DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways

Juan J. Fuentes, Lali Genescà, Tami J. Kingsbury1, Kyle W. Cunningham1, Mercè Pérez-Riba, Xavier Estivill+ and Susana de la Luna

Down Syndrome Research Group, Medical and Molecular Genetics Center, IRO, Hospital Duran i Reynals, Avia de Castelldefels Km 2.7, 08907-L’Hospitalet de Llobregat, Barcelona, Spain and 1Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

Received 22 March 2000; Revised and Accepted 8 May 2000

Down syndrome is one of the major causes of mental retardation and congenital heart malformations. Other common clinical features of Down syndrome include gastrointestinal anomalies, immune system defects and Alzheimer’s disease pathological and neurochemical changes. The most likely consequence of the presence of three copies of chromosome 21 is the overexpression of its resident genes, a fact which must underlie the pathogenesis of the abnormalities that occur in Down syndrome. Here we show that DSCR1, the product of a chromosome 21 gene highly expressed in brain, heart and skeletal muscle, is overexpressed in the brain of Down syndrome fetuses, and interacts physically and functionally with calcineurin A, the catalytic subunit of the Ca2+/calmodulin-dependent protein phosphatase PP2B. The DSCR1 binding region in calcineurin A is located in the linker region between the calcineurin A catalytic domain and the calcineurin B binding domain, outside of other functional domains previously defined in calcineurin A. DSCR1 belongs to a family of evolutionarily conserved proteins with three members in humans: DSCR1, ZAKI-4 and DSCR1L2. We further demonstrate that overexpression of DSCR1 and ZAKI-4 inhibits calcineurin-dependent gene transcription through the inhibition of NF-AT translocation to the nucleus. Together, these results suggest that members of this newly described family of human proteins are endogenous regulators of calcineurin-mediated signaling pathways and as such, they may be involved in many physiological processes.

INTRODUCTION

Trisomy of human chromosome 21 (HC21), full or partial, is a major cause of mental retardation and other phenotypic abnormalities, collectively known as Down syndrome (DS), a disorder affecting 1 in 700 births (1). The identification of genes on HC21 and the elucidation of the function of the proteins encoded by these genes have been a major challenge for the human genome project and for research in DS (2). Over 100 of the estimated 300–500 genes of HC21 have been identified, but the function of most remains largely unknown. It is believed that in DS the overexpression of an unknown number of HC21 genes is directly or indirectly responsible for the mental retardation and the other clinical features of DS (1). For this reason, HC21 genes that are expressed in tissues especially affected in DS patients are of special interest.

We have identified previously a HC21 gene, DSCR1, highly expressed in the central nervous system and heart (3). DSCR1 is expressed as four protein isoforms through the use of four alternative first exons (4). Although all the different DSCR1 spliced transcripts are expressed in heart and skeletal muscle, only the exon 1-containing DSCR1 transcript can be detected in fetal and adult brain, and only the exon 4-containing mRNA is detected in placenta and kidney. These two DSCR1 transcripts encode predicted polypeptides of 197 amino acids of unknown function, which differ in their N-terminal 29 amino acids.

Calcium is used by the cell to modulate gene expression programs by various means. Examples include direct binding of calcium by the transcriptional repressor DREAM, which leads to a reduction in its DNA activity (5), or Ca2+/calmodulin kinase IV phosphorylation of the transcription factor CREB allowing its binding to the co-activator p300 (6). The best known example of calcium regulation through phosphatases is the NF-AT transcription factor (reviewed in ref. 7). In this case, an increase in intracellular Ca2+ leads to the activation of calcineurin, which then dephosphorylates cysotic NF-AT family members. This modification unmasks their nuclear localization signals and promotes translocation into the nucleus where they bind cooperatively to DNA with other transcription factors such as AP-1, c-MAF or GATA4. This signaling pathway is important for the immune response (reviewed in ref. 8), cardiac and skeletal muscle hypertrophy (9–11), slow fiber differentiation in skeletal muscle (12), cardiac valve development (13,14) and the differentiation of a pre-adipocyte cell line to adipocytes in culture (15).

Calcineurin is the only serine/threonine protein phosphatase under the control of Ca2+/calmodulin (16). It functions as a heterodimer composed of a catalytic A subunit (CaNA) and a

+To whom correspondence should be addressed. Tel: +34 93 2607775; Fax: +34 93 2607776; Email: estivill@iro.es
calcium binding regulatory B subunit (CaNB). In mammals, there are three different CaNA genes, α, β and γ, highly similar through their entire sequence but with different tissue distributions. CaNA displays a multidomain structure with a catalytic domain at its N-terminus, similar to that of protein phosphatase 1 (17,18), followed by the binding regions for the B subunit and calmodulin (CaM). An autoinhibitory domain is located near the C-terminus, which is thought to be displaced upon CaM binding. The immunosuppressive drugs FK506 and cyclosporin, when complexed to specific immunophilins (FKBP12 and cyclophilin A, respectively), bind calcineurin at multiple sites, including the N-terminus of the CaNB binding helix, the CaNB subunit and the catalytic domain of CaNA (17), inhibiting calcineurin activity.

We report here the identification of DSCR1 as a calcineurin catalytic A subunit binding protein. We have mapped the interaction domain in CaNA to the linker region between the catalytic domain and the CaNB binding domain. We further show that overexpression of DSCR1 can repress the transcriptional activation of a NF-AT-dependent promoter in response to phorbol 12-myristate 13-acetate (PMA) and ionophore by inhibiting the nuclear translocation of NF-AT. Therefore DSCR1, and the other related proteins in humans, may represent endogenous inhibitors for calcineurin and define a new negative regulatory pathway in calcineurin signaling in mammals.

RESULTS

Identification of calcineurin A as a DSCR1 binding protein

To investigate the cellular function of DSCR1 we performed a yeast two-hybrid screen to identify interacting proteins (19) using the brain-specific DSCR1 isoform 1 (Fig. 1A). The bait was screened against a human fetal brain cDNA library fused to the Gal4 transcriptional activation domain (G4AD). Three out of six doubly positive clones (His+/β-gal+) corresponded to partial cDNAs of CaNA, isoform β (20). All CaNA positive clones had unique ends but overlapped with each other. The interaction between the DSCR1 bait and the CaNA prey was specific, since binding was not apparent between either CaNA or the Gal4 DNA binding domain (G4DBD) or DSCR1 and the G4AD (Fig. 1B). Interaction with CaNA was also detected with a shorter DSCR1 bait, containing the C-terminal half (DSCR1115–197), suggesting that CaNA interaction would be common to all DSCR1 isoforms since they share the carboxyl end.

DSCR1 and CaNA also interacted in a mammalian two-hybrid assay. In these experiments, DSCR1 and DSCR1115–197 were fused to the DBD of Gal4 and CaNA to the activation domain of VP16 (VP16AD). The plasmids were transfected into mammalian cells along with a luciferase reporter gene driven by Gal4 sites. Neither construct generated any significant luciferase activity when transfected alone, but a strong luciferase activity was observed when both DSCR1 and CaNA were co-transfected (Fig. 1C), demonstrating the DSCR1 and CaNA interaction. Similar to the results of the yeast two-hybrid assay, a clear interaction was also detected when the DSCR1 C-terminal half was used (Fig. 1C), suggesting that amino acids 115–197 in DSCR1 are sufficient for CaNA binding in mammalian cells.

Mapping of the DSCR1 binding domain in CaNA

Various functional domains can be identified in the CaNA linear molecule (Fig. 2A). These domains are highly conserved among CaNAs from different species and include a catalytic domain, the binding domains for CaNB and CaM and the C-terminal autoinhibitory peptide (AID). To map the region in CaNA involved in DSCR1 binding, we generated a series of CaNA deletion mutants (Fig. 2A) as fusions with VP16AD and tested them for their interaction with DSCR1 in mammalian two-hybrid assays (Fig. 2B). Deletion of the autoinhibitory domain (CaNA2) or the CaM binding domain (CaNA3) did not affect DSCR1 binding. Further deletion of the CaNB binding domain (CaNA4) diminished DSCR1 binding but did not abolish it as the values observed were 100-fold higher than the controls. However, a slightly larger deletion up to amino acid 338 (CaNA5) completely abolished the interaction (0.8-fold increase). For each case, the expression of the fusion proteins with VP16AD or G4DBD was determined by western blotting.
The expression of G4DBD–DSCR1 was not affected by the co-expression of CaNA1 or any of the deleted mutants. However, the VP16AD–CaNA fusions were reproducibly expressed at different levels, with the CaNA4 and CaNA5 fusion proteins expressed at lower levels than the other CaNA fusion proteins. This decrease, which may suggest that these mutants are less stable, may explain the decrease in the luciferase activity detected in the DSCR1–CaNA4 co-transfections and therefore could indicate that the binding activity of the CaNA4 mutant is similar to that of CaNA1. Altogether, the results suggest that amino acids 338–352 of CaNA, corresponding to the linker region between the catalytic domain and the CaNB binding domain (Fig. 2A), are important for DSCR1 interaction.

The deletion analysis also indicates that the DSCR1–CaNA interaction is not dependent on the presence of the CaNB binding domain. Since CaNB and DSCR1 do not share interaction sites on the CaNA molecule, competition between DSCR1 and CaNB for CaNA binding would not be expected, and therefore the three proteins may exist in a complex. To explore this further, we performed a three-hybrid assay in which cells were co-transfected with a G4DBD–DSCR1 fusion construct, a VP16AD–CaNB fusion construct and increasing concentrations of a CaNA expression vector. While no interaction was detected between DSCR1 and CaNB in this assay, a significant stimulation of the reporter gene occurred when CaNA was co-expressed (Fig. 2D). This result is consistent with CaNA acting as a bridge between DSCR1 and CaNB in the two-hybrid assay, and supports the idea that DSCR1 may bind to the heterodimeric calcineurin molecule.

DSCR1 binds to endogenous calcineurin A

We analyzed the association between DSCR1 and endogenous CaNA by co-immunoprecipitation. COS-7 cells were transfected with a HA-tagged DSCR1 full-length expression vector or with a DSCR1 deleted version, lacking the C-terminus (HA-DSCR11–156). Cell extracts were immunoprecipitated with an anti-HA antibody and the immunoprecipitated products were analyzed by western blotting using an anti-CaNA antibody.

(Fig. 2C). The expression of G4DBD–DSCR1 was not affected by the co-expression of CaNA1 or any of the deleted mutants. However, the VP16AD–CaNA fusions were reproducibly expressed at different levels, with the CaNA4 and CaNA5 fusion proteins expressed at lower levels than the other CaNA fusion proteins. This decrease, which may suggest that these mutants are less stable, may explain the decrease in the luciferase activity detected in the DSCR1–CaNA4 co-transfections and therefore could indicate that the binding activity of the CaNA4 mutant is similar to that of CaNA1. Altogether, the results suggest that amino acids 338–352 of CaNA, corresponding to the linker region between the catalytic domain and the CaNB binding domain (Fig. 2A), are important for DSCR1 interaction.

The deletion analysis also indicates that the DSCR1–CaNA interaction is not dependent on the presence of the CaNB binding domain. Since CaNB and DSCR1 do not share interaction sites on the CaNA molecule, competition between DSCR1 and CaNB for CaNA binding would not be expected, and therefore the three proteins may exist in a complex. To explore this further, we performed a three-hybrid assay in which cells were co-transfected with a G4DBD–DSCR1 fusion construct, a VP16AD–CaNB fusion construct and increasing concentrations of a CaNA expression vector. While no interaction was detected between DSCR1 and CaNB in this assay, a significant stimulation of the reporter gene occurred when CaNA was co-expressed (Fig. 2D). This result is consistent with CaNA acting as a bridge between DSCR1 and CaNB in the two-hybrid assay, and supports the idea that DSCR1 may bind to the heterodimeric calcineurin molecule.

DSCR1 binds to endogenous calcineurin A

We analyzed the association between DSCR1 and endogenous CaNA by co-immunoprecipitation. COS-7 cells were transfected with a HA-tagged DSCR1 full-length expression vector or with a DSCR1 deleted version, lacking the C-terminus (HA-DSCR11–156). Cell extracts were immunoprecipitated with an anti-HA antibody and the immunoprecipitated products were analyzed by western blotting using an anti-CaNA antibody.

(Fig. 2C). The expression of G4DBD–DSCR1 was not affected by the co-expression of CaNA1 or any of the deleted mutants. However, the VP16AD–CaNA fusions were reproducibly expressed at different levels, with the CaNA4 and CaNA5 fusion proteins expressed at lower levels than the other CaNA fusion proteins. This decrease, which may suggest that these mutants are less stable, may explain the decrease in the luciferase activity detected in the DSCR1–CaNA4 co-transfections and therefore could indicate that the binding activity of the CaNA4 mutant is similar to that of CaNA1. Altogether, the results suggest that amino acids 338–352 of CaNA, corresponding to the linker region between the catalytic domain and the CaNB binding domain (Fig. 2A), are important for DSCR1 interaction.

The deletion analysis also indicates that the DSCR1–CaNA interaction is not dependent on the presence of the CaNB binding domain. Since CaNB and DSCR1 do not share interaction sites on the CaNA molecule, competition between DSCR1 and CaNB for CaNA binding would not be expected, and therefore the three proteins may exist in a complex. To explore this further, we performed a three-hybrid assay in which cells were co-transfected with a G4DBD–DSCR1 fusion construct, a VP16AD–CaNB fusion construct and increasing concentrations of a CaNA expression vector. While no interaction was detected between DSCR1 and CaNB in this assay, a significant stimulation of the reporter gene occurred when CaNA was co-expressed (Fig. 2D). This result is consistent with CaNA acting as a bridge between DSCR1 and CaNB in the two-hybrid assay, and supports the idea that DSCR1 may bind to the heterodimeric calcineurin molecule.

DSCR1 binds to endogenous calcineurin A

We analyzed the association between DSCR1 and endogenous CaNA by co-immunoprecipitation. COS-7 cells were transfected with a HA-tagged DSCR1 full-length expression vector or with a DSCR1 deleted version, lacking the C-terminus (HA-DSCR11–156). Cell extracts were immunoprecipitated with an anti-HA antibody and the immunoprecipitated products were analyzed by western blotting using an anti-CaNA antibody.
(Fig. 3A). This experiment revealed that endogenous CaNA associates with DSCR1 in the immunoprecipitated complexes, but not with the mutant DSCR11–156, supporting the previous conclusion that the DSCR1 C-terminal region is sufficient for CaNA binding.

Calcineurin phosphatase activity is dependent on intracellular Ca\(^{2+}\) concentrations. This dependence is controlled mainly by CaM, whose binding upon increases in intracellular Ca\(^{2+}\) concentration displaces the CaNA inhibitory domain allowing calcineurin activation. To determine whether the cytoplasmic Ca\(^{2+}\) levels affected the interaction between DSCR1 and CaNA, we performed a co-immunoprecipitation experiment with extracts from cells treated with calcium ionophore, in the presence of high Ca\(^{2+}\) concentration. As shown in Figure 3B, binding of CaNA to DSCR1 was also detected in these conditions, suggesting that the interaction can occur independently of the activation state of calcineurin in mammalian cells.

DSCR1 is representative of a human family of calcineurin binding proteins

Sequence comparison predicts that DSCR1 belongs to a family of proteins with members in eukaryotes from yeast to humans, including the *Saccharomyces cerevisiae* Rcn1p (T.J. Kingsbury and K.W. Cunningham, manuscript in preparation), the *Drosophila melanogaster* Nebula (GenBank accession no. AF147700) and open reading frames in *Caenorhabditis elegans* and *Aspergillus nidulans*, among others (T.J. Kingsbury and K.W. Cunningham, manuscript in preparation). The family signature is a short polypeptide, FLISPPXSPP, which resembles the SP boxes in NF-AT family members (8). In humans, the family consists of three members (Fig. 4A): DSCR1 (3), ZAKI-4 (21) and DSCR1L2 (GenBank accession no. AAF01684). In these three proteins, the homology extends over the entire molecule and is particularly high around the SPP region. In order to find out whether other members of the human family behave in a similar manner to DSCR1, we have investigated the ability of CaNA and ZAKI-4 to interact. Co-immunoprecipitation of CaNA with ZAKI-4, synthesized together by cell-free translation (Fig. 4B), revealed that these two proteins interact at approximately the same efficiency as DSCR1, suggesting that sequence similarity confers similar properties, at least with regard to CaNA binding.

DSCR1 inhibits NF-AT-mediated transcriptional activation

Since DSCR1 binds to calcineurin, we were interested to know whether expression of DSCR1 affects calcineurin signaling. Calcineurin substrates include, among others, phosphatase inhibitor-1, NO synthase, dynamin and the transcription factors Elk-1 and NF-AT (reviewed in ref. 16). In the latter
case, activation of calcineurin phosphatase activity upon a rise in intracellular Ca\(^{2+}\) leads to the dephosphorylation of cytoplasmic NF-AT family members, which then translocate to the nucleus and activate transcription of target genes (22,23), some of them being critical for immune system activation. We therefore measured the activity of a luciferase reporter gene under the control of the IL-2 promoter (24) when co-transfected with a set of DSCR1-expressing constructs (Fig. 5A). The IL-2 promoter was weakly activated following treatment with either PMA or ionophore, but highly induced when both stimuli were given, as a result of the cooperative binding of NF-AT and transcription factors of the AP-1 family (25). This activation was suppressed by the calcineurin inhibitor FK506. Interestingly, co-expression of DSCR1 strongly inhibited the induction of the IL-2 reporter by co-stimulation with PMA and ionophore. Similarly, DSCR1\(^{115-197}\), the truncated version of DSCR1 that retained CaNA binding activity, was able to act as a dose-dependent inhibitor, though not as efficiently as DSCR1 full-length. In contrast, co-expression of DSCR1\(^{1-156}\), the mutant incapable of CaNA binding, had no effect on the activation assay, strongly suggesting that the inhibition caused by DSCR1 is mediated through calcineurin binding. ZAKI-4 was also able to inhibit calcineurin function, as measured by its ability to suppress IL-2 reporter activation (Fig. 5A).

To check if the reduction of the IL-2 promoter activation was dependent only on NF-AT, a construct containing AP-1 binding sites, but not NF-AT binding sites (26), was tested (Fig. 5B). As expected, reporter gene expression in response to PMA was unaffected by treatment with FK506. Similarly, overexpression of DSCR1 had no effect on the transcriptional activity of this reporter, indicating that the inhibitory effect on the IL-2 promoter was specific and dependent on the NF-AT sites.

DSCR1 inhibits NF-AT nuclear translocation

Based on the previous data, we asked if the inhibition of IL-2 promoter by DSCR1 and ZAKI-4 is governed by the inhibition of the calcineurin-mediated nuclear translocation of NF-AT.

To find out if this is the case, we analyzed the cellular distribution of a transiently expressed Flag-tagged NF-AT\(^{\text{c}}\) protein (22) in cells co-expressing different HA-tagged DSCR1 proteins. DSCR1 appeared to be distributed throughout the cytoplasm and the nucleus of transfected cells (Fig. 6A, left); a staining pattern consistent with a small protein that can diffuse through the nuclear pore complex (27). No clear changes in subcellular localization of DSCR1 were observed when cells were either stimulated with calcium (Fig. 6A, center), or treated with FK506 (Fig. 6A, right). As expected, NF-AT\(^{\text{c}}\) was cytoplasmic in non-stimulated cells (Fig. 6B, left), displayed a nuclear localization in cells treated with ionophore (Fig. 6B, center) and became cytosolic when FK506 was added to the medium (Fig. 6B, right). However, in doubly transfected cells, NF-AT\(^{\text{c}}\) was unable to accumulate in the nucleus upon a calcium stimulus in cells co-expressing either DSCR1 (Fig. 6C), DSCR1\(^{115-197}\) (Fig. 6D) or ZAKI-4 (Fig. 6E). This effect was not observed in cells co-expressing DSCR1\(^{1-156}\), which lacks the calcineurin binding region (Fig. 6C). Overall, these data suggest that binding of DSCR1 and ZAKI-4 to calcineurin results in the inhibition of the calcium-induced NF-AT nuclear translocation.

DSCR1 RNA is induced by calcium and overexpressed in DS

We have studied which type of stimulus induces DSCR1 expression in mammalian cells. Expression of the DSCR1 hamster ortholog adapt\(^{78}\) (28) and the yeast family member \(Rcn1\) (T.J. Kingsbury and K.W. Cunningham, manuscript in preparation) is induced by calcium. Thus, we tested the effect of calcium signaling on DSCR1 expression in a human astrocytoma and a neuroblastoma cell line (Fig. 7A). DSCR1 mRNA expression was clearly induced in both cell lines by calcium treatment in the presence of ionophore. The increased expression was abolished when the cells had been treated previously with the calcineurin-inhibitor cyclosporin A, suggesting that the effect is mediated by the phosphatase activity. Moreover, at least in the neuroblastoma cell line, the induction was potent-

Figure 5. DSCR1 and ZAKI-4 inhibit the transcriptional activation of the interleukin-2 promoter in response to PMA/calcium stimulation. (A) CHO cells were co-transfected with pIL2-luc (1 µg) and increasing amounts of the indicated expression plasmids (0.25 or 1 µg) and treated with the indicated compounds as indicated in Materials and Methods. (B) An AP-1-luc reporter plasmid, –73 Col Luc (1 µg), was co-transfected with the indicated expression plasmids. All cells were treated with ionophore (Io, 1 µM) and PMA (10 ng/ml), and some with FK506 as indicated (20 ng/ml). In (A) and (B), all the plates were co-transfected with pCMV/βgal as an internal control. Values are given as the ratio of luciferase to β-gal activities and represent the average of three independent plates.
ated by PMA, a situation resembling the behavior of some NF-AT gene targets (8).

Finally, because DSCR1 maps to a region of HC21, which has been considered as critical for certain DS phenotypic traits (29), we were interested in testing whether the extra copy of DSCR1 present in DS could lead to an increase in its expression. Northern blot analysis showed that the levels of DSCR1 mRNA were significantly higher (1.9-fold relative to GAPDH mRNA) in DS brain tissue relative to non-DS brains (Fig. 7B).

DISCUSSION

We have identified a new family of calcineurin binding proteins that are able to regulate calcineurin signaling pathways in vivo. The human family consists of three members, DSCR1 (3), ZAKI-4 (21) and DSCR1L2 (GenBank accession no. AAF01684), all of which have mouse orthologs (data not shown). Homologous proteins exist in lower eukaryotes, invertebrates and non-mammals vertebrates (T.J. Kingsbury and K.W. Cunningham, manuscript in preparation). Taking into account that several members of the family including yeast Rcn1p (T.J. Kingsbury and K.W. Cunningham, manuscript in preparation), and both DSCR1 and ZAKI-4 (this report) are able to bind CaNA and inhibit its signaling functions, we suggest naming the family ‘calcipressins’ and renaming the DSCR1 gene product as human calcipressin 1. Nothing has been described to date about the expression pattern of DSCR1L2, but DSCR1 and ZAKI-4, although showing distinct expression patterns in other tissues, share expression in heart and skeletal muscle: two organs where fine regulation of calcineurin activity is relevant (9,12). In fact, calcineurin deregulation has been suggested to be involved in both cardiac and skeletal muscle hypertrophy (9,10,12).

DSCR1 interacts with the calcineurin molecule through the catalytic A subunit. The binding, confirmed in a mammalian two-hybrid assay and by co-immunoprecipitation of endogenous CaNA, occurs in both non-stimulated and calcium-stimulated cells (Fig. 3), suggesting that the interaction can occur independently of the activation state of calcineurin, and therefore independently of CaM binding. Consistent with this, two-hybrid analysis showed that deletion of the CaM and CaNB binding domains in CaNA did not disrupt its association with DSCR1. In fact, we have found that CaNA residues 338–352, a region situated between the catalytic domain and the CaNB binding domain at the end of the β_{14} sheet (17), were critical for DSCR1 binding (Fig. 2A). This stretch of amino acids is close to the region that has been identified as required for CaNA binding to the adaptor molecule AKAP79 and the subsequent phosphatase activity inhibition (30). Moreover, several residues in this region have been defined by mutagenesis as crucial for the phosphatase activity in yeast calcineurin (31) and were suggested by the authors to be involved in the interaction between CaNA and its substrates since they are exposed on the surface of the protein (31). This region is well conserved in all the CaNAs sequenced to date, including the three human isoforms α, β and γ, suggesting that DSCR1 may interact with all of the human isoforms. It remains to be determined whether the other members of the calcipressin family bind to CaNA in the same region as defined for DSCR1, and hence it is a matter of speculation as to whether there is any
specificity in the CaNA–calcipressin interaction. We have not detected any interaction between DSCR1 and CaNB, and our deletion analysis indicates that CaNB binding to CaNA was not required for DSCR1 interaction; moreover, DSCR1–CaNA interaction can occur in a yeast mutant that lacks CaNB (data not shown). However, the results obtained from three-hybrid studies (Fig. 2D) suggest that the three molecules can exist in a stable complex.

DSCR1 binding to CaNA could still be detected using an N-terminal truncated DSCR1 mutant (DSCR1115-197), suggesting that all DSCR1 isoforms would associate with CaNA. In fact, deletion of the last 41 amino acid residues completely abolished CaNA interaction (Fig. 3). We could not detect any amino acid residue conservation between this region and other known CaNA binding domains, such as those present in AKAP79 (30), cain/cabin 1 (32,33) or the NF-AT docking site (34). A more complete mutagenesis analysis will be required to map precisely the residues involved in CaNA interaction among the different members of the calcipressin family.

In spite of the wide spectrum of calcineurin physiological roles, the list of its modulators is short. Calmodulin, the main effector, acts as an enhancer of the phosphatase activity in response to various stimuli. FKBP12 targets the phosphatase to intracellular calcium channels such as the ryanodine receptor (35,36) and the inositol 1,4,5-triphosphate receptor (37). AKAP79 is a scaffold protein that also binds cAMP-dependent protein kinase and protein kinase C (38) and inhibits the phosphatase activity upon binding. A238L, a protein product of the African swine fever virus, acts as an inhibitor and is thought to be used by the virus to evade the host defense systems (39). CHP is a CaNB homologous protein and inhibits calcineurin activity by impairing the assembly of the heterodimer (40). And finally, cain/cabin, is a recently described non-competitive inhibitor (32,33). The calcipressin family illustrates a distinct type of calcineurin regulator whose members can act as calmodulin- or calcium-mediated signaling. In particular, DSCR1 and ZAKI-4 inhibit NF-AT nuclear accumulation in response to calcium signaling (Fig. 6), and consequently modulate NF-AT-dependent transcription (Fig. 5). This inhibition appeared to be dependent on DSCR1–CaNA binding, because a DSCR1 mutant incapable of binding CaNA showed no effect on NF-AT activation. Although current data do not address the mechanism of DSCR1-mediated inhibition, the effects could be explained through the inhibition of calcineurin phosphatase activity by DSCR1 binding. In fact, bacterially expressed DSCR1 can inhibit the calcineurin phosphatase activity in vitro (T.J. Kingsbury and K.W. Cunningham, manuscript in preparation). In an inhibition model, DSCR1 binding to CaNA would lead to the inhibition of its phosphatase activity, preventing the dephosphorylation of the cytosolic NF-AT and its subsequent nuclear import. In this case, it can be predicted that the inhibition effect will be common to all NF-ATs and that it will extend to other calcineurin substrates. Alternatively, NF-AT and DSCR1 might compete for calcineurin binding if their interaction sites overlap in the calcineurin molecule. Two distinct regions for NF-AT interaction have been found in CaNA, one involving a region close to the active site, and a docking region which is contained in the catalytic domain (1-347), but which is distinct from the active site (41). In a competition model, negative regulation by calcipressins might be dependent on the calcineurin substrate considered. Future efforts should be directed towards understanding how the association between DSCR1 and calcineurin is regulated and which signaling pathways are involved in this regulation.

We have found that DSCR1 expression is induced by calcium, through a calcineurin-dependent mechanism (Fig. 7A). These results support a model in which DSCR1 functions as a feedback inhibitor of calcineurin. An inhibitory feedback loop may be necessary to avoid sustained calcineurin activity in situations of prolonged Ca2+ stimulus. Each calcipressin family member might respond differentially to various stimuli. For example, ZAKI-4 has been shown to be induced by thyroid hormones (T3) (21). In contrast, we have been unable to detect an induction of DSCR1 mRNA in response to T3 (data not shown). Differential regulation of calcipressin family members may provide an additional level of complexity to regulate calcineurin in vivo.

DSCR1 maps on HC21 and is trisomic in DS individuals. We have found that the presence of an extra copy of the gene leads to its overexpression in fetal brain (Fig. 7B). Although DS is a multifactorial disease, the role of the HC21 gene DSCR1 as an inhibitor of calcineurin signaling could provide new insights towards the possible involvement of this signaling pathway in

Figure 7. DSCR1 RNA is induced by a calcium stimulus and overexpressed in DS brains. (A) Total RNA was extracted from the human astrocytoma U-373 and the neuroblastoma SH-SY5Y cell lines, after the indicated treatments as described in Materials and Methods. Ten micrograms per lane were electrophoresed and hybridized with a full-length DSCR1 cDNA probe (upper panel). The blot was reprobed with a GAPDH cDNA probe (lower panel). (B) Total RNA (20 µg) from DS and non-DS brains were hybridized with a DSCR1 cDNA probe (upper panel). The blot was reprobed with a GAPDH cDNA probe (lower panel).
some of the clinical abnormalities observed in patients with DS. These aspects should be dissected further by analysis of mouse models of overexpression and disruption of *Dscr1*.

MATERIALS AND METHODS

Yeast two-hybrid screening

Full-length *DSCR1* cDNA containing exon 1 (4) was subcloned into pAS2 (Clontech, Palo Alto, CA) and used as bait to screen a fetal human brain cDNA library (Clontech). Six clones, positive for HIS3 selection and LacZ expression, were obtained from 5 × 10^5 doubly transformed yeast colonies. Library screening and β-gal measurements were done according to Clontech protocols. Plasmids containing the prey sequences were rescued and checked by back transformation with the bait. Sequences of the cDNA clones were determined with a Big Dye Terminator Cycle Sequencing-ready Reaction kit (Perkin Elmer, Foster City, CA) and an automated DNA sequence analyzer ABI-PRISM 373 XL Upgrade (Perkin Elmer).

cDNA constructs

All plasmids were generated using standard techniques (42). *DSCR1* open reading frame and the fragments used in the study were subcloned as N-terminal HA-tagged fusions in the pCDNA-HA1 expression vector (43). ZAKI-4 cDNA was PCR amplified with specific primers (ZA1: ATGCCAGCCCTAGCATGG; ZA2: GAAGGAGCAGGCAGCTCAGT) from human fetal brain cDNA, cloned into pGEM-T Easy (Promega, Madison, WI) and its DNA sequence determined. ZAKI-4 open reading frame was subcloned as N-terminal HA-tagged fusions in pCDNA-HA1. For the mammalian two-hybrid assays, plasmids pG4-DBD (43) and pCMV-VP16/NLS (44) were used as backbone vectors for the bait. Sequences of the cDNA clones were determined with the bait. In all the cases, the DBD and the activation domain were located at the N-terminal end of the fusion protein. A luciferase gene driven by five Gal4 sites and the minimal El1b promoter was used as reporter [pG5E1b-luc (43)].

Mammalian two-hybrid assay

Human osteosarcoma U2OS cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% fetal calf serum (FCS). Transfections were carried out using the calcium phosphate precipitation method (43). Cells were transfected by electroporation and harvested in PBS at 48 h post-transfection. Cell pellets were lysed in 50 mM Tris–HCl pH 7.5, 150 mM NaCl and 1% NP-40, in the presence of protease inhibitors (Protease Inhibitor Cocktail, Roche Diagnostics, Indianapolis, IN). When indicated, the calcium ionophore A23187 (Sigma-Aldrich Co., St Louis, MO) and CaCl₂ were added to final concentrations of 2 μM and 10 mM, respectively, for 1 h prior to harvesting. For immunoprecipitations, protein mixtures were incubated in lysis buffer with protein-G beads (Amersham Pharmacia Biotech, Little Chalfont, UK) pre-bound with anti-HA high affinity rat antibody (Roche Diagnostics). After several washes in PBS, protein complexes were analyzed by electrophoresis. Western blotting was done by standard methods and visualized by enhanced chemiluminescence (Pierce, Rockford, IL). Endogenous calcineurin A was detected with an anti-calcineurin A polyclonal antibody (Transduction Laboratories, Los Angeles, CA).

In vitro protein interaction

HA-DSCR1 or HA-ZAKI-4 and CaNA were co-synthesized and labeled with [35S]methionine (Amersham Pharmacia Biotech) by cell-free translation TNT-coupled rabbit reticulocyte lysate coupled to the luciferase gene [provided by J.M. Redondo (26)]. When indicated, calcium ionophore A23187 (100 ng/ml), CaCl₂ (10 mM) and PMA (10 ng/ml) were added to the medium for 1 h before harvesting. Cells were harvested at a final time of 36 h post-transfection. Results are given as luciferase to β-gal ratio, representing the average of three transfected plates, and were done at least three times yielding similar results.

NF-AT activity measurements

CHO cells were grown in DMEM supplemented with 10% FCS. Cells were transfected by the calcium phosphate method with a plasmid containing the IL-2 promoter upstream of the luciferase gene [pIL2-luc, provided by G. Crabtree (24)], the appropriate expression vectors and pCMV–βgal as an internal control. The AP-1-dependent reporter plasmid p–73 Col Luc contains the −73 to +63 region of the human collagenase promoter and was provided by J.M. Redondo (26). When indicated, the calcium ionophore A23187 (100 ng/ml), CaCl₂ (10 mM) and PMA (10 ng/ml) were added to the medium for 1 h before harvesting. Cells were harvested at a final time of 36 h post-transfection. Results are given as luciferase to β-gal ratio, representing the average of three transfected plates, and were done at least three times yielding similar results.

Immunofluorescence

U2OS were transfected by the calcium phosphate method with the indicated expression vectors and a Flag-tagged NF-ATc expression plasmid (provided by G. Crabtree (22)). When indi...
cated, before fixation cells were incubated for 1 h in medium containing calcium ionophore A23187 (2 μM) and CaCl₂ (10 mM). FK506 (20 ng/ml) was added 15 min prior to the calcium stimulation. Cells grown on coverslips were washed in PBS, fixed in 4% paraformaldehyde in PBS for 15 min and permeabilized in 0.1% Triton X-100 in PBS for 10 min. Primary and secondary antibody incubations (1 h at room temperature) were followed by PBS washings. The following primary antibodies were used: rabbit anti-HA polyclonal antibody (1:1000, Clontech) and mouse anti-Flag M5 monoclonal antibody (1:10000, Sigma-Aldrich Co.). Fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse and tetramethyl–rhodamine goat anti-rabbit conjugates (Amersham Pharmacia Biotech) were used at a 1:400 dilution. Coverslips were mounted in Citifluor (Citifluor Ltd, Cambridge, UK) and cells photographed with an Olympus BX60 microscope.

RNA isolation

Total RNA was extracted from telencephalon of 22 weeks gestation DS and non-DS aborted fetuses using the RNeasy Kit (Qiagen GmbH, Hilden, Germany). In both cases, the RNA was a mixture from two individuals. Tissue was obtained in accordance with Institutional guidelines and for all the cases the post-mortem period was <6 h. Human astrocytoma U-373 MG and human neuroblastoma SH-SY5Y cell lines were grown in DMEM supplemented with 10% FCS and RNA purified with TriPure Reagent (Roche Diagnostics). Treatments were as follows: Io, 2 h in the presence of calcium ionophore A23187 (2 μM) and CaCl₂ (10 mM); PMA, 2 h with DMEM containing 20 ng/ml PMA. Cyclosporin A (CsA, Sandoz) was added 15 min prior to the calcium stimulation at a final concentration of 5 μg/ml. Northern blots were done following standard procedures. Membranes were prehydrized in 50% formamide/6× SSC/5% dextran sulfate/1% SDS/5× Denhardt solution for 2 h at 42°C. Hybridization was performed in the same buffer for 16 h at 42°C, with a full-length DSCR1 probe labeled by random priming. Blots were washed at a final stringency of 0.2× SSC/0.1% SDS at 42°C. The filters were exposed to X-ray film for 5–10 days at ~80°C. Autoradiographies were analyzed using Phoretix 1D software (Nonlinear Dynamics Ltd, Newcastle Upon Tyne, UK).

ACKNOWLEDGEMENTS

We are grateful to J. Farreras, M. Dierssen and M. Pritchard for providing RNA from DS and non-DS fetuses, G. Crabtree and J.M. Redondo for plasmids, Fujisawa USA Inc. for gifts of FK506, C. Pucharcos for computer assistance and M.L. Arbonés for critical reading of the manuscript. This research was supported by grants of the European Union (BIOMED2 BMH4-CT98-3039), the Spanish CICYT (SAF99-0092-C02-01), the Fundació Catalana Síndrome de Down/Marató de TV3-1993 and the National Institutes of Health. L.G. and S.L. are supported by the Spanish Ministry of Education and Science.

REFERENCES

