 was fluorescently labeled with 6-FAM (Perkin Elmer) and products were displayed on an ABI 377 automated DNA sequencer (Applied Biosystems Division, Perkin Elmer) (48). For the 109 repeat segment, PCR products were labeled by incorporation of [α-32P]dGTP and displayed in a radioactive format (42).

Determination of H_{D} CAG repeat length

PCR products were resolved in denaturing 6% polyacrylamide gels and their sizes were determined relative to the migration of PCR products generated from parental DNAs and a set of DNA standards of known CAG repeat length, previously determined by DNA sequencing. For the 18, 48 and 109 repeat lengths, assessed in the two radioactive formats, a nested set of amplified products was obtained and the most intense PCR product, as determined by eye, was taken to represent the size of the repeat. For analyses of the $H_{Dh}Q_{92}$ 90 repeat unit in the automated ABI377 format, Genescan and Genotyper software packages were used to assign repeat size and Genescan 500-TAMRA (Perkin Elmer) act as an internal size standard in each lane. Because the size changes are modest, each DNA sample was assessed using five PCR reactions that typically produced the same allele size, determined by eye, was taken to represent the size of the repeat. For analyses of the $H_{Dh}Q_{111}$ mice, the 109 CAG repeat was found to be highly unstable and some of the parents possessed alleles of 107 and 111 CAGs.

Comparison with parental CAG repeat size

For all assay formats the H_{D} CAG allele sizes of parents and offspring were compared directly by displaying PCR products amplified in the same experiments in adjacent lanes of the same gel. The size of the allele in offspring was determined relative to that of the parent using the highest peak in the Genescan traces or the most intense band(s) in the smear of radioactively labeled products and, in the latter, calling the alleles conservatively, i.e. differing the least from the parental alleles.

Statistical analyses

Statistical analyses were performed using the Sigma Stat analysis package (Jandel Scientific), assessing differences in frequency of allele alterations by the $χ^2$ test and associations between frequency or magnitude of instability and sex or age of parent by ANOVA.

ACKNOWLEDGEMENTS

The authors thank Dr Maxine Allen, Drs Jean-Paul Vonssattel and Marc Lalinde and members of their laboratories for their contributions. This work was supported by NIH grants NS32765 and NS16367. We are grateful to the Foundation for the Care and Cure of Huntington’s Disease for grant support and to Mr H. Lieberman and the Hereditary Disease Foundation for supporting J.K.W. with a Lieberman Award.

REFERENCES

null