Blood type and family cancer history in relation to precancerous gastric lesions

Wei-Cheng You,a Jun-Ling Ma,b Wei-dong Liu,c Mitchell H Gail,a Yun-Sheng Chang,b Lian Zhang,b Yuan-Reng Hu,d Joseph F Fraumeni Jr,a and Guang-Wei Xub

Background The increased odds of stomach cancer among subjects with blood type A have been reported in epidemiological studies.

Aim To study the relation of family history of gastric cancer and ABO blood type with precancerous gastric lesions in a high-risk area for stomach cancer.

Subjects and setting We examined 3400 adults aged 35–64 in a population-based gastric endoscopic screening in a county in China with one of the highest rates of stomach cancer in the world.

Methods In this cross-sectional study, data on family cancer history, ABO blood type and other characteristics of the participants were obtained by interview and blood test. Responses were compared between those with the most advanced gastric lesions, dysplasia (DYS) or intestinal metaplasia (IM), versus those with chronic atrophic gastritis (CAG) or superficial gastritis (SG).

Results The prevalence odds ratio (OR) for blood type A relative to other types was 1.39 (95% CI: 1.12–1.73) for DYS and 1.28 (95% CI: 1.06–1.53) for IM. The OR associated with parental history of stomach cancer was 1.88 (95% CI: 1.20–2.95) for DYS, but the numbers were too small to evaluate aggregation among siblings. The combined OR associated with blood type A and a parental of history of gastric cancer was 2.61 (95% CI: 1.59–4.30) for DYS and 1.46 (95% CI: 0.93–2.31) for IM.

Conclusions The findings suggest that genetic factors play a role in developing precancerous gastric lesions.

Keywords Precancerous gastric lesions, ABO blood type, family stomach cancer history

Accepted 6 October 1999

Stomach cancer, particularly of the intestinal type, is thought to arise from a series of progressive changes, with transformation of normal mucosa to chronic atrophic gastritis (CAG), intestinal metaplasia (IM), dysplasia (DYS) and eventually cancer.1 Thus, clues to the causes of stomach cancer may come from studies of precursor lesions whose origins may be influenced by genetic as well as environmental factors. In Linqu, a rural county of China with one of the highest rates of stomach cancer in the world, CAG is nearly universal among adults, while about 50% are also affected with IM and 20% with DYS.2,3 To provide leads to genetic factors in gastric carcinogenesis, we examined the relation between ABO blood type, a history of stomach cancer in a parent or sibling, and precancerous gastric lesions among the 3400 adults participating in a population-based gastroscopic screening survey. Previous studies of stomach cancer have demonstrated an excess risk of gastric cancer associated with blood type A4,5 as well as a tendency to familial aggregation.6

Materials and Methods

This study is described in detail elsewhere.2,3 In brief, a total of 3400 residents aged 35–64 were enrolled in a screening examination in 1989 in 14 villages selected at random, representing 83% of the eligible population.

After health workers visited each person and obtained appropriate written informed consent, the subjects received an endoscopic examination and biopsies were taken from seven standard locations: four from the antrum, one from the angulus, and two from the body of the stomach. The presence or absence of superficial gastritis (SG), CAG, IM and DYS was recorded for each biopsy. Each site was assigned a diagnosis

---

a National Cancer Institute, Bethesda, MD 20892, USA.
b Beijing Institute for Cancer Research and School of Oncology, Beijing Medical University, Beijing, China 100034.
c Linqu Public Health Bureau, Linqu, Shandong, China 262600.
d Westat, Inc., Rockville, MD 20850, USA.

Reprint requests to: Wei-Cheng You, Division of Cancer Epidemiology and Genetics, National Cancer Institute, EPS Room 8030, Bethesda, MD 20892, USA.
Table 1 Prevalence odds ratios (and 95% CI) estimated from logistic regression

<table>
<thead>
<tr>
<th>Blood type A</th>
<th>Parental gastric cancer</th>
<th>IM</th>
<th>DYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>1.0</td>
<td>DYS</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>1.28 (1.06–1.53)</td>
<td>1.39 (1.12–1.73)</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>1.15 (0.75–1.75)</td>
<td>1.88 (1.20–2.95)</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>1.46 (0.93–2.31)</td>
<td>2.61 (1.59–4.30)</td>
</tr>
</tbody>
</table>

* Adjusted for gender and age (see Methods).

a Intestinal metaplasia.

b Dysplasia.

dys. In contrast, parental history of gastric cancer, after adjusting for blood type, was associated mainly with DYS, indicating that blood type A and familial tendency may affect different stages of the carcinogenic process.

There have been few epidemiological studies of genetic predisposition to precancerous gastric lesions. In a high-risk area of Colombia, people with blood type A had a higher prevalence of CAG/IM than those with other blood types.2 It has been suggested that gastric carcinomas produce antigens immunologically related to blood type A antigens that may help limit tumour growth in non-type A individuals, but the data from China and Colombia suggest that the influence of blood type A precedes the onset of cancer. It is noteworthy that the putative stage of transition (CAG to IM) affected by type A resembles the pattern observed for Lewis blood-group antigens. In one study, anomalies in Lewis A antigens occurred in 67% of cases with DYS, 65% with IM and only 15% with CAG.2

Familial susceptibility has been well documented for stomach cancer6 and reported also for CAG in a manner suggesting an autosomal recessive mode of inheritance.10 Although we had no information on CAG or other precursor lesions among first degree relatives, our data showed that individuals with a parental history of stomach cancer had a significantly higher prevalence of DYS, while the number of siblings with gastric cancer was too small for evaluation.

In summary, this survey of gastric precancerous lesions in a high-risk population in China revealed associations with blood type A and parental history of gastric cancer, consistent with the role of genetic predisposition. Our findings complement earlier studies in this population implicating the effects of dietary practices, cigarette smoking, *Helicobacter pylori* infection, and other environmental factors in the progression of precancerous lesions.1,2 Further studies are needed to elucidate genetic mechanisms and gene-environment interactions in the multi-step process of gastric carcinogenesis.

Acknowledgements

This study was supported in part by National Cancer Institute, USA contracts NO1-CP-15620-, 05613-, 21009 and 33041.

References


8 Beckman L, Angqvist K. On the mechanism behind the association between ABO blood groups and gastric carcinomas. Hum Hered 1987;37:140–43.
