Supplementary Material: The dynamic linear model
The dynamic linear model1 is part of a wider class of state space models2 which are growing in popularity among time series analysts because they allow any time series to be modeled directly, in contrast to Box Jenkins models which require all trends and seasonality to be removed from the data in advance.3 In addition, the dynamic linear model can be fitted to a raw univariate time series through a series of recursive formulas (the Kalman filter1) i.e. without requiring maximization of a likelihood function.

The model allows for correlation in the time series via an assumed underlying (unobservable) system from which the observations are generated.  Allowing for this underlying system where subsequent (unobserved) values are highly correlated, the consecutive observations are assumed to be conditionally independent.  An example of a fitted model is illustrated in Figure 1 below.
[image: image1.emf]Week

Sentinel ILI rate

01020304050

0%

2.5%

5%

7.5%

10%


Figure 1: A dynamic linear model fitted to sentinel surveillance data from Hong Kong 2000-01.  The estimated underlying system (dotted line) is based on the observed time series data (unbroken line). 
As each new observation is added, the next point in the underlying system can be estimated.  One-step-ahead forecasts can be made from the underlying system, and these are illustrated in Figure 2, where 90% forecast limits generated three false alarms prior to the start of the peak season and true alarms one, two and three weeks after the start of the peak season in week 40.
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Figure 2: A dynamic linear model fitted to sentinel surveillance data from Hong Kong 2000-01.  The one-step-ahead 90% forecast intervals (dotted lines) are based on the observed data (unbroken line).  Alarms generated when observed data exceeded the upper forecast limit are indicated by points.
Technical details
In the dynamic linear model, all information available immediately prior to time t, including the observation 
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 falls outside a (1-α) forecast interval, an alarm is raised. After the value 
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 has been observed, the model can be updated to allow a new one-step-ahead forecast to be made. The dynamic linear model assumes that the observations are conditionally independent, given an unobserved underlying system which follows a random walk. Formally, under the dynamic linear model the observations 
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 are conditionally independent of each other, given a series of unobserved system parameters 
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. The model is specified by the two equations:
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where the sequences of normally-distributed errors 
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 are internally and mutually independent. The relationship (1), called the observation equation, describes how the observations are related to the underlying system. The relationship (2), called the system equation, describes how the system changes over time through a random walk. The behaviour of the time series is characterized by the set of four parameters 
[image: image15.wmf](

)

t

t

t

t

W

V

G

F

,

,

,

. Any trends or seasonality can be modeled through the parameters 
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In many situations, it is reasonable to suspect that the properties of the series are not changing over time, and that it would therefore be reasonable to specify 
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. It is straightforward to incorporate this simplification into the calculations which follow. The modeler may further specify that the variance 
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 is constant but unknown, and then estimate this observational variance from the data. The modeler also needs to specify a prior for 
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, and an initial guess 
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 of the observational variance, and the initial number of observations 
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As each new observation 
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 is observed, the model is updated by the following ten equations:1
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Conditional on all observations prior to time 
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, the one-step-ahead forecast distribution for the observation 
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.1 Particular (1-α) percentiles of the one-step-ahead forecast distribution may be used to alert unusual changes in the time series.

In the particular setting of influenza sentinel surveillance, the ‘underlying system’ could represent the unobservable level of influenza circulation in the community which is generating the sentinel data. In this setting, the smoothness parameter W would represent the assumed degree of variability in the week-to-week changes in the underlying level of influenza circulation. In this setting it is reasonable to make the assumption that the series remains broadly constant over time, precisely because we want to use the forecast intervals from this method to detect departure from a constant series at the onset of the annual influenza peak season.
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