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Supplementary Methods
1. Data collection
The Amboseli Baboon Research Project (ABRP) collects continuous data on the demography, social interactions, and ranging patterns of hundreds of individual baboons in the Amboseli ecosystem in Kenya (Alberts and Altmann 2012). Each baboon social group is visited 3 to 4 times per week by experienced field observers who individually recognize all baboon group members by morphological characteristics (Alberts and Altmann 2011). Below we describe how data on each predictor of microbiome composition were collected. 
Social group membership. Social group membership was known from censuses of group membership collected on all visits to each social group.  
Grooming partner diversity and grooming bond strength. Grooming interactions were recorded as part of representative interaction sampling during all group monitoring visits. During representative interaction sampling, observers move through the group at random as they perform focal animal samples on a randomized rotation of animals. The observer remains with each subject for 10 minutes and records all observations of physical contact for all individuals within their line of sight (including grooming interactions observed for animals who are not the subject of the focal sample). After 10 minutes, the observer moves to a new subject, ensuring representative sampling of the whole social group. For each grooming interaction, the observer records the identity of the groomer and the individual being groomed. We included grooming interactions for the microbiome sampling period and one year prior to the start of the sampling period (7 July 2011 – 8 August 2012), for a total of 3,283 observations of grooming in Viola’s group and 1,722 observations in Mica’s group. 
To test whether individuals who groomed with a more diverse set of partners had more diverse microbiomes, we calculated grooming partner diversity. Specifically, within each social group, we counted the number of times each individual in our dataset groomed every other individual in the social group, and then calculated each individual’s Shannon’s H grooming index using the R package vegan (Oksanen et al 2012). A Shannon’s H grooming index takes into account both number of partners and frequency of grooming interactions, such that individuals who groom evenly with a broad array of individuals will have greater Shannon’s H than those who groom frequently with only a few other individuals.
To test whether close grooming partners have more similar microbiomes than individuals who rarely groom each other, we also calculated grooming bond strength, which is a dyadic grooming metric. Grooming bond strength was calculated by counting all of the grooming interactions observed between all dyads present in the dataset (range = 0 – 44 in Mica’s group and 0 – 67 in Viola’s group). We then normalized these counts by dividing them by the count for the highest grooming bond in each group (44 or 67 interactions in Mica’s and Viola’s respectively). Hence, all grooming bonds were represented as a proportional strength relative to the strongest bond in their group. 
To test if length of group residency (see “Male dispersal history” below) predicted more frequent grooming interactions for immigrant males, we calculated the average of the number of grooms given and grooms received per day resident in the group for each male, controlling for observer effort following (Archie et al 2014). Because there are more individuals in Viola’s group, each individual is observed less frequently, and the number of grooming observations per individual is lower than in Mica’s group. To correct for this artifact in each individual male, we divided the number of adult female focal animal samples that occurred on the days the male was in the group by the average number of adult female members of the group on those days, which we then divided by the number of days the adult male was a member of the group to get a sample per female per day rate as a measure of observer effort. We then took the residuals of the regression between observer effort and number of grooms given and received per day resident in the group for each male, and used these values in the male residency time analysis.
Male dispersal history. To test if the length of group residency predicted a male’s microbiome similarity to other group members, we used data on male dispersal history. Male baboons typically disperse from their natal group around sexual maturity and move between social groups throughout their lives (Alberts and Altmann 1995). Male residence time in a social group was calculated as the number of consecutive days a male resided in his current social group. Because study groups are visited 3 – 4 times per week, the members of all study groups are known to the field observers. A novel male who appears in a study group and is not recognized by field observers (or known to have immigrated to the group from a different study group) is considered an immigrant male. Immigrant males are genotyped from fecal DNA to determine if they are males born in a study group who have immigrated elsewhere and have returned, or if they are new to the study groups entirely.  
Age. The majority of individuals have known birth dates. Hence, age can be calculated to within a few days. Animals born into non-study groups (i.e. those not regularly studied by the ABRP) have birth dates that are estimated using well-defined body metrics (e.g. body size and carriage, toothwear, coat condition) and comparison to baboons of known age (Alberts and Altmann 1995). Ages were known to within a few days’ error for 69 of 78 animals in our dataset. For the remaining animals, 6 had birth dates estimated to be accurate with 1 year, and 3 had birthdates estimated to be accurate within 2 years. Individuals were further classified as juveniles or adults. Adult females were those who had reached menarche (which occurs at a median age of 4.5 years in Amboseli). In most prior analyses in Amboseli, male adulthood is defined by the attainment of adult male rank. However, given that dispersal could influence gut microbiome composition, and some adult males attain adult rank prior to dispersal, here we defined adulthood in males as those who had attained testicular enlargement and who had dispersed from their natal group (which occurs at a median age of 7.7 years in Amboseli) (Onyango et al 2013). 
Kinship. Pairs of closely related individuals groom each other more often than non-kin pairs and could also share more similar microbiomes, so we controlled for the effect of kinship in our grooming bond strength analyses. Maternity is known for every baboon born in a study group based on observed births. Paternity is determined based on genotyping from either blood or fecal-extracted DNA using 14 highly polymorphic microsatellite loci (Buchan et al 2005). Using the resulting pedigree data, a kinship matrix for all individuals in the dataset was created in R using the pedantics package (Morrissey and Wilson 2010).
Diet. Diet can have a substantial effect on gut microbiome composition in humans and wild primates (Amato et al 2013; Yatsunenko et al 2012). Data on diet composition is collected during 10-minute focal animal samples of adult female and juvenile behavior (Altmann 1974). During each focal animal sample, activity (e.g. feeding, walking, resting) is recorded at 1-minute intervals; when feeding is observed, the food type is recorded. Food items are classified by type and part (e.g. Ramphicarpa montana blossoms). To determine individual-level diet composition, we grouped food items into ten categories as in (Tung et al 2015): bark, blossoms corms, fruit, grass seed head, gum, leaves, mother’s milk, pod, and other (including invertebrates, vertebrates, moisture from elephant dung, or unknown and unseen items). We limited the dataset to the 55 individuals observed feeding (i.e. ‘feeding points’) during at least 10 focal animal samples collected over the time period that included the microbiome sampling period and one year prior to the start of the sampling period (7 July 2011 – 8 August 2012), for a total of 5,864 feeding points over 1,109 focal animal samples. Because points within each focal sample are autocorrelated, we generated 1,000 random subsets of 1 point per focal sample, and for each individual we averaged the abundance of each food category to calculate the mean relative contribution of each food category. We then used these data to create an individual-based dietary Bray-Curtis matrix within each social group.

Supplementary Results
1. Comparison of main results using Bray-Curtis and unweighted UniFrac dissimilarities.
We found that the main results in the manuscript were qualitatively similar when we re-analyzed them using Bray-Curtis and unweighted UniFrac dissimilarities. For instance, (i) we found a social group signature on beta diversity in the core (PERMANOVA; weighted UniFrac permuted r2 = 0.0477, permuted p = 0.007; unweighted UniFrac permuted r2 = 0.065, permuted p = 0.001; Bray-Curtis permuted r2 = 0.066, permuted p = 0.001) and non-core (PERMANOVA; weighted UniFrac permuted r2 = 0.139, permuted p = 0.001; unweighted UniFrac permuted r2 = 0.0986, permuted p = 0.001; Bray-Curtis permuted r2 = 0.111, permuted p = 0.001). (ii) In Viola’s group, close grooming partners had more similar core gut microbiota (partial Mantel controlling for kinship; weighted UniFrac r = 0.071, p = 0.009; unweighted UniFrac r = 0.0586, p = 0.029; Bray-Curtis r = 0.0852, p = 0.007) but grooming partner similarity did not predict core microbiome similarity in Mica’s group (partial Mantel controlling for kinship; weighted UniFrac r = 0.083, p = 0.13; unweighted UniFrac r = -0.016, p = 0.56; Bray-Curtis r = -0.017, p = 0.61). (iii) An immigrant male’s residence time predicted his microbiome similarity to his new group for both the core and non-core microbiome (linear mixed models; p < 0.01 for weighted UniFrac, unweighted UniFrac, and Bray-Curtis for both core and non-core microbiomes except Bray-Curtis core microbiome (p = 0.24)).

2. Analyses using a non-core cutoff of 50%
To confirm that our results were robust to the definition of non-core microbiome, we repeated our analyses using OTUs prevalent in < 50% of samples instead of < 90% of samples. The results were qualitatively similar between the two analyses except where noted in the main text.

Defining the core gut microbiome.
We identified 15,788 non-core OTUs found in 50% or fewer samples. These non-core 50% OTUs were found in 2.2 ± 8.8 % (median ± SD) of samples and 5.1 ± 13.2 % of individuals. The same number of bacterial phyla (29) and families (216) were in the non-core 50% microbiome as in the non-core 90% microbiome, and they comprised a similar relative abundance (Supplementary Figure S6).

Group living, but not grooming partner diversity, predicted gut microbial alpha diversity.
Consistent with our results for a 90% definition of non-core taxa, we found that individuals living in the larger social group (Viola’s) exhibited higher non-core 50% gut microbial OTU richness than baboons in the smaller social group (Supplementary Table S8). Specifically, members of Viola’s group had 1,009 ± 257 (median ± SD) non-core 50% OTUs per sample, compared to 878 ± 180 non-core 50% OTUs in Mica’s group. However, males had higher Shannon’s H than females, which we did not observe in the 90% non-core dataset. Further, we found no significant relationship between grooming partner diversity and gut microbial alpha diversity for the non-core 50% data set (p > 0.13 for all mixed models). 

Social effects on gut microbial beta diversity included the core microbiome.
Parallel to our results for a 90% definition of non-core taxa, social group membership explained 9.9% of the variance in gut microbial composition for the 50% non-core microbiome (PERMANOVA of weighted UniFrac distances: permuted r2 = 0.099, permuted p = 0.001). Additionally, controlling for group membership, non-core 50% microbiome beta diversity was not correlated with kinship (partial Mantel; permuted r = 0.012, permuted p = 0.35), and strongly correlated with group membership, controlling for kinship (partial Mantel; permuted r = 0.233, permuted p = 0.001).
Linear discriminant effect analysis (LEfSe) revealed that most of the taxa that were differentially abundant between the two social groups in the non-core 90% microbiome were also significantly differentially abundant in the non-core 50% microbiome. Genera that differed between social groups for the non-core 50% microbiome include Prevotella, Eubacterium, Succinivibrio, and Treponema (Supplementary Figure S7).
We observed the same relationship between grooming bond strength and microbiome similarity for the non-core 50% microbiome as we did for the non-core 90% microbiome in Viola’s group, but in Mica’s group the non-core 50% microbiome results differed from the non-core 90% microbiome results. In Viola’s group, close grooming partners did not have more similar non-core 50% microbiota (partial Mantel tests controlling for kinship: r = 0.005, p = 0.56; partial Mantel tests controlling for diet: r = 0.022, p = 0.27), but in Mica’s group, close grooming partners had more similar non-core 50% microbiomes (partial Mantel tests controlling for kinship: r = 0.143, p = 0.024; partial Mantel tests controlling for diet: r = 0.154, p = 0.034). 

Longer male residency increases gut microbiome similarity to other group members.
Finally, we found similar results to the non-core 90% microbiome for male residency time, but not for sex differences in adults. Male residency time predicted gut microbial similarity to long-term adult residents for the non-core 50% microbiome (Supplementary Table S9). However, unlike in the non-core 90% analysis, adult males did not have more diverse non-core 50% microbiomes than adult females (OTU richness z = 1.91, p = 0.056; Shannon’s H z = 1.44, p = 0.15; Faith’s PD z = 1.45, p = 0.15).

3. Analyses using all taxa combined (i.e. the “whole” microbiome)
We repeated our analyses using the whole microbiome and found qualitatively similar results as compared to patterns for the core and non-core.

Group living, but not grooming partner diversity, predicted gut microbial alpha diversity.
Consistent with our core and non-core results, we found that individuals living in the larger social group (Viola’s) exhibited higher whole gut microbial OTU richness than baboons in the smaller social group (Supplementary Table S10). Specifically, members of Viola’s group had 1,666 ± 307 (median ± SD) OTUs per sample, compared to 1,453 ± 226 OTUs in Mica’s group. Further, we found no significant relationship between grooming partner diversity and gut microbial alpha diversity for the whole dataset (p > 0.5 for all mixed models). 

Social effects on gut microbial beta diversity included the core microbiome.
Parallel to our results for the core and non-core microbiome, we found that social group membership explained 11.8% of the variance in gut microbial composition for the whole microbiome (PERMANOVA of weighted UniFrac distance: permuted r2 = 0.118, permuted p = 0.001; Supplementary Fig. S8A). Additionally, controlling for group membership, whole microbiome beta diversity was not correlated with kinship (partial Mantel; permuted r = 0.016, permuted p = 0.29), but beta diversity was strongly correlated with group membership, controlling for kinship (partial Mantel; permuted r = 0.255, permuted p = 0.001).
Linear discriminant effect analysis (LEfSe) revealed that taxa that were differentially abundant between the two social groups in the core and non-core microbiome analyses were also significantly differentially abundant in the whole microbiome. Genera that differed in abundance between social groups for the whole microbiome include Bifidobacterium, Faecalibacterium, Succinivibrio, and Treponema (Supplementary Figure S9).
We observed the same relationship between grooming bond strength and microbiome similarity for the whole microbiome as we did for the core microbiome in Viola’s group and Mica’s group (Supplementary Fig. 8B, 8C). In Viola’s group, close grooming partners had more similar whole microbiota (partial Mantel tests controlling for kinship: r = 0.067, p = 0.017; partial Mantel tests controlling for diet: r = 0.064, p = 0.043), but in Mica’s group, close grooming partners did not have more similar whole microbiomes (partial Mantel tests controlling for kinship: r = 0.092, p = 0.11; partial Mantel tests controlling for diet: r = 0.11, p = 0.09). 

Longer male residency increases gut microbiome similarity to other group members.
Finally, we found similar results to the core and non-core microbiome for male residency time, but not for sex differences in adults. Male residency time predicted gut microbial similarity to long-term adult residents for the whole microbiome (Supplementary Table S11). However, unlike in the core and non-core analyses, adult males did not have more diverse whole microbiomes than adult females (OTU richness z = 1.66, p = 0.9; Shannon’s H z = 1.78, p = 0.074; Faith’s PD z = 0.97, p = 0.3).

Supplementary Table Legends
Supplementary Table S1. OTU table rarefied to 151,166 reads per sample.

Supplementary Table S2. Sample information and metadata.

Supplementary Table S3. Kinship matrix.

Supplementary Table S4. Dyadic grooming bond strength in Mica’s group.

Supplementary Table S5. Dyadic grooming bond strength in Viola’s group.

Supplementary Table S6. Dietary Bray-Curtis matrix for Mica’s group.

Supplementary Table S7. Dietary Bray-Curtis matrix for Viola’s group.

Supplementary Table S8. Linear mixed models predicting non-core 50% microbiome gut microbial alpha diversity in baboons based on the log likelihood criterion (n = 178 samples from 78 individuals). To parallel analyses for the non-core 90% microbiome results, the table shows fixed effects significant in any non-core 90% models, as well as fixed effects significant in the non-core 50% dataset. We also attempted to include grooming partner diversity as a fixed effect, but it was not significant in any models. Kinship is controlled via the random effect.

Supplementary Table S9. Best supported linear mixed models predicting non-core 50% gut microbial similarity between long-term, adult group residents (n = 78 samples from 38 individuals) and immigrant males (n = 61 samples from 19 individuals) based on the log likelihood criterion. Individual identity is modeled as a random effect.

Supplementary Table S10. Linear mixed models predicting whole microbiome gut microbial alpha diversity in baboons based on the log likelihood criterion (n = 178 samples from 78 individuals). To parallel analyses for the core and non-core microbiome results, the table shows fixed effects significant in any core or non-core models. We also attempted to include grooming partner diversity as a fixed effect, but it was not significant in any models. Kinship is controlled via the random effect.

Supplementary Table S11. Best supported linear mixed models predicting whole gut microbial similarity between long-term, adult group residents (n = 78 samples from 38 individuals) and immigrant males (n = 61 samples from 19 individuals) based on the log likelihood criterion. Individual identity is modeled as a random effect.




Supplementary Figure Legends
Supplementary Figure S1. Map of the home range areas of Mica’s and Viola’s social groups (from Tung et al (2015)).

Supplementary Figure S2. Bioinformatics pipeline. Green boxes indicate read counts, grey boxes are conceptual steps, and white boxes indicate specific computational steps. We used
USEARCH v8.0.1623_i86osx32 (Edgar 2013; Edgar et al 2011), greengenes v13.5 (DeSantis et al 2006), and the fasttree tree method of tree construction (Price et al 2009) as implemented in MacQIIME 1.8.0-20140103 (Caporaso et al 2010a; Caporaso et al 2010b; Caporaso et al 2012).

Supplementary Figure S3. A PCoA plot of weighted UniFrac dissimilarities limited to 50 gut microbiome samples, with 5 samples each collected from 10 different subjects. In PERMANOVA analyses, subject identity explained 64% of the variance in weighted UniFrac dissimilarities. 

Supplementary Figure S4. Core bacterial taxa that differ in relative abundance between Mica’s and Viola’s social groups (LEfSe).

Supplementary Figure S5. Non-core bacterial taxa that differ in relative abundance between Mica’s and Viola’s social groups (LEfSe).

Supplementary Figure S6. (A) Mean relative abundance of bacterial phyla represented by non-core 50% OTUs across all samples. Rare phyla were those that comprised, on average, <1% of reads per sample. (B) Mean relative abundance of bacterial families represented by non-core 50% OTUs across all samples. Rare families were those that comprised, on average, <1% of reads per sample. Bracketed taxa indicate taxon names proposed by the greengenes curators (DeSantiset al 2006). 

Supplementary Figure S7. Non-core 50% bacterial taxa that differ in relative abundance between Mica’s and Viola’s social groups (LEfSe).

Supplementary Figure S8. Plot (A) shows principal coordinates analyses of weighted UniFrac dissimilarities for whole core gut microbial communities. Mica’s group is shown in light grey and Viola’s group is shown in dark grey. Plots (B) and (C) are violin plots showing the relationship between the strength of grooming relationships and the gut microbial communities. Black dots represent median values and white rectangles represent the first and third quartiles of the data. Rotated kernel density plots representing the underlying data are shown on each side. Stronger bonds predict more similar gut microbiotas in (B) the whole microbiome in Viola’s group but not in (C) the whole microbiome in Mica’s group.

[bookmark: _GoBack]Supplementary Figure S9. Whole microbiome bacterial taxa that differ in relative abundance between Mica’s and Viola’s social groups (LEfSe).
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