SUPPLEMENTARY DATA FOR A WEB APPENDIX

Supplementary data I

Explanation of I², Use of fixed models

Supplementary Table I. Excluded studies

Supplementary Table II . Summary estimates of risks in 3 hormone therapy groups (ever use), stratified for histological subtypes

Supplementary Table III Summary estimates of risk increases per year in 3 hormone therapy groups (ever use), stratified by histological subtypes

Supplementary data 2 References of excluded studies,

Supplementary Figure 1

Supplementary Figure 2

Supplementary Data 1

Explanation of I²

I² is derived from Cochran's Q with this formula (k=number of studies included into meta-analysis):

$$I^{2} = \frac{\frac{Q}{(k-1)} -1}{\frac{Q}{(k-1)}}$$

Several methods were proposed (Higgins *et al.*, 2002) to calculate the 95% uncertainty interval, a parameter comparable to confidence intervals of epidemiological risk parameters. We applied method III proposed (Higgins *et al.*, 2002), based on the statistical significance of Q and using formula 26.4.36 (Abramowitz and Stegun, 1965) to calculate the variance of the uncertainty interval I^2 . There are two different formulas to derive at the standard error (SE) of Q/(k-1), dependent on the magnitude of Q. If Q>k then

$$\ln(SE) = 0.5 \quad \frac{\ln(Q) - \ln(k-1)}{\sqrt{2Q} - \sqrt{(2k-3)}}$$

whereas if Q<= k, then

$$\ln(SE) = \sqrt{\left(\frac{1}{2(k-2)} * (1 - \frac{1}{3(k-2)^2}\right)})$$

The latter formula obviously does not allow the estimation of the standard error, if there are two studies only. There is still no generally accepted cut point for I^2 , above which heterogeneity should be assumed. Higgins and co-authors (2003) discussed tentative values of 25%, 50% and 75% for low, moderate and high amount of heterogeneity, respectively. An I^2 value of 0 indicates lack of heterogeneity. In case heterogeneity is detected by a fixed-effects model, it is not recommended (Petitti, 2000) to control for heterogeneity by a random-effects model. Therefore we restricted our analyses to fixed-effects models.

Use of fixed models [general variance-based method (Petitti, 2000)].

This method uses published confidence intervals to calculate the variance for each risk parameter. To derive variances and study weights from published confidence intervals we applied the following formula: Variance = $((\log(RR/CIL)/1.96)^{**2})$, where RR = risk parameter (relative risk or odds ratio), CIL = lower bound of confidence interval of risk parameter, and Weight = 1/variance

Higgins JPT and Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Statist Med 21,1539-1558.

Abramowitz M and Stegun IA (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York. Higgins JPT, Thompson SG, Deeks JJ and Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327,557-560. Petitti DB (2000) Statistical methods in meta-analysis. In Petitii DB, (ed). Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis, 2nd edn. Oxford

University Press, New York, pp. 63-67, 111-113.

Author (s)	Year of publication	Type of Study	Reasons for exclusion		
Adami et al.	1989	Cohort	Same cohort as study by Persson et al., 1996; shorter follow-up		
Annegers et al.	1977	CC	More recent study (Annegers et al., 1979) included		
Arslan et al.	2003	CC	No analysis of MHT (confounder variable)		
Bertone et al	2001	Cohort	No analysis of MHT (confounder variable)		
Bibbo et al.	1978	Cohort	Use of DES only		
Biesma et al.	2006	Cohort	No analysis of MHT (confounder variable)		
Braaten et al.	2005	Cohort	No analysis of MHT for ovarian cancer		
Cunat et al.	2004	Experimental	No suitable study type		
Dinger et al.	2006	Cohort	No incident cancer data		
Eltabbakh et al.	1999	Case study	No suitable study type, comparison of two groups		
Eltabbakh et al.	1998	Case study	Same reason as above		
Fairfield et al.	2002	Cohort	No analysis of MHT (confounder variable)		
Fairfield et al.	2004	Cohort	No analysis of MHT (confounder variable)		
Franceschi et al.	1982	CC	No risk estimate provided		
Gnagy et al.	2000	Ecologic study	Statistics provided unsuitable for pooling		
Goodman et al.	2003	Cancer registry	Descriptive data only		
Goodman et al.	2001	CC	Analysis of genetic polymorphisms		
Grodstein et al.	1997	Cohort	RR without confidence interval provided		
Hadjimichael et al.	1984	Cohort	Results refer to DES		

Supplementary Table I. Excluded studies

Hannan et al.	2004	Cohort	No analysis of MHT (confounder variable)
Harlow et al.	1988	CC	OR without CI
Herrinton et al.	2001	CC	Same study as Lee et al., 1986
Hoover et al.	1977	Cohort	Use of DES only
Hunt et al.	1990	Cohort	Analysis for ovarian and tuboovarian carcinomas combined
Kelemen et al.	2004	Cohort	No analysis of MHT (confounder variable)
Komulainen et al.	1999	RCT	No RR for MHT provided
Larsson et al.	2004	Cohort	No analysis of MHT (confounder variable)
McGowan et al.	1988	CC	Identical study (Hartge et al., 1988) included providing more detailed analyses
Mink et al.	1996	Cohort	Same cohort as Folsom et al., 2004; shorter follow-up
Moorhead et al.	1997	Nested CC	Time sequence of HT and incident disease undetermined
Mosekilde et al.	2000	RCT	Allocation of ovarian cancer cases impossible as assignment of cancer cases to exact treatment groups in randomized and non-randomized substrata unclear
Ness et al.	2000	CC	No analysis of MHT (confounder variable)
Niwa et al.	2005	Cohort	No ovarian cancer case in MHT group
Purdie et al.	1995	CC	Later publication included (Purdie et al., 1999) with more detailed analyses
Purdie et al.	1996	CC	Same reason as above
Riman	2003	CC	Full publications of the same study (Riman <i>et al.</i> , 2002a; Riman <i>et al.</i> , 2002b) included
Rodriguez	1995	Cohort	Same cohort as Rodriguez et al., 2001; shorter follow-up
Rodriguez	2002	Cohort	Impact of ET on OvC risk analyses dependent on BMI and body height
Rossing et al.	1994	Cohort	only use of fertility drugs reported
Schairer et al.	1997	Cohort	Same cohort as Persson et al., 1996;, shorter follow-up
Schouten et al.	2003	Cohort	No analysis of MHT (confounder variable)
Schouten et al.	2004	Cohort	No analysis of MHT (confounder variable)
Tavani et al.	2000	CC	Overlap with included study (Parazzini et al., 1994)
Tung et al.	2005	CC	Included study (Tung <i>et al.</i> , 2003) provided more extractable details of same study population

Tzonou et al.	1984	CC	RR provided, but no CI, study as published excluded; data set published later in a re- analysis included, see Table 1 (footnote to Negri <i>et al.</i> , 1999)
Vessey et al.	1983	RCT	Use of DES only
West	1966	CC	no analysis of MHT
Wynder et al.	1969	CC	Unspecified female hormone therapy reported
Zhang et al.	2005	CC	No analysis of MHT (confounder variable)

Abbreviations: CC= case-control study; MHT= menopausal hormone therapy; DES=diethylstilbestrol; RR= relative risk; OR = odds ration; CI = confidence interval; RCT = randomized controlled trial; OvC = ovarian cancer; BMI = body mass index.

*Narrative reviews primarily excluded

Hormone therapy	Histology	Data sets (no.)	OR / RR (95% CI)	Cochrane Q value	р	I ² (95% uncertainty interval)
EPT	ALL	3	1.119 (0.962 to 1.301)	1.5	0.465	0.0 (0.0 to 78.0)
EPT	END	2	1.332 (0.911 to 1.948)	0.2	0.627	0.0 (-)
EPT	EPI	14	1.107 (0.975 to 1.256)	12.9	0.454	0.0 (0.0 to 49.0)
EPT	MUC	5	0.834 (0.530 to 1.315)	2.2	0.705	0.0 (0.0 to 68.6)
EPT	OTH	2	0.558 (0.321 to 0.970)	2.4	0.118	59.1 (0.0 to 80.9)
EPT	SER	5	1.231 (0.988 to 1.535)	6.9	0.139	42.4 (0.0 to69.7)
ET	ALL	3	1.194 (0.780 to 1.829)	0.5	0.776	0.0 (0.0 to 78.0)
ET	END	2	1.808 (1.080 to 3.027)	1.1	0.294	9.2 (-)
ET	EPI	18	1.163 (1.034 to 1.307)	45.3	0.000	62.5 (47.3 to 71.9)
ET	MUC	6	1.203 (0.810 to 1.785)	6.0	0.303	17.2 (0.0 to 54.8)
ET	OTH	13	1.440 (1.164 to 1.781)	24.3	0.019	50.6 (18.0 to 67.0)
ET	SER	6	1.525 (1.245 to 1.868)	4.5	0.481	0.0 (0.0 to 64.8)
MHT	ALL	11	0.964 (0.899 to 1.034)	40.8	0.000	75.5 (66.4 to 81.3)
MHT	CLE	5	1.290 (0.834 to 1.994)	3.4	0.490	0.0 (0.0 to 68.6)
MHT	END	7	0.982 (0.799 to 1.208)	25.5	0.000	76.5 (65.0 to 83.1)
MHT	EPI	28	1.089 (1.008 to 1.175)	72.3	0.000	62.7 (51.3 to 70.5)
MHT	MUC	7	0.816 (0.608 to 1.096)	7.0	0.319	14.6 (0.0 to 51.7)
MHT	OTH	6	0.943 (0.792 to 1.123)	6.0	0.306	16.6 (0.0 to 68.5)
MHT	SER	8	1.181 (1.017 to 1.371)	21.1	0.004	66.8 (46.1 to 77.5)
PRO	EPI	5	1.341 (0.842 to 2.136)	6.3	0.175	36.9 (0.0 to 67.4)

Supplementary Table II. Summary estimates of risks in 3 hormone therapy groups (ever-use), stratified for histological subtypes

Abbreviations: EPT = Estrogen progestin therapy; ET = unopposed estrogen therapy; MHT = combination of all

regimens of menopausal hormone therapy, including unspecified / unknown preparations; PRO = progestin therapy;

OR = odds ratio; CI = confidence interval; ALL = all histological classifications combined or histology not specified; CLE = clear cell carcinoma

END = endometrioid carcinoma; EPI = epithelial carcinoma; MUC = mucinous carcinoma; OTH = other malignancies or unspecified other malignancies; SER = serous carcinoma;.

Supplementary Table III. Summary estimates of risk increases per year in 3 hormone therapy groups,

stratified by histological subtypes

Hormone therapy	Histology	Data sets (no.)	OR / RR (95% CI)	Cochrane Q value	р	I ² (95% uncertainty interval)
EPT	ALL	2	0.965 (0.891 to 1.045)	0.73	0.393	0.0 (-)
EPT	END	3	1.079 (1.004 to 1.160)	1.12	0.572	0.0 (0.0 to 78.0)
EPT	EPI	7	1.032 (1.001 to 1.065)	5.05	0.538	0.0 (0.0 to 61.7)
EPT	MUC	4	1.027 (0.894 to 1.180)	3.19	0.363	5.9 (0.0 to 74.2)
EPT	ОТН	1	1.020 (0.910 to 1.143)	-	-	-
EPT	SER	5	1.074 (1.023 to 1.127)	2.73	0.604	0.0 (0.0 to 68.6)
ET	ALL	3	1.064 (0.994 to 1.138)	0.47	0.791	0.0 (0.0 to- 78.0)
ET	END	2	1.096 (1.073 to 1.119)	0.01	0.906	0.0 (-).
ET	EPI	6	1.052 (1.035 to 1.069)	4.58	0.470	0.0 (0.0 to 64.8)
ET	MUC	3	1.112 (0.943 to 1.312)	4.24	0.120	52.8 (0.0 to 76.9)
ET	ОТН	1	1.060 (1.010 to 1.112)	-	-	-
ET	SER	3	1.065 (1.024 to 1.108)	2.81	0.246	28.7 (0.0 to 81.4)
HT	ALL	2	1.071 (1.039 to 1.103)	5.02	0.025	80.1 (56.2 to 88.7)
HT	CLE	1	1.005 (0.683 to 1.478)	-	-	-
MHT	END	8	1.053 (1.028 to 1.078)	15.76	0.027	55.6 (18.0 to 72.2)
MHT	EPI	16	1.025 (1.013 to 1.037)	40.37	0.000	62.8 (46.8 to 72.6)
MHT	MUC	13	0.987 (0.948 to 1.027)	9.09	0.695	0.0 (0.0 to 50.2)
MHT	OTH	8	1.043 (1.021 to 1.065)	5.33	0.620	0.0 (0.0 to 59.1)
MHT	SER	12	1.040 (1.025 to 1.056)	12.27	0.344	10.3 (0.0 to 44.7)

Abbreviations: EPT = Estrogen progestin therapy; ET = unopposed estrogen therapy; MHT = combination of all

regimens of menopausal hormone therapy, including unspecified / unknown preparations; OR = odds ratio; CI =

confidence interval; ALL = all histological classifications combined or histology not specified; CLE = clear cell carcinoma; END = endometrioid

carcinoma; EPI = epithelial carcinoma; MUC = mucinous carcinoma; OTH = other malignancies or unspecified

other malignancies; SER = serous carcinoma.

Supplementary data 2

References of excluded studies

Adami H-O, Persson I, Hoover R, Schairer C and Bergkvist L (1989) Risk of cancer in women receiving hormone replacement therapy. Int J Cancer 44,833-839.

Annegers JF, O'Fallon W and Kurland LT (1977) Exogenous oestrogens and ovarian cancer. Lancet 310,869-780.

Arslan AA, Zeleniuch-Jacquotte A, Lundin E, Micheli A, Lukanova A, Afanasyeva Y, Lenner P, Krogh V, Muti P, Rinaldi S et al. (2003) Serum follicle-stimulating hormone and risk of epithelial ovarian cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 12,1331-1335.

Bertone ER, Willett WC, Rosner BA, Hunter DJ, Fuchs CS, Speizer FE, Colditz GA and Hankinson SE (2001) Prospective study of recreational physical activity and ovarian cancer. J Natl Cancer Inst 93,942-948.

Bibbo M, Haenszel WM, Wied GL, Hubby M and Herbst AL (1978) A twenty-five-year follow-up study of women exposed to diethylstilbestrol during pregnancy. N Engl J Med 298, 763-767.

Biesma RG, Schouten LJ, Dirx MJM, Goldbohm RA and van den Brandt PA (2006) Physical and risk of ovarian cancer: results from the Netherlands Cohort Study (The Netherlands). Cancer Causes Control 17,109-115.

Braaten T, Weiderpass E, Kumle M and Lund E (2005) Explaining the socioeconomic variation in cancer risk in the Norwegian women and cancer study. Cancer Epidemiol Biomarkers Prev 14,2591-2597.

Cunat S, Hoffmann P and Pujol P (2004) Estrogens and epithelial ovarian cancer. Gynecol Oncol 94,25-32.

Dinger JC, Heinemann LAJ, Thai DM, Möhner S, Assmann A and Thiel C (2006) The risk of gynecological cancers associated with different HRT formulations. A nested casecontrol study in the German Cohort Study on Womens' health. Geburtsh Frauenheilk 66,145-155.

Eltabbakh GH, Natarajan N, Piver St and Mettlin C (1999) Epidemiologic differences between women with borderline ovarian tumors and women with epithelial cancer. Gynecol Oncol 74,103-107.

Eltabbakh GH, Piver St, Natarajan N and Mettlin C (1998) Epidemiologic differences between women with extraovarian primary peritoneal carcinoma and women with epithelial ovarian cancer. Obstet Gynecol 91,254-259.

Fairfield KM, Hunter DJ, Colditz GA, Fuchs CS, Cramer DW, Speizer FE, Willett WC and Hankinson SE (2004) A prospective study of dietary lactose and ovarian cancer. Int J Cancer 110,271-277.

Fairfield KM, Willett WC, Rosner BA, Manson JE, Speizer FE and Hankinson SE (2002) Obesity, weight gain, and ovarian cancer. Obstet Gynecol 100, 288-296.

Franceschi S, La Vecchia C, Helmrich SP, Mangioni C and Tognoni G (1982) Risk factors for epithelial ovarian cancer in Italy. Am J Epidemiol 115,714-719.

Gnagy S, Mink EE, Devesa SS, Hartge P and Whittemore AS (2000) Declining ovarian cancer rates in US women: results to parity and oral contraceptive use. Epidemiology 1,102-105.

Goodman MT and Howe HL (2003) Descriptive epidemiology of ovarian cancer in the United States, 19992-1997. Cancer 297 (Suppl.), 2615-2630.

Goodman MT, McDuffie K, Kolonel LN, Terada K, Donlon TA, Wilkens LR, Guo C and Le Marchand L (2001) Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 10,209-216.

Grodstein F, Stampfer MJ, Colditz GA, Willett WC, Manson JE, Joffe M, Rosner B, Fuchs C, Hankinson SE, Hunter DJ et al. (1997) Postmenopausal hormone therapy and mortality. N Engl J Med 336,1769-1775.

Hadjimichael OC, Meigs JW, Falcier FW, Thompson WD and Flannery JT (1984) Cancer risk among women exposed to exogenous estrogens during pregnancy. J Natl Cancer Inst 73,831-834.

Hannan LM, Leitzmann MF, Lacey JV, Colbert LH, Albanes D, Schatzkin A and Schairer C (2004) Physical activity and risk of ovarian cancer: a prospective cohort study in the Unites States. Cancer Epidemiol Biomarkers Prev 13,765-770.

Harlow BL, Weiss NS, Roth GJ, Chu J and Daling JR (1988) Case-control study of borderline ovarian tumors: reproductive history and exposure to exogenous female hormones. Cancer Res 48,5849-5852.

Herrinton LJ, Voigt LF, Weiss NS, Beresford SAA and Wingo PA (2001) Risk factors for synchronous primary endometrial and ovarian cancers. Ann Epidemiol 11,529-533.

Hoover R, Gray LA Sr, and Fraumeni JF Jr (1977) Stilbestrol (diethylstilbestrol) and the risk of ovarian cancer. Lancet 310,533-534.

Hunt K, Vessey M and McPherson K (1990) Mortality in a cohort of long-term users of hormone replacement therapy: an updated analysis. Br J Obstet Gynecol 97,1080-1086.

Keleman LE, Sellers TA, Vierkant RA, Harnack L and Cerhan JR (2004) Association of folate and alcohol with risk of ovarian cancer in a prospective study of postmenopausal women. Cancer Causes Control 15,1085-1093.

Komulainen M, Kröger H, Tuppurainen MT, Heikkinen A-M, Alhava E, Honkanen R, Jurvelin J and Saarikoski S (1999) Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D^3 in early postmenopausal women: a population-based 5-year randomized trial. J Clin Endocrinol Metab. 84,546-552.

Larsson SC, Giovannucci E and Wolk A (2004) Dietary folate intake and incidence of ovarian cancer: the Swedish Mammography Cohort. J Natl Cancer Inst 96,396-402.

McGowan L, Norris HJ, Hartge P, Hoover R and Lesher L (1988) Risk factors in ovarian cancer. Eur J Gynaecol Oncol 9,195-199.

Mink PJ, Folsom AR, Sellers TA and Kushi L (1996) Physical activity, waist-to-hip ratio, and other risk factors for ovarian cancer: a follow-up study of older women. Epidemiology 7, 38-45.

Moorhead T, Hannaford P and Warskyj M (1997) Prevalence and characteristics associated with use of hormone replacement therapy in Britain. Br J Obstet Gynaecol 104,290-297

Mosekilde L, Beck-Nielsen H, Sørensen OH, Nielsen SP, Charles P, Vestergaard P, Hermann AP, Gram J, Hansen TB, Abrahamsen B et al. (2000) Hormonal replacement therapy reduces foreram fracture incidence in recent postmenopausal women – results from the Danish Osteoporosis Prevention Study. Maturitas 36,181-193.

Ness RB, Grisso JA, Klapper J, Schlesselman JJ, Silberzweig S, Vergona R, Morgan M, Wheeler JE and the SHARE Study Group (2000) Risk of ovarian cancer in relation to estrogen and progestin dose and use characteristics of oral contraceptives. Am J Epidemiol 152,233-241.

Niwa Y, Wakai K, Suzuki S, Tamakoshi K, Lin Y, Yatsuya H, Kondo T, Nishio K, Yamamoto A, Tokudome S et al. (2005) Cigarette smoking and the risk of ovarian cancer in the Japanese population: findings from the Japanese Collaborate Cohort Study. J Obstet Gynaecol Res 31,144-1451.

Purdie D, Green A, Bain C, Siskind V, Ward B, Hacker N and Quinn M (1996) Estrogen replacement and risk of epithelial cancer. Am J Epidemiol 143(Suppl.), 43, Abstract no. 169

Purdie D, Green A, Bain C, Siskind V, Ward B, Hacker N, Quinn M, Wright G, Russell P, Susil B for the Survey of Women's Health Study Group (1995) Reproductive and other factors and risk of epithelial ovarian cancer: an Australian case-control study. Int J Cancer 62, 678-684

Riman T (2003) Ovarian and colon cancer: relation to HRT. Maturitas 44(Suppl.),2125. Abstract

Rodriguez C, Calle EE, Coates RJ, Miracle-McMahill HL, Thun MJ and Heath CW (1995) Estrogen replacement therapy and fatal ovarian cancer. Am J Epidemiol 141,828-835.

Rodriguez C, Calle EE, Fakhrabadi-Shokoohi D, Jacobs EJ and Thun MJ (2002) Body mass index, height, and the risk of ovarian cancer mortality in a prospective cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev 11,822-828.

Rossing MA, Daling JR, Weiss NS, Moore DE and Self SG (1994) Ovarian tumors in a cohort of infertile women. N Engl J Med 331,771-776.

Schairer C, Adami H-O, Hoover R and Persson I (1997) Cause-specific mortality in women receiving hormone replacement therapy. Epidemiology 8,59-65.

Schouten LJ, Goldbohm A and van den Brandt PA (2003) Height, weight change, and ovarian cancer risk in the Netherlands cohort study on diet and cancer. Am J Epidemiol 157, 424-433.

Schouten LJ, Zeegers MPA, Goldbohm RA and van den Brandt PA (2004) Alcohol and ovarian cancer risk: results from the Netherlands Cohort Study. Cancer Causes Control 15, 201-209.

Tavani A, Ricci E, La Vecchia C, Surace M, Benzi G, Parazzini F and Franceschi S (2000) Influence of menstrual and reproductive factors on ovarian cancer risk in women with and without family history of breast or ovarian cancer. Int J Epidemiol 29,799-802.

Tung K-H, Wilkens LR, Wu AH, McDuffie K, Nomura AMY, Kolonel LN, Terada K and Goodman MT (2005) Effect of anovulation factors on pre- and postmenopausal ovarian cancer risk: revisiting the incessant ovulation hypothesis. Am J Epidemiol 161,321-329.

Tzonou A, Day NE, Trichopoulos D, Walker A, Saliaraki M, Papapostolou M and Polychronopoulou A (1984) The epidemiology of ovarian cancer in Greece: a case-control study. Eur J Cancer Clin Oncol 20, 1045-1052.

Vessey MP, Fairweather DVI, Norman-Smith B and Buckley J (1983) A randomised double-blind controlled trial of the value of stilboestrol therapy in pregnancy: long-term followup of mothers and their offspring. Br J Obstet Gynaecol 90,1007-1017.

West RO (1966) Epidemiologic study of malignancies of the ovaries. Cancer 19,1001-1007.

Wynder EL, Dodo H and Barber HRK (1969) Epidemiology of cancer of the ovary. Cancer 23,352-370.

Zhang M, Xie X and Holman CD (2005) Body weight and body mass index and ovarian cancer risk: a case-control study in China. Gynecol Oncol 98,228-234.

Potentially relevant studies identified and screened for retrieval (n = 257, computerized and manually)

Ω

Studies retrieved for detailed evaluation (n = 91)	⇔	Studies excluded (n = 49)
Û		Reasons: HT confounder only (n = 14) Overlap with included publication (n = 12) Extraction of data not possible (n = 9) Studies assessed ineligible sex hormone (DES; n = 4) Further factors relevant for exclusion (n = 10)

Studies finally included (n = 42)

Supplementary Figure 1. Process of identification of eligible studies for meta-analyses

Supplementary Figure 2. Funnel plot: asymmetry of estrogen plus progestin therapy studies (EPT) reporting decreased and increased odds ratios (OR) for ovarian cancer risks

1 / variance