On the other hand, various sites have been reported for implantation of a primary permanent PM in children. Historically, the ventricular epicardial electrodes were inserted through a left thoracotomy or sternotomy and a second incision was used to place the PM. Generators placed beneath both rectus muscles required a large abdominal incision [2]. In case of preperitoneal implantation, ileus, hernia, wound dehiscence and infections have been reported [3]. When the devices were placed intraperitoneally in the abdominal cavity, the risk of dislocation and gut injury have been also reported [4]. Disadvantage of the retroperitoneal approach was the difficulty to resuscitate these small neonates in any cardiac arrest situation due to lateral decubitus position. Extrapleural technique has the advantages of a unique incision for lead and generator implantation, and has been used in neonates with a body weight as low as 1.8 kg [3]. The only restriction of this technique is the possible impairment of respiratory function in very low body weight. Recently, defibrillators have been positioned within the diaphragm layers in a horizontal position [5]. Results were satisfactory for children over three years old.

According to our experience, the intra-diaphragmatic approach has the advantages of unique incision for lead and device implantation, allowing good protection of the device from traumatic injury. It avoids wound complications. Care must be taken not to implant the PM too close to the inferior vena cava (IVC) in order to avoid any compression. Bipolar steroid-eluting epicardial pacing leads have been chosen because they show stable long-term pacing and sensing characteristics [6]. Dual-chamber pacing (DDD mode) allows sinus node responsiveness and maintains physiologic atrioventricular synchrony but requires a larger device and two epicardial leads (atrial and ventricular). Concern about technical difficulties was anticipated in such a small premature neonate and VVI pacing with this 12.8 g device was favoured. Up to now, there has been no need to change the device, however if needed, it would be easy and safe to access the device through a subxiphoid approach.

4. Conclusion

We believe that this technique is easily applicable even in very low birth weight neonates and can avoid many complications that have been already reported with other PM implantation techniques.

References


eComment: Re: Intra-diaphragmatic pacemaker implantation in very low weight premature neonate

Authors: Leo A. Bockeria, Bakoulev Center for Cardiovascular Surgery, 121552 Moscow, Russia; Amiran Sh. Revishvili, Oleksiy Y. Grygoriyev
doi: 10.1510/icvts.2009.207480A
The article is dedicated to intra-diaphragmatic pacemaker (PM) implantation in a very low weight premature neonate [1]. The leads were implanted epicardially. In the literature there are no analogue PM implantation in such a low weight premature neonate.
As from our experience neonate without co-existing pathology and rhythm < 50 beats/min or with co-existing heart pathology are suffering from such a low rhythm. The same is true for the neonates after congenital heart surgery when complete heart block is a surgical complication. PM implantation in such group of neonates is not strongly recommended for leads implantation (epicardial or endocardial placement). In particular Cohen et al. [2] had successfully implanted 60 epicardial leads and PMs to children with congenital complete heart block. Subsequent improvements of PMs and leads did not change the appearance of the surgical technique.
We have implanted 15 PMs in neonates, including 75% of dual-chamber PM in neonates with different co-existing pathologies. We have used classical implantation technique of the device in the abdominal wall even in neonates of < 2000 g.
Bakhtiar et al. [3] described their experience of 21 implanted PMs; 15 of them were dual-chamber and neonates (average weight was 3120 ± 230 g). All PMs were implanted in the abdominal wall.
Antretter et al. [4] described the successful single-chamber PM implantation in a neonate with endocardial lead via the left subclavian vein. The PM was implanted under m. pectoralis major. Operation and postoperative period were without complication. PM pocket was performed intramuscularly or under the muscle (depending on implantation place).
The surgical technique described in this article has a particular interest as it is new and non-standard.

References


