Genetic and teratogenic effects of cancer treatments on gametes and embryos

J. Arnon1, D. Meirow2,3,4, H. Lewis-Roness3 and A. Ornoy1

1Teratogen Information Service, Israel Ministry of Health and Laboratory of Teratology, Hebrew University Hadassah Medical School, Jerusalem, 2Department of Obstetrics and Gynecology, Rabin Medical Center, Petah Tiqva and 3Research Laboratory, Hadassah University Hospital, Jerusalem, Israel

4To whom correspondence should be addressed at: Department of Obstetrics and Gynecology, Rabin Medical Center, Petah Tiqva, Israel. E-mail: meirow@md2.huji.ac.il

Male and female germ cells vary in their sensitivity to the mutagenic effects of chemotherapy and radiotherapy, depending on their stage of maturation and the agent used. Although sperm DNA damage exists following treatment, no increase in genetic defects or congenital malformations was detected among children conceived to parents who have previously undergone chemotherapy or radiotherapy. The use of assisted reproductive technologies and micromanipulation techniques might increase this risk; hence caution should be exercised. In female cancer patients, miscarriage and congenital malformations are not increased following chemotherapy. However, when IVF and embryo cryopreservation is practised between or shortly after treatment, possible genetic risks to the growing oocytes exist, and hence the babies should be screened. During pregnancy, the potential teratogenic effects of chemotherapy influence the choice and timing of therapy. Termination is usually recommended in the first trimester. Second- and third-trimester exposure does not usually increase the teratogenic risk and cognitive development, but it may increase the risk of poor obstetric outcome and fetal myelosuppression. During the first two weeks after fertilization of the embryo, radiation is lethal but not teratogenic. High doses of radiation during pregnancy induce anomalies, impaired growth and mental retardation, and there may be an increased risk of childhood leukaemia and other tumours in the offspring.

Key words: cancer/chemotherapy/radiotherapy/mutagenicity/gametes

TABLE OF CONTENTS

Introduction
Mutagenicity of cancer treatment
Teratogenicity of cancer treatment
Radiotherapy
References

Introduction

The two fundamental cancer treatments, chemotherapy and radiotherapy, have long been known to have a multitude of short- and long-term adverse effects. They have been shown to be mutagenic to somatic cells, causing gene mutations, chromosomal breaks, rearrangements and aneuploidy, and their long-term effects have included treatment-related secondary tumours in cancer survivors (Witt and Bishop, 1996). With a growing population of young cancer survivors (Boring et al., 1994), significant concerns have been raised regarding the adverse effects of these treatments on the offspring of treated individuals. That includes offspring conceived after completion of treatment, and fetuses exposed in utero to cancer treatments. Studies indicate that chemotherapy and radiotherapy treatments can be mutagenic to both animal and human germ cells. Damage to the genetic composition of the human germ cell might influence fertilization, increase the rate of abortions, or cause malformations in children conceived by men or women previously exposed to cancer treatments.

Cancer occurs in ~2–10 in 10 000 pregnancies (Kennedy et al., 1993). If treatment is indicated during pregnancy, and the chemotherapeutic agents cross the placenta, the fetus can be exposed. In such cases, the potential teratogenic effects of therapy on the fetus influence the choice of therapy, the timing, or whether a pregnancy should be terminated. These decisions can lead to a conflict between optimal maternal therapy and fetal well-being, and are usually complicated by emotional, ethical and religious beliefs. Unfortunately, much of the information upon which therapeutic decisions are made are based on anecdotal reports.

This review focuses on the mutagenic and teratogenic potential of the different modalities of cancer treatment. The possible risk
of assisted reproductive technologies in patients exposed to radio or chemotherapy is discussed. The management of different cancers during pregnancy is detailed in another contribution to this mini symposium (Weisz et al., 2001).

**Mutagenicity of cancer treatment**

Most existing data on the mutagenic effects of chemotherapeutic agents have been derived from animal studies, as outlined below. In humans, there is less information on the effect of individual drugs, as most reports are obtained from exposures to multiple drug administration for common malignancies.

The data collected indicate that chemotherapy and radiotherapy treatments are mutagenic to both male and female germ cells at various stages of maturation. However, human studies monitoring the offspring of treated individuals have shown that the observed increase in mutations in germ cells has not translated into an increase in fetal abnormalities. Whether the treated parent was male or female, the incidence of fetal chromosomal or congenital abnormalities remained the same as for the general population (Holmes and Holmes, 1978; Li et al., 1979; Green et al., 1991; Sanders et al., 1996). A number of factors exist which might explain this apparent discrepancy. First, mutated spermatozoa may not be able successfully to fertilize the oocyte. Second, if fertilization does occur, then dominant lethal mutations may result in an undetected miscarriage at a very early stage. It is also possible that some correction mechanism exists within the oocyte to correct sperm chromosomal aberrations and to correct induced mutational damage to the oocyte (Generoso et al., 1979; Matsudo and Tobari, 1989; Host et al., 2000). As presented by the following data, there is a trend of decreased frequency of genetic abnormalities a long time after exposure to chemotherapeutic agents. This may be due to there being a correction mechanism within the spermatogonia, or to removal of the damaged spermatogonia.

**The mutagenic effects of chemotherapy by classes**

Chemotherapeutic agents can be divided into six different classes according to their mechanism of action; alkylating agents, cisplatin and its analogues, vinca alkaloids, antimetabolites, topoisomerase interactive agents, and newer agents (Devita et al., 1997). All these drugs act by interrupting vital cell processes by causing an arrest of the normal cellular proliferation cycle. Some have a specificity for one or more phases of the cell cycle, especially during cell division. The mechanism of action of each of the different classes is summarized in Table I.

**Alkylating agents (AA)**

Alkylating agents (AA) are the most commonly used agents for antineoplastic treatment, and have a very wide spectrum of activity. AA are also the most widely researched class of chemotherapy because of their severe effect on human fertility. In men, AA cause depletion of germinal epithelium in the testes and aplasia of germinal cells, resulting in severe oligozoospermia or azoosperma within 90–120 days of treatment (Byrne et al., 1987), with poor long-term recovery (Meirow and Schenker, 1995). In a study on the return of spermatogenesis after cyclophosphamide treatment, those men who regained spermatogenesis (4 years later, most had not) did so after an average interval of 31 months (Buchanan et al., 1975). AA are mutagenic to all stages of maturation of male human germ cells; however, these agents do not cause transmissible chromosomal translocation or aneuploidy in stem cells, which is a very significant parameter for genetic risk assessment (Witt and Bishop, 1996). In women, AA cause ovarian fibrosis, and follicular and oocyte depletion (Familiari et al., 1993), resulting in a high ovarian failure rate. In studies on mice, AA have been shown to be mutagenic to prevulatory oocytes (Becker and Schoneich, 1982). A recent study on mice showed an increase in abortions and fetal malformations in pregnancies resulting from oocytes exposed at different stages of oocyte maturation. The study showed that abortion rate was highest in oocytes exposed at the preovulatory stage—up to one week before ovulation (56% compared with between 19 and 31% for oocytes exposed at earlier growth stages). The malformation rate was at least 10-fold higher in oocytes exposed at any stage, compared with controls (1.2%). The highest malformation rate (33%) was found in oocytes exposed at the earliest stage of maturation. Thereafter, malformation rate decreased gradually as the time interval increased between exposure and ovulation (Meirow et al., 2001).

**Cisplatin and analogues**

These are commonly used in the treatment of testicular, endometrial and ovarian tumours, as well as some other solid tumours. In studies on male mice, cisplatin induced chromosomal aberrations in spermatocytes, as well as differentiating spermatogonia. The aberrations (mostly chromatid breaks and fragments) were induced immediately after treatment. A significant number of aberrant spermatocytes showed autosomal and/or XY univalents, tetravalents, and with extra elements (Adler and el-Tarras, 1990; Choudhury et al., 2000). However, long after exposure the transmission of such effects was found to be decreased substantially by the time the exposed spermatogonia matured. Nonetheless, some abnormal spermatozoa were still present (Katoh et al., 1990; Choudhury et al., 2000). However, this might be because the damaged spermatocytes did not survive to full maturation.

In rats, administration of cisplatin leads to the formation of cisplatin–DNA adducts in spermatozoa. When cisplatin-treated male rats were bred with untreated females, no adverse developmental effects or decreases in body weight were seen in the offspring, although there was a trend towards increased early embryo mortality (Hooser et al., 2000). Cisplatin is a specific inducer of dominant lethal mutations in female mice, and causes different types of chromosomal damage and DNA adducts (Blommaart et al., 1995) that induce genetic effects in oocytes resulting in early embryonic mortality (Katoh et al., 1990). The latter study also showed that exposure of maturing oocytes to cisplatin resulted in significantly increased embryonic mortality. In another study performed to determine the effects of cisplatin on murine oocytes, exposure of mature oocytes to cisplatin before ovulation led to marked (treatment-induced) aneuploidy (Higdon et al., 1992).

**Vinca alkaloids**

These are also known as aneuploidy inducers, and are used in the treatment of leukaemia, lymphoma, testicular and breast cancer. In men, they cause the arrest of spermatogenesis, and may also
affect motility of mature spermatozoa. The administration of vincristine to dogs resulted in transient deterioration of semen characteristics during treatment, though these subsequently returned to normal. Such changes are attributed to a direct effect of vincristine on the extragonadal spermatozoal reserves (Saratsis et al., 2000). Vinblastine is a highly potent spindle poison that produces a high number of shortened and monopolar spindles as well as multiple chromosomal loss (Gassner and Adler, 1995). Vinblastine is cytotoxic to primary spermatocytes, while spermatogonia and preleptotene spermatocytes are relatively resistant (Sjoblom et al., 1995).

The effects of vinblastine sulphate on in-vivo and in-vitro meiosis in male rats showed an increased rate of detached chromosomes. Cell proliferation was inhibited, as shown by the number of cells arrested at metaphase during the first meiotic (MI) or second meiotic (MII) division. Vinblastine was found to be a potent inducer of cell death (Kallio et al., 1995). When mice oocytes were exposed to vinblastine before the first meiotic division, high levels of aneuploidy were observed (Russo and Levis, 1992). Significant meiotic-arresting activity following administration of vinblastine results in an increased frequency of ovulated oocytes arrested in MI phase, hyperhaploid oocytes, and undegenerated chromosome sets of the first polar body (Mailhes et al., 1993). These aneuploid cells can be fertilized to form zygotes (Albanese, 1987a), which means that these damaged oocytes could produce malformed fetuses.

**Antimetabolites**

These are used to treat paediatric leukaemia, breast, ovarian and gastrointestinal cancers. These agents act on rapidly dividing cells, i.e. the later stages of spermatogenesis, and induce dominant lethal mutations. It has been shown that 5-flourouracil and 6-mercaptopurine cause chromosomal aberrations (Generoso et al., 1975; Albanese, 1987b). Stem cells, which undergo slow division, are much less sensitive to these agents. Long-term administration of 6-mercaptopurine in low doses to male mice induced a high embryonic resorption rate in pregnant females mated with the exposed males (Meirow et al., 2000). These results indicate a high rate of sperm damage which induced lethal embryonic damage. Insufficient research data are available on the effects of antimetabolites on female germ cells.

**Topoisomerase interactive agents**

These are commonly used in the treatment of haematological malignancies and for the treatment of solid tumours. It was found that these agents are cytotoxic to all spermatogonial stages. The mutagenic effects of adriamycin (doxorubicin) was demonstrated in mice spermatocytes (Liang et al., 1986). Also, administration of bleomycin to male mice induced chromosomal anomalies in spermatogonia and spermatocytes (Van-Buul and Goudzwaard, 1980). Other studies, however (Meistrich et al., 1990; Russell, 1990), have not demonstrated mutagenic effects on any stage of mice spermatogenesis. This apparent contradiction could be explained by selection against the affected and abnormal germ cells, resulting in the loss of chromosomally damaged cells (Tease, 1992). The mutagenicity of bleomycin was studied in the different stages of spermatogenesis in *Drosophila*, with bleomycin significantly increasing the proportions of both complete and mosaic lethals at the meiotic and pre-meiotic stages. Genetic instabilities induced by bleomycin were transformed into actual

---

**Table I.** A brief description of the six classes of chemotherapy and their mechanisms of action (Devita et al., 1997)

<table>
<thead>
<tr>
<th>Class of agent</th>
<th>Name of drugs</th>
<th>Mechanism</th>
<th>Cell cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkylating agents</td>
<td>Cyclophosphamide, Nitrogen mustard, Chloroethyl nitrosourea, Busulfan, Chlorambucil, Melphalan, Thiopeta,</td>
<td>Cross-link DNA strand, interrupt RNA and protein synthesis</td>
<td>Non-specific</td>
</tr>
<tr>
<td>Cisplatin and analogues</td>
<td>Cisplatin, Carboplatin</td>
<td>Interferes with DNA synthesis without affecting normal RNA and protein synthesis</td>
<td>Possibly specific (G2 arrest)</td>
</tr>
<tr>
<td>Vinca alkaloids (aneuploidy inducers)</td>
<td>Vincristine, Vinblastine</td>
<td>Bind tubulin and cause dissociation of the microtubule apparatus</td>
<td>Specific: G1 and S phase</td>
</tr>
<tr>
<td>Antimetabolites</td>
<td>Methotrexate, Aminopterin, 5-Fluorouracil, Cytarabine</td>
<td>Inhibit cellular metabolites by acting as false substrates for reactions required in DNA or RNA synthesis.</td>
<td>Non-specific</td>
</tr>
<tr>
<td>Topoisomerase (top) interactive agents (radiomimetics)</td>
<td>Bleomycin, Actinomycin, Doxorubicin, Daunorubicin</td>
<td>Interact with enzyme-DNA complex. Prevents resealing of the top I-mediated DNA single strand breaks</td>
<td>Specific: G2 arrest/ S-phase apoptosis</td>
</tr>
<tr>
<td>Newer agents</td>
<td>Paclitaxel</td>
<td>Acts on microtubule system</td>
<td>Non-specific</td>
</tr>
</tbody>
</table>
mutations in late zygotic divisions, and it was shown that bleomycin-induced instabilities could be transmitted to future generations.

Adriamycin and bleomycin are female-specific mutagens, and have both been shown to induce dominant lethal mutations in maturing/preovulatory oocytes of female mice (Katoh et al., 1990; Sudman et al., 1992). Etoposide (VP-16), which is used as an antineoplastic drug in humans, inhibits topoisomerase II activity by forming a complex that blocks the DNA strand-rejoining activity of topoisomerase II. This results in DNA-strand breaks and the formation of structural chromosome aberrations. A study in mice demonstrated preferential pericentric lesions and aneuploidy induced in oocytes by the topoisomerase II inhibitor, etoposide (Mailhes et al., 1995).

Combination chemotherapy

The majority of studies investigating the genetic effects of a single chemotherapeutic agent have been conducted in animals. In clinical practice, however, men and women are rarely subjected to just one chemotherapeutic agent, and therefore the results of a single agent administration cannot be determined. Some drug combinations are commonly used together, such as MOPP (methylchloroethamine, vincristine, procarbazine and prednisone) for Hodgkin’s disease. Following MOPP treatment, as many as 90% of men remain azoospermic 4 years after therapy (Chapman, 1982). An increased frequency of aneuploidy following MOPP treatment was demonstrated up to 18 years post treatment (Genesc a et al., 1990). Another study on the spermatozoa of patients who had undergone MOPP therapy (Brandiff et al., 1994) reported an increased frequency of hyperhaploidy (indicating chromosomal non-dysjunction) over 3 years after treatment, indicating that the treatment had had a sublethal and not correctable mutagenic effect on stem cells. Sperm chromosomal abnormalities were also assessed in testicular cancer patients before, during and after BEP (bleomycin, etoposide, cisplatin) chemotherapy (Martin et al., 1999). In these patients, fluorescence in-situ hybridization (FISH) analysis was used to detect aneuploidy for chromosomes 1, 12, X, and Y, and diploidy detected a significant increase in the frequency of 24,XY spermatozoa during (0.33%) and after (0.34%) chemotherapy compared with pretreatment (0.14%). The study results suggested that there may be a significantly increased risk of chromosomal abnormalities in the spermatozoa of patients during and immediately after treatment, similar to that seen in animal models. Sperm aneuploidy was evaluated (using FISH) in male patients with Hodgkin’s disease who were treated with NOVP (novanthrone, oncovin, vinblastine, prednisone) chemotherapy (Robbins et al., 1997); ~5-fold increases in spermatozoa with disomies, diploides and complex genotypes involving chromosome X, Y and 8 were found. The increases in sex chromosome aneuploidies arose from segregation errors at MI as well as MII. However, the aneuploidy effects were transient, declining to pretreatment levels within about 100 days after cessation of therapy. No significant increase was demonstrated in either aneuploidy or structural aberrations in spermatozoa collected more than 9 months after cessation of treatment with other drug combinations (Jenderny et al., 1992; Martin et al., 1995). However, this might have been due either to a particular sensitivity of stem cells to the cytolethal effects of treatment, or to very efficient DNA repair mechanisms. Large doses of a particular chemical can overwhelm repair mechanisms in stem cells (Russell, 1987), and this can serve as a possible explanation for the differences in long-term genetic effects following chemotherapy.

Assisted reproduction in cancer patients

Each year, hundreds of thousands of children and young persons of reproductive age are exposed to known mutagens in the form of chemotherapy and/or radiotherapy for cancer (>20000 annually in the USA alone). As an increasing number of these treatments is effective, and many cancers can now be cured, one of the major prices paid for success is infertility and the growing concern that genetic defects are introduced to the germ cells. In adult patients, semen cryopreservation is offered before treatment begins, but in many cases the quality of the spermatozoa is poor (Meiron and Schenker, 1995). In many centres, frozen semen banking is also offered during radio/chemotherapy if cryopreservation was not performed previously. Not surprisingly, insemination with frozen–thawed semen in these cases is often unsuccessful. In order to increase the fertilization rate and the potential number of embryos that can be created from a single cryopreserved specimen, the technique of intracytoplasmic sperm injection (ICSI) is often used. If spermatogenesis recovers partially after chemotherapy or radiotherapy, then fresh spermatozoa can be used to establish a pregnancy by ICSI. Indeed, assisted reproductive technologies promises much to former cancer patients, and now enables previously ‘infertile’ patients successfully to conceive offspring. Until now, there has been no increase in malformations among children conceived to parents who have previously undergone chemotherapy or radiotherapy. However, the use of new reproductive technologies and micromanipulation might increase this risk, and has focused concern on this issue. Animal and human studies have shown that administration of chemotherapy or radiotherapy before mating can cause genetic damage in the germline at the spermatogenic cell stage treated. Moreover, ICSI can bypass natural selection processes that exist to screen out genetically damaged germ cells and prevent fertilization and growth of malformed fetuses (Baschat et al., 1996). A recent study (Chatterjee et al., 2000) detected sperm DNA damage in patients during and following chemotherapy (fludarabin) using single cell ‘comet assay’. The authors have suggested that caution be exercised if the ejaculates are used for in-vitro fertility treatment, and further experiments are needed to assess the biological significance of these DNA changes. We suggest that pregnancies of previous cancer patients are closely monitored, and that any incidence of abnormalities reported. At present, we must show extreme caution when counselling these patients.

In former female cancer patients, most studies have shown that miscarriage and congenital malformations are not substantially increased; however, these pregnancies were established long after treatment had ceased. In order to overcome future female sterility, some centres offer IVF and embryo cryopreservation to patients following first-line chemotherapy and before administration of sterilizing treatment. The full span of follicle growth from the primordial to Graafian stage is of the order of 6 months (Gougeon, 1996; Wasserman, 1996). When growing follicles are exposed to chemotherapy, and then stimulated and fertilized, the possibility
of adverse pregnancy outcomes should be considered. Several key questions should be investigated in the near future: Are there more adverse outcomes in pregnancies following oocyte exposures to cytotoxic treatment at different stages of maturation? Do they carry increased genetic risk? If so, what is the safe period between cessation of treatment and oocyte retrieval for IVF? Clearly, we need to monitor the pregnancy outcome of all these patients and, until more data are available, the fetuses and babies should be screened for chromosomal aberrations and birth defects.

Teratogenicity of cancer treatment

The potential teratogenic effect of cancer treatment depends upon the developmental stage of the fetus at the time of exposure. Those developmental stages can be divided into the preimplantation and early post-implantation periods, the embryonic period or major organogenesis period (3rd to 8th week post conception) during which most of the organs develop (Sadler, 1995), and the fetal period (9th completed gestational week to term). During the predifferentiation period, the conceptus is mostly resistant to teratogenic insult (Schardein, 1993). Any embryonic damage occurring at this point would most likely lead to death of the conceptus (Buekers and Lallas, 1998). During organogenesis, damage to any developing organ would most likely lead to major malformations. Although organogenesis is defined until the end of week 8, a number of organs continue to develop until the end of week 10, such as closure of the palate, and the definite kidney (metanephros). During the fetal period, the damage is less extensive. Subtle impairments of fetal growth and development occurring later in gestation, and disturbances of neurological maturation in particular, may not be apparent at delivery but may manifest early in life (Garber, 1989).

The risk of teratogenesis following cancer treatment appears to be significantly lower than is commonly appreciated, probably because developmental stage at exposure, dose, duration and frequency of drug administration are important variables.

Most drugs reach the fetus in significant concentrations after maternal administration, because the placenta is not an effective barrier. Drugs with a molecular weight <600 Da usually cross the placenta (unless strongly protein bound), while those with weights >1000 Da do not cross. Many drugs have a molecular weight of 250–400 Da, allowing easy passage to the fetus (Pacifici and Nottoli, 1995). Of the chemotherapeutic agents examined, cisplatin (Koc et al., 1994) and cyclophosphamide (D’Incalci et al., 1982) easily cross the placenta, while epirubicin has limited transplacental passage (Gaillard et al., 1995). Teratogenic effects of cytotoxic agents have been identified primarily on the basis of observable anomalies in infants and abortuses. First-trimester exposures may be most often implicated because disruptions in organogenesis are relatively easy to detect.

A number of reviews have summarized the incidence of malformations after first-trimester exposure to chemotherapy; an estimate of 10–20% of fetuses exposed to chemotherapy at this time would have major malformations (Caligiuri and Mayer, 1989). The malformations reported were from all organ systems, with no discernible pattern. A review of 82 articles and citations of 139 cases of first-trimester exposure to chemotherapy reported a total of 24 infants born with malformations (17%) after single-agent exposure, and 25% after combination-agent exposure (Doll et al., 1989). The incidence declined to only 6% in the single-agent exposures if folate antagonists were not included. In 1985, the National Cancer Institute started a registry for in-utero exposure to chemotherapeutic agents. Of the first 210 children monitored, 29 had abnormal outcomes, and 27 of these resulted from first-trimester exposure (Randall, 1993).

The risk of anomalies after administration of chemotherapy in pregnant women is probably greater than the background rate, but there may be a greater risk of stillbirth, fetal growth restriction, prematurity, birth and maternal and fetal myelosuppression (Garcia et al., 1999).

A summary of some of the reports on teratogenic effects of individual agents is given in Table II. The antimetabolites methotrexate and aminopterin have been associated with birth defects more frequently than any other agents. There is one case report of multiple congenital anomalies after 5-fluorouracil exposure, but this was probably not related because of the timing of the exposure (Stephens et al., 1980). Alkylation agents are apparently less teratogenic than antimetabolites (Doll et al., 1989). Vinca alkaloids are potent teratogens in animals, although most cases of human exposure resulted in normal infants (Doll et al., 1989).

Neurodevelopmental studies

Delayed effects of in-utero exposure to chemotherapeutic agents are basically undefined. Concerns for potential late manifestations come at least in part from evolving information on the experience of cancer survivors exposed to these agents in childhood.

A major concern is intellectual and neurological function following in-utero exposure to cancer treatments. The central nervous system continues to develop after the first trimester, and is sensitive to insult during the entire period of gestation. Exposure after the first trimester would probably not cause anatomical defects, but may result in neurodevelopmental consequences.

Few data exist on children’s cognitive functions or long-term development following in-utero exposure to maternal cancer and its associated treatment. Two neurodevelopmental studies were carried out which assessed for growth and development, school performance, intelligence testing according to Wechsler Intelligence and Bender–Gestalt cognitive tests and neurological function of children born to mothers treated with chemotherapy during pregnancy. The results were compared with those in non-related children of similar age and environmental background. In the first study (Aviles and Niz, 1988), 17 children aged between 4 and 22 years who were born to mothers treated for acute leukaemia during pregnancy were examined. In a later study (Aviles et al., 1991), 43 children ranging in age from 3 to 19 years born to mothers treated for haematological malignancies during pregnancy were examined. In both studies, all the values obtained for children exposed to chemotherapy in utero were comparable with control values.

In considering the above factors, we recommend that if treatment cannot be delayed, and is given in the first trimester (especially if folate antagonists are used), then termination of the pregnancy is recommended. When possible, chemotherapy should be delayed until the second trimester, to lessen the risk of anomalies in the fetus. However, chemotherapy started in the second and third trimester may increase the risk of stillbirth, fetal
growth restriction, premature birth, and maternal and fetal myelosuppression. In spite of the increased teratogenic risk, in-utero exposure to chemotherapeutic agents does not appear to affect neurological and cognitive development.

### Radiotherapy

Radiotherapy is used to treat such malignancies as Hodgkin’s disease, lymphosarcoma and testicular cancers, many of which strike patients of young or childbearing age. Radiation doses used are high, in the range of 3000 to 7000 cGy—doses that are thousands of times higher than those used in diagnostic radiology. The effects of such high doses can be mutagenic, embryotoxic, embryolethal and teratogenic. Where possible, the radiation field does not include the gonads, and when indicated the ovaries are surgically relocated away from the radiation field (oophoropexy).

### Effects of high doses of irradiation on the gonads

Ionizing radiation has adverse effects on gonadal function in men of all ages, the degree and persistence of the damage being dependent on the dose. In many cases, men are azoospermic after treatment, and those who do regain spermatogenesis some time after treatment exhibit low sperm counts, motility and an increased rate of chromosomal abnormalities (Martin et al., 1986). In comparison, the ovary appears more resistant to radiation than the testis. A suggested reason for this difference is the constant cell division occurring during sperm production in the testes, in contrast to the germ cells within the ovary that do not

---

### Table II. Cases of the teratogenic effects of chemotherapeutic agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>First-trimester exposure</th>
<th>Second- and third-trimester exposure</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basulfan</td>
<td>31 exposures – 6 malformed infants&lt;sup&gt;a&lt;/sup&gt;</td>
<td>No apparent adverse effects&lt;sup&gt;b&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Briggs et al. (1998); &lt;sup&gt;b&lt;/sup&gt;Wiebe et al. (1994)</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>Unilateral renal agenesis (2 cases), ureter agenesis (1 case)&lt;sup&gt;b&lt;/sup&gt;, Retinal defect (1 case)&lt;sup&gt;c&lt;/sup&gt;</td>
<td>No adverse effect&lt;sup&gt;d&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Shotton and Monie (1963); &lt;sup&gt;b&lt;/sup&gt;Steege and Caldwell (1980); &lt;sup&gt;c&lt;/sup&gt;Rugh and Skaredoff (1965); &lt;sup&gt;d&lt;/sup&gt;Nicholson (1968)</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>No data</td>
<td>10 women treated IUGR (5 cases), moderate bilateral hearing loss (1 case)</td>
<td>Tomlinson et al. (1997)</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>Cyclophosphamide embryopathy (7 cases)&lt;sup&gt;a&lt;/sup&gt; Normal outcomes (14 cases)&lt;sup&gt;b&lt;/sup&gt;</td>
<td>No adverse effects&lt;sup&gt;b&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Enns et al. (1999); &lt;sup&gt;b&lt;/sup&gt;Aviles et al. (1991); &lt;sup&gt;c&lt;/sup&gt;Pizzuto et al. (1980)</td>
</tr>
<tr>
<td>Vinka alkaloids</td>
<td>Vinblastine – normal outcome&lt;sup&gt;a&lt;/sup&gt; Vincristine – normal outcomes&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Normal outcome (&gt;10 cases)&lt;sup&gt;f&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Aviles et al. (1991); &lt;sup&gt;b&lt;/sup&gt;Mulvihill et al. (1987); &lt;sup&gt;c&lt;/sup&gt;Caliguiri and Mayer (1989); &lt;sup&gt;d&lt;/sup&gt;Schardein (1993); &lt;sup&gt;e&lt;/sup&gt;Pizzuto et al. (1980); &lt;sup&gt;f&lt;/sup&gt;Doll et al. (1989)</td>
</tr>
<tr>
<td>Aminopterin</td>
<td>Aminopterin syndrome – cranial dysostosis, hypertelorism, micrognathia, cleft plate, mental retardation&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>Normal outcomes&lt;sup&gt;c&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Warkany (1978); &lt;sup&gt;b&lt;/sup&gt;deAlvarez (1962); &lt;sup&gt;c&lt;/sup&gt;Nicholson (1968)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Pattern of anomalies – skull, skeletal, ocular, hypertelorism, limb and CNS defects&lt;sup&gt;ab&lt;/sup&gt; Normal outcomes&lt;sup&gt;b&lt;/sup&gt;</td>
<td>No anomalies&lt;sup&gt;d&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Buckley et al. (1997); &lt;sup&gt;b&lt;/sup&gt;Schardein (1993); &lt;sup&gt;c&lt;/sup&gt;Aviles et al. (1991); &lt;sup&gt;d&lt;/sup&gt;Nicholson (1968)</td>
</tr>
<tr>
<td>6-Mercaptopurine</td>
<td>Normal outcomes&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>Normal outcomes&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Briggs et al. (1998); &lt;sup&gt;b&lt;/sup&gt;Gilland and Weinstein (1983)</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>No information</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>No malformations (4 cases)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Normal outcomes&lt;sup&gt;b&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Briggs et al. (1998); &lt;sup&gt;b&lt;/sup&gt;Gilland and Weinstein (1983)</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Multiple anomalies (1 case, combination chemotherapy)&lt;sup&gt;j&lt;/sup&gt;</td>
<td>No adverse outcomes&lt;sup&gt;b&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Murray (1984); &lt;sup&gt;b&lt;/sup&gt;Briggs et al. (1998)</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>No information</td>
<td>Transient neonatal leukopenia and neutropenia&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Raffles et al. (1989)</td>
</tr>
<tr>
<td>Cytosine arabinoside</td>
<td>Many cases of normal outcomes&lt;sup&gt;ab&lt;/sup&gt; Two cases of malformations&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Normal outcomes&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;sup&gt;a&lt;/sup&gt;Schardein (1993); &lt;sup&gt;b&lt;/sup&gt;Wagner et al. (1980); &lt;sup&gt;c&lt;/sup&gt;Schleuning and Clemm (1987); &lt;sup&gt;d&lt;/sup&gt;Zemlickis et al. (1992); &lt;sup&gt;e&lt;/sup&gt;Volkenandt et al. (1987)</td>
</tr>
</tbody>
</table>

<sup>a</sup>Risk probably dose-dependent, smaller or non-existent with lower doses <10 mg/week (Feldkamp and Carey, 1993).
<sup>b</sup>See References.
CNS = central nervous system; IUGR = intrauterine growth retardation.
divide until completion of the first meiotic division at ovulation (Sadler, 1995). However, in a retrospective cohort study (Byrne et al., 1987), the effects of radiotherapy were seen to be similar in men and women (relative risks of infertility 0.89 and 0.85 respectively for radiation above the diaphragm, and 0.76 and 0.78 below the diaphragm). The differences between the two studies may have been due to differences in shielding and sample size.

Mutagenic effects of radiotherapy

In males, studies on animals and humans have shown that radiation has direct mutagenic effects on germ cells in relation to dose. High doses may lead to dominant lethal effects, point mutations and chromosomal abnormalities (Brent, 1999). In mice, irradiation has been shown to cause chromosomal aberrations at all stages of sperm development (Tease, 1992). In humans, most men are azoospermic for at least a year following radiation therapy, and studies on sperm samples taken 3 years later found an increased frequency of sperm chromosomal abnormalities (both numerical and structural), 20.9% compared with a control rate of 8.5% (Martin et al., 1986; Martin, 1993). These studies have also found a greater frequency of hypohaploidy relative to hyperhaploidy, suggesting that radiotherapy causes chromosomal loss rather than non-dysjunction. These effects seem to be dose-related, with an apparent threshold (Brent, 1999; Fattibene et al., 1999). There is also a possibility that preconceptional high-dose paternal irradiation may result in increased induction of lymphomyeloid malignancy in the offspring if they are exposed after birth to a recognized inducer of leukæmia (Lord, 1999).

Women previously treated with high-dose abdominal radiotherapy are also at increased risk during subsequent pregnancies for spontaneous abortions (occurring in 38% of patients who had previously undergone irradiation compared with 12% of the population), preterm labour (62 versus 9%) and low birth weight infants (62 versus 6%) (Li et al., 1987; Hawkins and Smith, 1989; Sanders et al., 1996). These effects could be due in part to genetic damage to the follicles during radiotherapy, but much more likely to be due to effects of radiation on the uterus (Crichtley, 1999).

In studies on rodents, radiation has been shown to cause destruction of oocytes in primordial follicles, followed by follicular atresia, and stromal hypertrophy which leads to amenorrhoea and sterility (Jarrell et al., 1986). Of those cells which survive treatment, many suffer mutagenic damage. Animal studies have indicated that irradiation can cause chromosomal damage at all stages of oocyte maturation. According to one report (Tease, 1992), the oocyte is most sensitive immediately pre-ovulation, and most structural chromosomal abnormalities induced at that stage are embryo lethal and therefore not transmissible. Others (Kirk and Lyon, 1982) found that the highest proportion of dead and abnormal fetuses resulted from oocytes exposed to radiotherapy at the earliest stages of maturation. In both studies, the greatest damage was caused to growing follicles, of all stages, compared with dormant primordial follicles. This seems to stem from the fact that at these stages the oocytes are metabolically active.

Studies on women exposed to the atomic bomb, and on the offspring conceived and born to them following that exposure, have shown that the incidence of spontaneous abortion is greater, but that these children suffered no increase in mutation or in major congenital anomalies above the normal population (Damewood and Grochow, 1986). This corroborates other studies on the effects of radiotherapy which found that fetal abnormalities are not increased in the offspring of women exposed to radiotherapy before pregnancy (Li et al., 1987; Hawkins and Smith, 1989; Hawkins, 1991; Sanders et al., 1996).

After reviewing the above literature, and based upon our cumulative experience, we recommend that in women who were exposed to high doses of irradiation prior to conception, if reproduction is not disturbed, there seems to be very little danger to the fetal well-being. The adverse effects on subsequent pregnancies are likely to be due to the direct effects of radiation on the uterus.

High-dose irradiation during pregnancy

Ionizing irradiation is a widely studied, proven ‘universal teratogen’ affecting all animal species (Brent, 1989, 1999). There is a threshold phenomenon regarding the effects of ionizing irradiation on the human conceptus, supported by extensive experimental data, and exposures to doses below 0.1–0.2 Gy do not seem to cause an increase in the rate of congenital malformations (Brent, 1999).

Radiation is also carcinogenic, with a lower threshold. Classic effects of radiation on the developing mammal are embryonic death, gross congenital malformations and intrauterine growth retardation (IUGR). Each of these effects has a dose–response relationship. In most studies where significant effects on the growth and cognitive development of the human fetus were observed, the exposure was to doses well above 1.0 Gy (Brent, 1999). In these cases, the newborn infants suffered from microcephaly, eye abnormalities, skeletal malformations and stunted growth, as well as mental retardation.

During the first 2 weeks post fertilization, the embryo is highly sensitive to the lethal effects of irradiation and is insensitive to the teratogenic effects of radiation (Brent and Bolden, 1967; Brent, 1999). In weeks 3–10 post fertilization, radiation may be teratogenic, cause growth retardation, and very high doses (at least 1.0 Gy) may be lethal to the embryo (Fattibene et al., 1999). During the later fetal stages, radiation does not result in major anatomical anomalies, but can cause permanent cell depletion of various organs and tissues if the radiation exposure is high enough (Brent, 1989, 1999). In the post-partum period, the infant has the ability to recover partially from the growth-retarding effects of high-dose irradiation. Chromosomal abnormalities and somatic mutations have been invoked to explain radiation-induced anomalies. Irradiation of the zygote may cause chromosomal abnormalities which may be lethal and result in increased preimplantation death, but point mutations are less likely to be a contributing factor to abnormal morphogenesis (Brent, 1999; Pilis et al., 1999).

The central nervous system develops throughout gestation, and may therefore be sensitive to radiation at all stages of pregnancy. High doses of ionizing irradiation, mainly in therapeutic doses, were found to induce skeletal, eye and brain anomalies in the human fetus. The main defects were microcephaly, and mental retardation, microphthalmia, cataract, iridal defects and skeletal anomalies. Similar damage was observed in the offspring of mothers exposed to the atomic bomb in Hiroshima and Nagasaki. Analysis of the outcome of children exposed while in utero to the atomic bomb indicated that the fetal brain is most susceptible to
high doses of ionizing irradiation during weeks 8–15 after conception, and to a lesser extent during weeks 16–25 (Otake et al., 1996; Schull and Otake, 1999), and apparently least susceptible prior to the 8th week and after the 25th week. The effects were mainly microcephaly and mental retardation. These children also suffered from retardation of growth in stature and in head circumference.

There is concern about the carcinogenic effects of irradiation on the developing embryo and fetus, as several epidemiological studies have demonstrated an increased risk of childhood leukaemia and other childhood tumours (Stewart et al., 1958; McMahon, 1962; Mole, 1979). The overall additional risk is estimated to be about 40% (Harvey et al., 1985). The risk for malformations and cancer following low-dose intrauterine irradiation is relatively low (Mole, 1993; Doll and Wakeford, 1997), being between zero and one case per thousand fetuses irradiated per rad of irradiation.

We recommend that during pregnancy, high-dose irradiation should be avoided, as it may induce central nervous system, eye and skeletal anomalies, impaired growth and mental retardation.

If the embryo was exposed to radiation in the first 2 weeks post fertilization, then the effect is embryolethal but not teratogenic. At any point during the pregnancy, maternal exposure (to the abdomen) of $<$0.10–0.20 Gy does not seem to cause teratogenic effects, although in-uterus exposure to radiation causes 40% increased risk of childhood leukaemia and other tumours. If there was very early or low dose exposure to radiation, these do not justify termination of the pregnancy.

References


Effects of cancer treatments on gametes and embryos


Sanders, I.E., Hawley, I. et al. (1996) Prenancies following high, dose cyclophosphamide with or without high, dose busulfan or total body irradiation and bone marrow transplant. Blood, 87, 3045–3052.


**Effects of cancer treatments on gametes and embryos**


Received on January 26, 2001; accepted on April 26, 2001