Three-dimensional computed tomography imaging of an implantable cardioverter-defibrillator lead fragment in the left ventricle of a heart transplant followed by successful transarterial extraction with a snare catheter

Maximilian Luehr, Ingo Daehnert, Friedrich-Wilhelm Mohr and Markus J. Barten

INTRODUCTION

Patients suffering from severe cardiomyopathy often require implantable cardioverter-defibrillator (ICD) implantation long before being considered suitable for cardiac transplantation. During transplantation, ICD lead extraction may require cutting the embedded leads to allow for complete removal.

CASE REPORT

A 51-year-old patient with a long history of ischaemic cardiomyopathy and severe ventricular tachycardia was admitted to our institution due to congestive heart failure. Recurrent cardiac arrhythmias had necessitated the implantation of a biventricular ICD 5 years ago (Fig. 1a). The patient was treated with optimized medical therapy but still required

Supplementary Video 1: Retrospectively ECG-gated cardiac 3D CT allowing for exact localization and intervention planning. The movie shows bending of the metallic foreign body during systole. It is located below the posterior mitral valve leaflet within the left ventricle.
ionotropic support, and therefore, was listed for heart transplantation. After 5 weeks on high urgent status, a successful heart transplantation was performed.

Following an uncomplicated clinical course, the patient was weaned from mechanical ventilation and fully mobilized 1 week after the transplantation. A routine chest X-ray and a subsequent ECG-gated cardiac three-dimensional (3D) computed tomography (CT) scan revealed a metallic foreign body bending during systole below the posterior mitral valve leaflet within the left ventricle (Fig. 1b–d; Supplementary Video 1). Transarterial extraction was planned via the femoral artery. An 8F snare catheter was directed into the left ventricle under the fluoroscopic guidance. Successful extraction via the lasso technique revealed a 3-cm, uncoated ICD fragment (diameter = 0.025 in.; Fig. 2a–g; Supplementary Video 2).

Most likely, a thin uncoated pacing lead fragment dislocated after the required lead cutting for explantation of the patient’s heart and, subsequently, was flushed into the left ventricle of the new transplant during the operation. Following the extraction of the fragment, echocardiography showed mild mitral regurgitation but no further adverse events occurred. The patient was discharged for rehabilitation 2 days after the procedure with no neurological deficits.

DISCUSSION

The increased use of permanent pacemakers or ICDs over the past 20 years has also resulted in increased lead removal procedures due to several associated complications such as infection, lead failure, dislocation or malpositioning [1]. Accidental lead malpositioning into the left atrium or left ventricle carries a potential risk of stroke or thromboembolism and often necessitates open cardiac surgery or catheter-based extraction [2]. Malpositioning into the left heart or lead fragment migration with arterial embolization may occur in cases of arteriovenous fistula, patent foramen ovale or ventricular septal defect and have already been reported [3,4].

However, to the best of our knowledge, the occurrence of an ICD lead fragment in the left ventricle of a heart transplant has never been reported in medical literature. Retrospectively ECG-gated cardiac 3D CT proved to be very valuable tool for the detection, localization and intervention planning, enabling the required extraction. Transarterial endovascular fragment extraction using a snare catheter is a feasible and minimally invasive procedure in this clinical scenario. Careful inspection of all explanted hardware is strongly recommended before transplanting the new heart to ensure that no portion of an ICD lead is left behind.

Figure 1: Preoperative chest X-ray showing the patient’s old heart with the previously implanted ICD leads (a). Postoperative chest X-ray showing a foreign metallic body (white arrow) in the left ventricle of the heart transplant (b). Retrospectively ECG-gated cardiac 3D CT revealing a metallic foreign body bending during systole below the posterior mitral valve leaflet within the left ventricle (c+d).
ACKNOWLEDGEMENT

The authors thank Hartmut B. Bittner, Christian Binner and Lukas Lehmkuhl for their valuable support, and Christiane Kaivers for technical assistance during the preparation of this manuscript.

SUPPLEMENTARY MATERIAL

Supplementary material is available at ICVTS online.

Conflict of interest: none declared.

REFERENCES