The chromosomal normality of unfertilized oocytes from patients with polycystic ovarian syndrome

K.Sengoku, K.Tamate, N.Takuma, T.Yoshida, K.Goishi and M.Ishikawa

Department of Obstetrics and Gynecology, Asahikawa Medical College, Nishikagura 4-5, Asahikawa, Japan 078

Introduction

In-vitro fertilization (IVF) with embryo transfer has proven to be an effective therapy for polycystic ovarian syndrome (PCOS) patients. However, several reports have suggested reduced fertilization and cleavage rates in women with PCOS compared to those with other infertility diagnoses, although cumulative pregnancy rates per oocyte aspiration and per embryo transfer did not differ between the groups (Dor et al., 1990; Urman et al., 1992). It has also been demonstrated that significantly more oocytes are recovered from PCOS patients compared with those with other infertility factors (Homburg et al., 1993; MacDougall et al., 1993; Kodama et al., 1995).

These findings indicate that the additional number of oocytes recovered from PCOS patients may compensate for the potentially lower fertilization and cleavage rates. It has been postulated that the elevated tonic luteinizing hormone (LH) concentrations in the follicular phase observed in PCOS patients interfere with folliculogenesis, resulting in poor-quality oocytes and contributing to the reduced fertilization rates and increased rate of spontaneous abortion (Stanger et al., 1985; Howels et al., 1986; Regan et al., 1990). Homburg et al. (1993) demonstrated that prevention of premature luteinization or reduction of tonic LH concentrations by using gonadotrophin-releasing hormone agonist (GnRHa) improved both the fertilization and pregnancy rates in PCOS patients compared with cycles receiving gonadotrophin only. However, Dor et al. (1992) demonstrated that administration of GnRHa in patients with PCOS did not affect the IVF results and suggested that development of poor-quality oocytes in PCOS patients may be attributable to reduced fertilization rates.

This evidence raises the possibility that chromosomal aberrations of the oocytes obtained from PCOS patients may result in poor fertilization rates. The present study was designed to investigate the chromosomal normality of unfertilized oocytes derived from patients with PCOS and, specifically, the differences in the incidence of chromosomal aberrations between the oocytes obtained from PCOS and those from tubal factor infertility patients.

Materials and methods

The study group was selected from patients who underwent IVF treatment between July 1993 and July 1995. Informed consent was obtained from all patients. In all, 28 cycles in 24 PCOS patients were included in this study. PCOS was defined as having typical ultrasound characteristics of in-vitro fertilization (IVF) and the chromosomal normality of unfertilized oocytes in patients with polycystic ovarian syndrome (PCOS) with those of patients with tubal factor infertility. In all, 28 cycles of 24 PCOS patients and 55 cycles of 31 patients with tubal factor infertility (control) were investigated. Although a significantly greater number of oocytes were retrieved from PCOS patients (mean ± SD: 15.6 ± 6.4 versus 9.0 ± 4.0, PCOS versus control group, P < 0.05), the percentage of fertilized oocytes was significantly lower in the PCOS group compared with controls (40.1 versus 73.8%, P < 0.01). The pregnancy rate per embryo transfer did not differ between the two groups. Cytogenetic analysis was performed on 74 oocytes from PCOS patients and 73 oocytes from control patients. In the PCOS group, 10 of the 74 oocytes (13.5%) demonstrated aneuploidy, four (5.4%) oocytes were diploid and six (8.1%) oocytes were metaphase II with a prematurely condensed sperm chromosome (PCC). In the tubal infertility group, nine of the 73 (12.3%) oocytes showed aneuploidy, four (5.5%) oocytes were diploid and five (6.8%) oocytes were found to have PCC. There was no significant difference in the aneuploidy, diploidy and PCC rates between the two groups. These results suggest that the reduced fertilization observed in PCOS is not attributable to chromosomal aberrations or immaturity of oocytes recruited from patients with PCOS.

Key words: chromosome/oocytes/polycystic ovarian syndrome
HMG was individually adjusted according to ovarian response. When the dominant follicle was at least 16 mm in diameter and serum oestradiol was >400 pg/ml, 10 000 IU human chorionic gonadotrophin (HCG) was administered. Oocyte recovery was performed 34–36 h after the HCG injection using transvaginal ultrasound-guided aspiration. All follicles >14 mm in diameter were aspirated.

Oocyte cultures were inseminated with a sperm suspension containing 105 motile spermatozoa per oocyte. Oocyte culture and sperm preparation were performed in human tubal fluid culture medium (Irvine Scientific, Santa Ana, CA, USA) supplemented with 10% maternal serum. The oocytes were examined for fertilization 16–18 h after insemination. Oocytes lacking two pronuclei and a second polar body were cultured for an additional 24 h.

Oocytes with no signs of fertilization and apparently normal morphology were prepared for chromosomal analysis by a gradual fixation–air-drying method, as described by Kamiguchi et al. (1993).

Unfertilized oocytes were incubated for 5 min in 0.1% (w/v) pronase (type XIV; Sigma Chemical Co., St Louis, MO, USA) in phosphate-buffered saline to soften the zona pellucida: 0.9% sodium citrate with 7% fetal calf serum was used for 15 min as the hypotonic agent. Oocytes were fixed with fixative I (methanol:acetic acid:H₂O₂, 5:1:4 v/v/v) for 5 min, mounted on a grease-free slide, and covered with fixative II (methanol:acetic acid, 3:1 v/v). Thereafter, the slide was dipped into fixative II for 30 min. Finally, it was fixed with fixative III (methanol:acetic acid:H₂O₂, 3:3:1) for 1 min, and dried by blowing with moist air. Fixed preparations were stained with 2% Giemsa stain for 10 min.

Serum oestradiol was assayed using commercially available radioimmunoassay kits (Diagnostic Product Co., Los Angeles, CA, USA). LH and FSH were determined by an enzyme-linked fluorescent immunoassay (BioMérieux, Marcy l’Étoile, France). The intra- and inter-assay coefficients of variation were <10% for all assays.

Statistical significance of the data was determined by the χ² test, Fisher’s exact test and Student’s t-test as appropriate. The differences were considered significant at a level of P < 0.05.

Results

The IVF/embryo transfer cycle characteristics of the PCOS and tubal factor control groups are shown in Table II. Although a significantly greater number of oocytes was retrieved in the PCOS group (P < 0.05), the percentage of fertilized oocytes was significantly lower in the PCOS group compared with the controls (P < 0.01). The pregnancy rate per embryo transfer or per patient did not differ between the two groups. Similarly, no significant difference was observed in the miscarriage and the live birth rates between the two groups.

A total of 142 oocytes recruited from the PCOS group and 125 oocytes from the tubal factor group were processed for chromosomal slide preparation. Oocytes with apparently normal morphology were randomly selected. Out of the 142 oocytes derived from PCOS patients that were fixed for chromosomal preparation, seven (4.9%) were lost accidentally, 12 (8.5%) contained no chromosomes, seven (4.9%) contained metaphase I chromosomes, and four (2.8%) were fertilized but had failed to divide. Similarly, of the 125 oocytes in the control group used for preparation, seven (5.6%) were accidentally lost, none (7.2%) showed no chromosomes, five (4.0%) contained metaphase I chromosomes, and three (2.4%) were fertilized. Of the 112 (78.9%) and 101 (80.8%) oocytes in the respective groups which were in the second meiotic metaphase (MII), 74 (66.1%) and 73 (72.3%) oocytes respectively produced analysable preparations. The results of chromosomal analysis for each group are shown in Table III. In the PCOS group, 10 of 74 (13.5%) analysable preparations demonstrated aneuploidy, including four (5.4%) hyperploid and six (8.1%) hypoploid oocytes. Four (5.4%) oocytes were diploid and six (8.1%) oocytes were metaphase II with an additional set of prematurely condensed sperm chromosomes at the G₂ phase (PCC). In one case, PCC was accompanied by diploidy. In the tubal infertility group, nine of 73 (12.3%) oocytes were aneuploid, including...
four (5.5%) hyperploid and five (6.8%) hypoploid, and four (5.5%) oocytes were found to be diploid. There were five (6.8%) oocytes with PCC. There was no significant difference in the incidence of aneuploidy, diplodly or PCC between oocytes from patients with PCOS or tubal factor infertility.

Discussion
Several reports have suggested reduced fertilization rates and an increased incidence of spontaneous abortion in women with PCOS when compared with patients with tubal factor infertility, although these reports have been conflicting (Dor et al., 1990; Urman et al., 1992; Homburg et al., 1993; Hardy et al., 1995). The mean number of embryos transferred and the pregnancy rates do not differ between PCOS and other infertility patients, because the significantly greater number of oocytes recovered from PCOS patients compensates for the lower fertilization rate (MacDougall et al., 1993; Kodama et al., 1995; Buyalos and Lee, 1996). Elevated concentrations of LH in the follicular phase have been reputed to have a crucial role in reduced fertilization rates as well as pregnancy wastage in PCOS, since the reduction in LH induced by GnRHα administration is associated with improved fertilization rates (Homburg et al., 1993). In addition, Ashkenazi et al. (1995) demonstrated that the oocytes of patients with PCOS who were exposed to GnRHα had a significantly higher implantation rate than those from patients treated with FSH and HMG alone in oocyte retrieval cycles. In our present study, we confirmed that a significantly greater number of oocytes, with lower fertilization rates, were recruited in the PCOS group compared with the tubal factor infertility group, even though all patients were treated with a GnRHα long protocol.

It has been demonstrated that decreased fertilization and implantation rates are observed in patients who are high responders to gonadotrophins (Pellicer et al., 1989). Tarin et al. (1990) reported that a significantly greater incidence of diplodly and of PCC was found in women where >11 oocytes were obtained, compared with women with a moderate response to gonadotrophins, although the total incidence of chromosomal abnormalities was not different between the groups. This finding suggests a higher degree of cytoplasmic immaturity as the number of oocytes recruited increases, since PCC and diplodly are considered to be characteristic of oocytes with immature cytoplasm (Badrenas et al., 1989; Calafell et al., 1991). Tarin et al. (1991) also demonstrated a lower rate of diplodly oocytes from fertile control women compared with inseminated unfertilized oocytes from infertile women, although the incidence of aneuploidy was not different between the two groups. This suggested that a lower fertilization rate could be the consequence of oocyte immaturity. Thus, some selection against immature oocytes may occur at fertilization. Any selection against aneuploid oocytes seems to be very weak.

Taken together, it can be speculated that the observed low fertilization rates of oocytes from PCOS patients may be attributable to the high incidence of immature oocytes recruited. However, the present findings demonstrated that there were no differences in the incidence of metaphase II, diplodly, PCC or aneuploidy between the PCOS and control groups. In cases with a high ovarian response to gonadotrophin, the cohort of multiple follicles recruited represents follicles in the early stages of development (Tarin et al., 1990). In contrast, the cohort of follicles recruited in PCOS patients seems to comprise follicles at more mature stages of development. The multiple follicles associated with PCOS are simply arrested at the small antral stage, being neither atretic nor apoptotic and following normal development after stimulation by gonadotrophin (Fauser, 1994). Hardy et al. (1995) also reported that embryos from PCOS patients under an optimized ovulation induction regimen were of good quality and developmental potential. These concepts may explain the difference in the incidence of immature oocytes between PCOS and high responder groups. Another reason for the absence of any difference in the incidence of diplodly oocytes in PCOS and control patients may be the similarity of the ages of the patients in the two groups in our study. Roberts and O’Neill (1995) have demonstrated that the proportion of diplodly oocytes increases significantly with advancing maternal age, being particularly prevalent in women aged >35 years.

It has been suggested that diplodly oocytes originate following disruption of the endocrine control of meiosis, resulting in impaired extrusion of the first polar body (Hansmann et al., 1983). Although the pathogenesis of PCOS is still unclear, elevated concentrations of LH, insulin resistance and overproduction of androgens are associated with this syndrome (Kazer et al., 1989; Buyalos et al., 1992; Homburg et al., 1996). Elevated free insulin-like growth factor (IGF) and decreased IGF-binding protein-1 (IGFBP-1) concentrations in combination with LH may stimulate androgen production in PCOS patients through dysregulation of P450c 17α activity (Rosenfield et al., 1990). Based on the present results, this endocrine disruption, including possible effects on the growth hormone (GH)/IGF-1 system, may be mediated either via a modified accumulation of RNA or through the response of granulosa cells to FSH during oocyte growth (Hardy et al., 1995). It is unlikely, however, to influence either the meiotic maturity or the chromosomal normality of oocytes. This finding is, in part, supported by recent observations that a high incidence of miscarriage in PCOS patients is not correlated with fetal chromosomal abnormality (Hasegawa et al., 1996) and that, with an optimized ovulation induction, oocytes from PCOS patients are of good quality (Hardy et al., 1995). The reason for lower fertilization in oocytes from PCOS patients was not determined in the present study but may be related to our ovulation induction protocol. A suboptimal ovulation regimen may lead to the development of a hyperandrogenic intrafollicular milieu or to elevated concentrations of LH in PCOS patients, as suggested by Hardy et al. (1995), who demonstrated that suboptimal ovulation induction may have a detrimental effect on oocyte quality. The mechanism by which endocrine disruption causes impairment of oocyte quality is not well understood. It has been postulated that LH induces premature meiotic maturation of oocytes (Abdulwahid et al., 1985) and may cause detrimental prolongation of the interval between completion of first meiosis and fertilization. In addition, Anderiesz and Trounson (1995) reported that androgen
could adversely affect murine oocyte maturation, fertilization and
development in vitro.

In conclusion, our results demonstrate that a significantly
greater number of oocytes were retrieved but a smaller propor-
tion fertilized in patients with PCOS compared with those
with tubal factor infertility. This study also suggests that
reduced fertilization rates are not attributable either to an
increased rate of chromosomal aberrations or to immaturity of
oocytes recruited from patients with PCOS. Unfavourable
endocrine environments in the follicles, including hyperandro-
genism, elevated concentrations of LH and disruption of the
GH/IGF system, as have been reported in PCOS, may adversely
affect both the quality of oocytes and fertilization.

Acknowledgements

The authors wish to acknowledge Dr W. Richard Dukelow, Professor
of Endocrine Research Center, Michigan State University, East
Lansing, MI, USA and Mr Mark Griffin for stimulating criticism of the
manuscript.

References

control of follicular development. Endocrinology, 23, 613–626.

maturation and developmental capacity of murine oocytes in vitro. Hum.
Reprod., 10, 2377–2381.

patients as oocyte donors: the effect of ovarian stimulation protocol on the
implantation rate of the recipient. Fertil. Steril., 64, 564–567.

Baden, J., Santalo, J., Calafell, J.M. et al. (1989) Effect of the degree of
maturation of mouse oocytes at fertilization: a source of chromosome

1–10.

Buyalos, R.P., Geffner, M.E., Bersh, N. et al. (1992) Insulin and insulin-like
growth factor-1 responsiveness in polycystic ovarian syndrome. Fertil.

chromosome condensation as a sign of oocyte immaturity. Hum. Reprod.,
6, 1017–1021.

Dor, J., Shulman, A., Levan, D. et al. (1990) The treatment of patients with
polycystic ovarian syndrome by in-vitro fertilization and embryo transfer: a comparison of results with those of patients with tubal infertility. Hum.
Reprod., 5, 816–818.

Dor, J., Sculman, A., Pariente, C. et al. (1992) The effect of gonadotropin-
releasing hormone agonist on the ovarian response and in vitro fertilization
results in polycystic ovarian syndrome: a prospective study. Fertil. Steril.,

Fauser, B.C. (1994) Observations in favor of normal follicle development and
disturbed dominant follicle selection in polycystic ovary syndrome. Gynecol.
Endocrinol., 8, 75–82.


and metabolic activity of preimplantation embryos in vitro from patients

Hasegawa, I., Tanaka, K., Sanada, H. et al. (1996) Studies on the cytogenetic
and endocrinologic background of spontaneous abortion. Fertil. Steril., 65,
52–54.

and embryo transfer for the treatment of infertility associated with polycystic
ovary syndrome. Fertil. Steril., 60, 858–863.

Hum. Reprod., 11, 465–466

Howels, C.M., Macnamee, M.C., Edwards, R.G. et al. (1986) Effect of high
tonic levels of luteinizing hormone on outcome of in-vitro fertilization.

Chromosomal analysis of unfertilized human oocytes prepared by a gradual

pulse frequency in women with polycystic ovarian syndrome. J. Clin.

transfer cancellations in patients with polycystic ovarian syndrome. Hum.
Reprod., 8, 223–237.

study comparing patients with and without polycystic ovaries undergoing

Regan, L., Owen, E.J. and Jacobs, H.S. (1990) Hypersecretion of luteinizing

maternal age in unfertilized in-vitro fertilization oocytes. Hum. Reprod.,
10, 2139–2141.


Stanger, J.D. and Yovich, J.L. (1985) Reduced in-vitro fertilization of human
oocytes from patients with raised basal luteinizing hormone levels during the

Tarin, J.J. and Pellicer, A. (1990) Consequences of high ovarian response to
gonadotropins: a cytogenetic analysis of unfertilized human oocytes. Fertil.


fertilization and embryo transfer in women with polycystic ovary syndrome
failing to conceive after ovulation induction with exogenous gonadotropins.

Received on July 22, 1996; accepted on December 9, 1996

Chromosomal normality and PCOS

In conclusion, our results demonstrate that a significantly